Pub Date : 2023-09-01Epub Date: 2023-07-10DOI: 10.1007/s10729-023-09643-6
Aditya Shetty, Harry Groenevelt, Vera Tilson
Patient no-shows are a major source of uncertainty for outpatient clinics. A common approach to hedge against the effect of no-shows is to overbook. The trade-off between patient's waiting costs and provider idling/overtime costs determines the optimal level of overbooking. Existing work on appointment scheduling assumes that appointment times cannot be updated once they have been assigned. However, advances in communication technology and the adoption of online (as opposed to in-person) appointments make it possible for appointments to be flexible. In this paper, we describe an intraday dynamic rescheduling model that adjusts upcoming appointments based on observed no-shows. We formulate the problem as a Markov Decision Process in order to compute the optimal pre-day schedule and the optimal policy to update the schedule for every scenario of no-shows. We also propose an alternative formulation based on the idea of 'atomic' actions that allows us to apply a shortest path algorithm to solve for the optