Pub Date : 2023-04-21DOI: 10.1186/s41065-023-00278-9
Hao Zhu, Biao Xu, Cunshu Hu, Aimin Li, Qing Liao
Background: Kawasaki disease (KD) is a systemic vasculitis of unknown etiology affecting mainly children. Studies have shown that the pathogenesis of KD may be related to autophagy. Using bioinformatics analysis, we assessed the significance of autophagy-related genes (ARGs) in KD.
Methods: Common ARGs were identified from the GeneCards Database, the Molecular Signatures Database (MSigDB), and the Gene Expression Omnibus (GEO) database. ARGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network analysis. Furthermore, related microRNAs (miRNAs), transcription factors (TFs), and drug interaction network were predicted. The immune cell infiltration of ARGs in tissues was explored. Finally, we used receiver operating characteristic (ROC) curves and quantitative real-time PCR (qRT-PCR) to validate the diagnostic value and expression levels of ARGs in KD.
Results: There were 20 ARGs in total. GO analysis showed that ARGs were mainly rich in autophagy, macro-autophagy, and GTPase activity. KEGG analysis showed that ARGs were mainly rich in autophagy-animal and the collecting duct acid secretion pathway. The expression of WIPI1, WDFY3, ATP6V0E2, RALB, ATP6V1C1, GBA, C9orf72, LRRK2, GNAI3, and PIK3CB is the focus of PPI network. A total of 72 related miRNAs and 130 related TFs were predicted by miRNA and TF targeting network analyses. Ten pairs of gene-drug interaction networks were also predicted; immune infiltration analysis showed that SH3GLB1, ATP6V0E2, PLEKHF1, RALB, KLHL3, and TSPO were closely related to CD8 + T cells and neutrophils. The ROC curve showed that ARGs had good diagnostic value in KD. qRT-PCR showed that WIPI1 and GBA were significantly upregulated.
Conclusion: Twenty potential ARGs were identified by bioinformatics analysis, and WIPI1 and GBA may be used as potential drug targets and biomarkers.
{"title":"Identification and validation of autophagy-related genes in Kawasaki disease.","authors":"Hao Zhu, Biao Xu, Cunshu Hu, Aimin Li, Qing Liao","doi":"10.1186/s41065-023-00278-9","DOIUrl":"https://doi.org/10.1186/s41065-023-00278-9","url":null,"abstract":"<p><strong>Background: </strong>Kawasaki disease (KD) is a systemic vasculitis of unknown etiology affecting mainly children. Studies have shown that the pathogenesis of KD may be related to autophagy. Using bioinformatics analysis, we assessed the significance of autophagy-related genes (ARGs) in KD.</p><p><strong>Methods: </strong>Common ARGs were identified from the GeneCards Database, the Molecular Signatures Database (MSigDB), and the Gene Expression Omnibus (GEO) database. ARGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network analysis. Furthermore, related microRNAs (miRNAs), transcription factors (TFs), and drug interaction network were predicted. The immune cell infiltration of ARGs in tissues was explored. Finally, we used receiver operating characteristic (ROC) curves and quantitative real-time PCR (qRT-PCR) to validate the diagnostic value and expression levels of ARGs in KD.</p><p><strong>Results: </strong>There were 20 ARGs in total. GO analysis showed that ARGs were mainly rich in autophagy, macro-autophagy, and GTPase activity. KEGG analysis showed that ARGs were mainly rich in autophagy-animal and the collecting duct acid secretion pathway. The expression of WIPI1, WDFY3, ATP6V0E2, RALB, ATP6V1C1, GBA, C9orf72, LRRK2, GNAI3, and PIK3CB is the focus of PPI network. A total of 72 related miRNAs and 130 related TFs were predicted by miRNA and TF targeting network analyses. Ten pairs of gene-drug interaction networks were also predicted; immune infiltration analysis showed that SH3GLB1, ATP6V0E2, PLEKHF1, RALB, KLHL3, and TSPO were closely related to CD8 + T cells and neutrophils. The ROC curve showed that ARGs had good diagnostic value in KD. qRT-PCR showed that WIPI1 and GBA were significantly upregulated.</p><p><strong>Conclusion: </strong>Twenty potential ARGs were identified by bioinformatics analysis, and WIPI1 and GBA may be used as potential drug targets and biomarkers.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"17"},"PeriodicalIF":2.7,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9775788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1186/s41065-023-00276-x
T H Noel Ellis, Peter J van Dijk
We describe both the terminology and use of symbols introduced by Mendel in his 1866 paper and discuss some misconceptions concerning their interpretation.
我们描述了孟德尔在他1866年的论文中引入的符号的术语和用法,并讨论了有关它们解释的一些误解。
{"title":"Mendel's terminology and notation reveal his understanding of genetics.","authors":"T H Noel Ellis, Peter J van Dijk","doi":"10.1186/s41065-023-00276-x","DOIUrl":"https://doi.org/10.1186/s41065-023-00276-x","url":null,"abstract":"<p><p>We describe both the terminology and use of symbols introduced by Mendel in his 1866 paper and discuss some misconceptions concerning their interpretation.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"16"},"PeriodicalIF":2.7,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9323367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-13DOI: 10.1186/s41065-023-00277-w
Ling Xie, Juan Yan
Background: Gastric cancer is a common cause of death from cancer and an important global health care issue. Consequently, there is an urgent need to find new drugs and therapeutic targets for the treatment of gastric cancer. Recent studies have shown that tocotrienols (T3) have significant anticancer ability in cancer cell lines. Our previous study found that γ-tocotrienol (γ-T3) induced apoptosis in gastric cancer cells. We further explored the possible mechanisms of γ-T3 therapy for gastric cancer.
Methods: In this study, we treated gastric cancer cells with γ-T3, collect and deposit the cells. γ-T3-treated gastric cancer cells group and untreated group were subjected to RNA-seq assay, and analysis of sequencing results.
Results: Consistent with our previous findings, the results suggest that γ-T3 can inhibit mitochondrial complexes and oxidative phosphorylation. Analysis reveals that γ-T3 has altered mRNA and ncRNA in gastric cancer cells. Significantly altered signaling pathways after γ-T3 treatment were enriched for human papillomavirus infection (HPV) pathway and notch signaling pathway. The same significantly down-regulated genes notch1 and notch2 were present in both pathways in γ-T3-treated gastric cancer cells compared to controls.
Conclusions: It is indicated that γ-T3 may cure gastric cancer by inhibiting the notch signaling pathway. To provide a new and powerful basis for the clinical treatment of gastric cancer.
{"title":"γ-tocotrienol regulates gastric cancer by targeting notch signaling pathway.","authors":"Ling Xie, Juan Yan","doi":"10.1186/s41065-023-00277-w","DOIUrl":"https://doi.org/10.1186/s41065-023-00277-w","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer is a common cause of death from cancer and an important global health care issue. Consequently, there is an urgent need to find new drugs and therapeutic targets for the treatment of gastric cancer. Recent studies have shown that tocotrienols (T3) have significant anticancer ability in cancer cell lines. Our previous study found that γ-tocotrienol (γ-T3) induced apoptosis in gastric cancer cells. We further explored the possible mechanisms of γ-T3 therapy for gastric cancer.</p><p><strong>Methods: </strong>In this study, we treated gastric cancer cells with γ-T3, collect and deposit the cells. γ-T3-treated gastric cancer cells group and untreated group were subjected to RNA-seq assay, and analysis of sequencing results.</p><p><strong>Results: </strong>Consistent with our previous findings, the results suggest that γ-T3 can inhibit mitochondrial complexes and oxidative phosphorylation. Analysis reveals that γ-T3 has altered mRNA and ncRNA in gastric cancer cells. Significantly altered signaling pathways after γ-T3 treatment were enriched for human papillomavirus infection (HPV) pathway and notch signaling pathway. The same significantly down-regulated genes notch1 and notch2 were present in both pathways in γ-T3-treated gastric cancer cells compared to controls.</p><p><strong>Conclusions: </strong>It is indicated that γ-T3 may cure gastric cancer by inhibiting the notch signaling pathway. To provide a new and powerful basis for the clinical treatment of gastric cancer.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"15"},"PeriodicalIF":2.7,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Dongxiang group, as an important minority, resides in Gansu province which is located at the northwest China, forensic detection system with more loci needed to be studied to improve the application efficiency of forensic case investigation in this group.
Methods: A 60-plex system including 57 autosomal deletion/insertion polymorphisms (A-DIPs), 2 Y chromosome DIPs (Y-DIPs) and the sex determination locus (Amelogenin) was explored to evaluate the forensic application efficiencies of individual discrimination, kinship analysis and biogeographic origin prediction in Gansu Dongxiang group based on the 60-plex genotype results of 233 unrelated Dongxiang individuals. The 60-plex genotype results of 4582 unrelated individuals from 33 reference populations in five different continents were also collected to analyze the genetic background of Dongxiang group and its genetic relationships with other continental populations.
Results: The system showed high individual discrimination power, as the cumulative power of discrimination (CPD), cumulative power of exclusion (CPE) for trio and cumulative match probability (CMP) values were 0.99999999999999999999997297, 0.999980 and 2.7029E- 24, respectively. The system could distinguish 98.12%, 93.78%, 82.18%, 62.35% and 39.32% of full sibling pairs from unrelated individual pairs, when the likelihood ratio (LR) limits were set as 1, 10, 100, 1000 and 10,000 based on the simulated family samples, respectively. Additionally, Dongxiang group had the close genetic distances with populations in East Asia, especially showed the intimate genetic relationships with Chinese Han populations, which were concluded from the genetic affinities and genetic background analyses of Dongxiang group and 33 reference populations. In terms of the effectiveness of biogeographic origin inference, different artificial intelligent algorithms possessed different efficacies. Among them, the random forest (RF) and extreme gradient boosting (XGBoost) algorithm models could accurately predict the biogeographic origins of 99.7% and 90.59% of three and five continental individuals, respectively.
Conclusion: This 60-plex system had good performance for individual discrimination, kinship analysis and biogeographic origin prediction in Dongxiang group, which could be used as a powerful tool for case investigation.
{"title":"Comprehensive evaluations of individual discrimination, kinship analysis, genetic relationship exploration and biogeographic origin prediction in Chinese Dongxiang group by a 60-plex DIP panel.","authors":"Man Chen, Wei Cui, Xiaole Bai, Yating Fang, Hongbin Yao, Xingru Zhang, Fanzhang Lei, Bofeng Zhu","doi":"10.1186/s41065-023-00271-2","DOIUrl":"https://doi.org/10.1186/s41065-023-00271-2","url":null,"abstract":"<p><strong>Background: </strong>Dongxiang group, as an important minority, resides in Gansu province which is located at the northwest China, forensic detection system with more loci needed to be studied to improve the application efficiency of forensic case investigation in this group.</p><p><strong>Methods: </strong>A 60-plex system including 57 autosomal deletion/insertion polymorphisms (A-DIPs), 2 Y chromosome DIPs (Y-DIPs) and the sex determination locus (Amelogenin) was explored to evaluate the forensic application efficiencies of individual discrimination, kinship analysis and biogeographic origin prediction in Gansu Dongxiang group based on the 60-plex genotype results of 233 unrelated Dongxiang individuals. The 60-plex genotype results of 4582 unrelated individuals from 33 reference populations in five different continents were also collected to analyze the genetic background of Dongxiang group and its genetic relationships with other continental populations.</p><p><strong>Results: </strong>The system showed high individual discrimination power, as the cumulative power of discrimination (CPD), cumulative power of exclusion (CPE) for trio and cumulative match probability (CMP) values were 0.99999999999999999999997297, 0.999980 and 2.7029E<sup>- 24</sup>, respectively. The system could distinguish 98.12%, 93.78%, 82.18%, 62.35% and 39.32% of full sibling pairs from unrelated individual pairs, when the likelihood ratio (LR) limits were set as 1, 10, 100, 1000 and 10,000 based on the simulated family samples, respectively. Additionally, Dongxiang group had the close genetic distances with populations in East Asia, especially showed the intimate genetic relationships with Chinese Han populations, which were concluded from the genetic affinities and genetic background analyses of Dongxiang group and 33 reference populations. In terms of the effectiveness of biogeographic origin inference, different artificial intelligent algorithms possessed different efficacies. Among them, the random forest (RF) and extreme gradient boosting (XGBoost) algorithm models could accurately predict the biogeographic origins of 99.7% and 90.59% of three and five continental individuals, respectively.</p><p><strong>Conclusion: </strong>This 60-plex system had good performance for individual discrimination, kinship analysis and biogeographic origin prediction in Dongxiang group, which could be used as a powerful tool for case investigation.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"14"},"PeriodicalIF":2.7,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9204998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.1186/s41065-023-00273-0
Xingyu Zheng, Lingli Chen, Wenlu Liu, Shuangshuang Zhao, Ye Yan, Jianzhen Zhao, Wenyan Tian, Yingmei Wang
Background: CCNE1 plays an important oncogenic role in several tumors, especially high-stage serous ovarian cancer and endometrial cancer. Nevertheless, the fundamental function of CCNE1 has not been explored in multiple cancers. Therefore, bioinformatics analyses of pan-cancer datasets were carried out to explore how CCNE1 regulates tumorigenesis.
Methods: A variety of online tools and cancer databases, including GEPIA2, SangerBox, LinkedOmics and cBioPortal, were applied to investigate the expression of CCNE1 across cancers. The pan-cancer datasets were used to search for links between CCNE1 expression and prognosis, DNA methylation, m6A level, genetic alterations, CCNE1-related genes, and tumor immunity. We verified that CCNE1 has biological functions in UCEC cell lines using CCK-8, EdU, and Transwell assays.
Results: In patients with different tumor types, a high mRNA expression level of CCNE1 was related to a poor prognosis. Genes related to CCNE1 were connected to the cell cycle, metabolism, and DNA damage repair, according to GO and KEGG enrichment analyses. Genetic alterations of CCNE1, including duplications and deep mutations, have been observed in various cancers. Immune analysis revealed that CCNE1 had a strong correlation with TMB, MSI, neoantigen, and ICP in a variety of tumor types, and this correlation may have an impact on the sensitivity of various cancers to immunotherapy. CCK-8, EdU and Transwell assays suggested that CCNE1 knockdown can suppress UCEC cell proliferation, migration and invasion.
Conclusion: Our study demonstrated that CCNE1 is upregulated in multiple cancers in the TCGA database and may be a promising predictive biomarker for the immunotherapy response in some types of cancers. Moreover, CCNE1 knockdown can suppress the proliferation, migration and invasion of UCEC cells.
{"title":"CCNE1 is a predictive and immunotherapeutic indicator in various cancers including UCEC: a pan-cancer analysis.","authors":"Xingyu Zheng, Lingli Chen, Wenlu Liu, Shuangshuang Zhao, Ye Yan, Jianzhen Zhao, Wenyan Tian, Yingmei Wang","doi":"10.1186/s41065-023-00273-0","DOIUrl":"https://doi.org/10.1186/s41065-023-00273-0","url":null,"abstract":"<p><strong>Background: </strong>CCNE1 plays an important oncogenic role in several tumors, especially high-stage serous ovarian cancer and endometrial cancer. Nevertheless, the fundamental function of CCNE1 has not been explored in multiple cancers. Therefore, bioinformatics analyses of pan-cancer datasets were carried out to explore how CCNE1 regulates tumorigenesis.</p><p><strong>Methods: </strong>A variety of online tools and cancer databases, including GEPIA2, SangerBox, LinkedOmics and cBioPortal, were applied to investigate the expression of CCNE1 across cancers. The pan-cancer datasets were used to search for links between CCNE1 expression and prognosis, DNA methylation, m6A level, genetic alterations, CCNE1-related genes, and tumor immunity. We verified that CCNE1 has biological functions in UCEC cell lines using CCK-8, EdU, and Transwell assays.</p><p><strong>Results: </strong>In patients with different tumor types, a high mRNA expression level of CCNE1 was related to a poor prognosis. Genes related to CCNE1 were connected to the cell cycle, metabolism, and DNA damage repair, according to GO and KEGG enrichment analyses. Genetic alterations of CCNE1, including duplications and deep mutations, have been observed in various cancers. Immune analysis revealed that CCNE1 had a strong correlation with TMB, MSI, neoantigen, and ICP in a variety of tumor types, and this correlation may have an impact on the sensitivity of various cancers to immunotherapy. CCK-8, EdU and Transwell assays suggested that CCNE1 knockdown can suppress UCEC cell proliferation, migration and invasion.</p><p><strong>Conclusion: </strong>Our study demonstrated that CCNE1 is upregulated in multiple cancers in the TCGA database and may be a promising predictive biomarker for the immunotherapy response in some types of cancers. Moreover, CCNE1 knockdown can suppress the proliferation, migration and invasion of UCEC cells.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"13"},"PeriodicalIF":2.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9204137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.1186/s41065-023-00275-y
Shubian Qiu, Lele Zou, Ruimin Qiu, Xin Wang
Background: Circular RNAs (circRNAs) are abnormally expressed in breast cancer (BC). However, the biological function and mechanism of circHMCU still need to be further explored.
Methods: The expression levels of circHMCU, miR-4458 and phosphoglycerate kinase 1 (PGK1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The glucose uptake, lactate production and ATP level were assayed by related commercial kits. Cell Counting Kit-8 (CCK8), 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays were used to test cell proliferation and apoptosis, respectively. The migratory and invasive abilities were detected by transwell and wound-healing assays. The relationships among circHMCU, miR-4458 and PGK1 were verified by dual-luciferase reporter assay. The function of circHMCU in tumor growth was evaluated by animal studies.
Results: CircHMCU was upregulated in BC tissues and cell lines, whereas miR-4458 was downregulated. For biological experiments, circHMCU knockdown inhibited cell proliferation, migration, glycolysis, while promoted cell apoptosis. CircHMCU bound miR-4458, and miR-4458 targeted PGK1. MiR-4458 inhibition reversed circHMCM knockdown-mediated effects on BC cell malignant behaviors. MiR-4458 overexpression suppressed cell glycolysis, proliferation, and metastasis and promoted apoptosis in BC cells through PGK1 upregulation. Additionally, circHMCU suppressed tumor growth in vivo.
Conclusion: CircHMCU acted as an oncogenic factor by regulating the miR-4458/PGK1 axis in BC.
{"title":"Circular RNA circHMCU promotes breast tumorigenesis through miR-4458/PGK1 regulatory cascade.","authors":"Shubian Qiu, Lele Zou, Ruimin Qiu, Xin Wang","doi":"10.1186/s41065-023-00275-y","DOIUrl":"https://doi.org/10.1186/s41065-023-00275-y","url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) are abnormally expressed in breast cancer (BC). However, the biological function and mechanism of circHMCU still need to be further explored.</p><p><strong>Methods: </strong>The expression levels of circHMCU, miR-4458 and phosphoglycerate kinase 1 (PGK1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The glucose uptake, lactate production and ATP level were assayed by related commercial kits. Cell Counting Kit-8 (CCK8), 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays were used to test cell proliferation and apoptosis, respectively. The migratory and invasive abilities were detected by transwell and wound-healing assays. The relationships among circHMCU, miR-4458 and PGK1 were verified by dual-luciferase reporter assay. The function of circHMCU in tumor growth was evaluated by animal studies.</p><p><strong>Results: </strong>CircHMCU was upregulated in BC tissues and cell lines, whereas miR-4458 was downregulated. For biological experiments, circHMCU knockdown inhibited cell proliferation, migration, glycolysis, while promoted cell apoptosis. CircHMCU bound miR-4458, and miR-4458 targeted PGK1. MiR-4458 inhibition reversed circHMCM knockdown-mediated effects on BC cell malignant behaviors. MiR-4458 overexpression suppressed cell glycolysis, proliferation, and metastasis and promoted apoptosis in BC cells through PGK1 upregulation. Additionally, circHMCU suppressed tumor growth in vivo.</p><p><strong>Conclusion: </strong>CircHMCU acted as an oncogenic factor by regulating the miR-4458/PGK1 axis in BC.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"12"},"PeriodicalIF":2.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9163459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-13DOI: 10.1186/s41065-023-00272-1
Ruisong Wang, Ziyi Qin, Long Huang, Huiling Luo, Han Peng, Xinyu Zhou, Zhixiang Zhao, Mingyao Liu, Pinhong Yang, Tieliu Shi
Background: Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining.
Results: The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu.
Conclusions: Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.
{"title":"SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency.","authors":"Ruisong Wang, Ziyi Qin, Long Huang, Huiling Luo, Han Peng, Xinyu Zhou, Zhixiang Zhao, Mingyao Liu, Pinhong Yang, Tieliu Shi","doi":"10.1186/s41065-023-00272-1","DOIUrl":"10.1186/s41065-023-00272-1","url":null,"abstract":"<p><strong>Background: </strong>Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining.</p><p><strong>Results: </strong>The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu.</p><p><strong>Conclusions: </strong>Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"11"},"PeriodicalIF":2.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9512980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.1186/s41065-023-00274-z
Lu Cao, Lili Duan, Rui Zhang, Wanli Yang, Ning Yang, Wenzhe Huang, Xuemin Chen, Nan Wang, Liaoran Niu, Wei Zhou, Junfeng Chen, Yiding Li, Yujie Zhang, Jinqiang Liu, Daiming Fan, Hong Liu
Background: RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) requires further investigation.
Methods: Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression network analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further verified through the Human Protein Atlas (HPA) database and RT-qPCR.
Results: One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of overall survival (P < 0.001; HR:3.682; CI:2.377-5.705) and ROC curves indicated it has an effective predictive performance (1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGEHOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of surgically resected CRC tissues.
Conclusion: Our research provides a depth insight of RBPs' role in CRC and the proposed signature are helpful to the personalized treatment and prognostic judgement.
背景:RNA结合蛋白(rbp)参与多种癌症的发生和发展。然而,rbp作为结直肠癌(CRC)预后指标和治疗靶点的潜在价值需要进一步研究。方法:从文献中收集rbp 482例。采用加权基因共表达网络分析(WGCNA),根据TCGA队列获得的数据识别与预后相关的RBP基因模块。利用LASSO算法建立了预测风险模型,并通过独立GEO数据集验证了模型的有效性。功能富集分析揭示了该标记的潜在生物学功能和途径,并估计了肿瘤免疫浸润。利用CMap数据库推断潜在的治疗化合物。通过Human Protein Atlas (HPA)数据库和RT-qPCR进一步验证hub基因的表达。结果:在CRC样本中有1734个rbp存在差异表达,鉴定出4个与预后显著相关的基因模块,并以此为基础建立了预后预测的12个基因标记。多因素Cox分析提示rbp是总生存期的独立预测因素(P)。结论:我们的研究为rbp在结直肠癌中的作用提供了深入的认识,提出的rbp特征有助于个体化治疗和预后判断。
{"title":"Development and validation of an RBP gene signature for prognosis prediction in colorectal cancer based on WGCNA.","authors":"Lu Cao, Lili Duan, Rui Zhang, Wanli Yang, Ning Yang, Wenzhe Huang, Xuemin Chen, Nan Wang, Liaoran Niu, Wei Zhou, Junfeng Chen, Yiding Li, Yujie Zhang, Jinqiang Liu, Daiming Fan, Hong Liu","doi":"10.1186/s41065-023-00274-z","DOIUrl":"https://doi.org/10.1186/s41065-023-00274-z","url":null,"abstract":"<p><strong>Background: </strong>RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) requires further investigation.</p><p><strong>Methods: </strong>Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression network analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further verified through the Human Protein Atlas (HPA) database and RT-qPCR.</p><p><strong>Results: </strong>One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of overall survival (P < 0.001; HR:3.682; CI:2.377-5.705) and ROC curves indicated it has an effective predictive performance (1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGEHOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of surgically resected CRC tissues.</p><p><strong>Conclusion: </strong>Our research provides a depth insight of RBPs' role in CRC and the proposed signature are helpful to the personalized treatment and prognostic judgement.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"10"},"PeriodicalIF":2.7,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9474154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Systemic lupus erythematosus (SLE) is an autoimmune disorder which could lead to inflammation and fibrosis in various organs. Pulmonary fibrosis is a severe complication in patients with SLE. Nonetheless, SLE-derived pulmonary fibrosis has unknown pathogenesis. Of pulmonary fibrosis, Idiopathic pulmonary fibrosis (IPF) is a typicality and deadly form. Aiming to investigate the gene signatures and possible immune mechanisms in SLE-derived pulmonary fibrosis, we explored common characters between SLE and IPF from Gene Expression Omnibus (GEO) database.
Results: We employed the weighted gene co-expression network analysis (WGCNA) to identify the shared genes. Two modules were significantly identified in both SLE and IPF, respectively. The overlapped 40 genes were selected out for further analysis. The GO enrichment analysis of shared genes between SLE and IPF was performed with ClueGO and indicated that p38MAPK cascade, a key inflammation response pathway, may be a common feature in both SLE and IPF. The validation datasets also illustrated this point. The enrichment analysis of common miRNAs was obtained from the Human microRNA Disease Database (HMDD) and the enrichment analysis with the DIANA tools also indicated that MAPK pathways' role in the pathogenesis of SLE and IPF. The target genes of these common miRNAs were identified by the TargetScan7.2 and a common miRNAs-mRNAs network was constructed with the overlapped genes in target and shared genes to show the regulated target of SLE-derived pulmonary fibrosis. The result of CIBERSORT showed decreased regulatory T cells (Tregs), naïve CD4+ T cells and rest mast cells but increased activated NK cells and activated mast cells in both SLE and IPF. The target genes of cyclophosphamide were also obtained from the Drug Repurposing Hub and had an interaction with the common gene PTGS2 predicted with protein-protein interaction (PPI) and molecular docking, indicating its potential treatment effect.
Conclusions: This study originally uncovered the MAPK pathway, and the infiltration of some immune-cell subsets might be pivotal factors for pulmonary fibrosis complication in SLE, which could be used as potentially therapeutic targets. The cyclophosphamide may treat SLE-derived pulmonary fibrosis through interaction with PTGS2, which could be activated by p38MAPK.
{"title":"Identification of the shared genes and immune signatures between systemic lupus erythematosus and idiopathic pulmonary fibrosis.","authors":"Sheng Liao, Youzhou Tang, Ying Zhang, Qingtai Cao, Linyong Xu, Quan Zhuang","doi":"10.1186/s41065-023-00270-3","DOIUrl":"https://doi.org/10.1186/s41065-023-00270-3","url":null,"abstract":"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is an autoimmune disorder which could lead to inflammation and fibrosis in various organs. Pulmonary fibrosis is a severe complication in patients with SLE. Nonetheless, SLE-derived pulmonary fibrosis has unknown pathogenesis. Of pulmonary fibrosis, Idiopathic pulmonary fibrosis (IPF) is a typicality and deadly form. Aiming to investigate the gene signatures and possible immune mechanisms in SLE-derived pulmonary fibrosis, we explored common characters between SLE and IPF from Gene Expression Omnibus (GEO) database.</p><p><strong>Results: </strong>We employed the weighted gene co-expression network analysis (WGCNA) to identify the shared genes. Two modules were significantly identified in both SLE and IPF, respectively. The overlapped 40 genes were selected out for further analysis. The GO enrichment analysis of shared genes between SLE and IPF was performed with ClueGO and indicated that p38MAPK cascade, a key inflammation response pathway, may be a common feature in both SLE and IPF. The validation datasets also illustrated this point. The enrichment analysis of common miRNAs was obtained from the Human microRNA Disease Database (HMDD) and the enrichment analysis with the DIANA tools also indicated that MAPK pathways' role in the pathogenesis of SLE and IPF. The target genes of these common miRNAs were identified by the TargetScan7.2 and a common miRNAs-mRNAs network was constructed with the overlapped genes in target and shared genes to show the regulated target of SLE-derived pulmonary fibrosis. The result of CIBERSORT showed decreased regulatory T cells (Tregs), naïve CD4+ T cells and rest mast cells but increased activated NK cells and activated mast cells in both SLE and IPF. The target genes of cyclophosphamide were also obtained from the Drug Repurposing Hub and had an interaction with the common gene PTGS2 predicted with protein-protein interaction (PPI) and molecular docking, indicating its potential treatment effect.</p><p><strong>Conclusions: </strong>This study originally uncovered the MAPK pathway, and the infiltration of some immune-cell subsets might be pivotal factors for pulmonary fibrosis complication in SLE, which could be used as potentially therapeutic targets. The cyclophosphamide may treat SLE-derived pulmonary fibrosis through interaction with PTGS2, which could be activated by p38MAPK.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"9"},"PeriodicalIF":2.7,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10836175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Neuropathic pain (NP) is one of the most common types of chronic pain and significantly compromises the quality of life. Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis in response to various stresses. The role of autophagy-related genes in the diagnosis and treatment of neuropathic pain remains unclear.
Methods: We identified autophagy-related differentially expressed genes (ARDEGs) and differentially expressed miRNAs (DE-miRNAs) in neuropathic pain by bioinformatics analysis of the GSE145226 and GSE145199 datasets. These ARDEGs and their co-expressed genes were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and friends analysis. Meanwhile, we constructed TFs-ARDEGs, miRNA-ARDEGs regulatory network through ChIPBase database and the HTFtarget database, multiMir R package. Finally, we performed immune infiltration analysis of ARDEGs by Single Sample Gene Set Enrichment Analysis (ssGSEA).
Results: We identified 2 potential autophagy-related differentially expressed genes (Sirt2 and ST7) that may be closely associated with the pathogenesis of neuropathic pain. GO, KEGG and GSEA analysis revealed that these two ARDEGs were mainly enriched in pyridine nucleotide metabolic process, nicotinamide nucleotide metabolic process, Nicotinate and nicotinamide metabolism, NF-κB pathway, KRAS signaling, P53 pathway. In the TFs-ARDEGs and miRNA-ARDEGs regulatory network, miR-140-5p and Cebpb were predicted to be as crucial regulators in the progression of NP. For the ssGSEA results, Sirt2 was positively correlated with Eosinophil and Effector memory CD8+ T cell infiltration, which suggested that it may be involved in the regulation of neuroimmune-related signaling.
Conclusion: Two autophagy-related differentially expressed genes, especially Sirt2, may be potential biomarkers for NP, providing more evidence about the crucial role of autophagy in neuropathic pain.
{"title":"Identification of autophagy-related genes in neuropathic pain through bioinformatic analysis.","authors":"Sheng Tian, Lanxiang Wu, Heqing Zheng, Xianhui Zhong, Xinping Yu, Wei Wu","doi":"10.1186/s41065-023-00269-w","DOIUrl":"https://doi.org/10.1186/s41065-023-00269-w","url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain (NP) is one of the most common types of chronic pain and significantly compromises the quality of life. Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis in response to various stresses. The role of autophagy-related genes in the diagnosis and treatment of neuropathic pain remains unclear.</p><p><strong>Methods: </strong>We identified autophagy-related differentially expressed genes (ARDEGs) and differentially expressed miRNAs (DE-miRNAs) in neuropathic pain by bioinformatics analysis of the GSE145226 and GSE145199 datasets. These ARDEGs and their co-expressed genes were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and friends analysis. Meanwhile, we constructed TFs-ARDEGs, miRNA-ARDEGs regulatory network through ChIPBase database and the HTFtarget database, multiMir R package. Finally, we performed immune infiltration analysis of ARDEGs by Single Sample Gene Set Enrichment Analysis (ssGSEA).</p><p><strong>Results: </strong>We identified 2 potential autophagy-related differentially expressed genes (Sirt2 and ST7) that may be closely associated with the pathogenesis of neuropathic pain. GO, KEGG and GSEA analysis revealed that these two ARDEGs were mainly enriched in pyridine nucleotide metabolic process, nicotinamide nucleotide metabolic process, Nicotinate and nicotinamide metabolism, NF-κB pathway, KRAS signaling, P53 pathway. In the TFs-ARDEGs and miRNA-ARDEGs regulatory network, miR-140-5p and Cebpb were predicted to be as crucial regulators in the progression of NP. For the ssGSEA results, Sirt2 was positively correlated with Eosinophil and Effector memory CD8<sup>+</sup> T cell infiltration, which suggested that it may be involved in the regulation of neuroimmune-related signaling.</p><p><strong>Conclusion: </strong>Two autophagy-related differentially expressed genes, especially Sirt2, may be potential biomarkers for NP, providing more evidence about the crucial role of autophagy in neuropathic pain.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"8"},"PeriodicalIF":2.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}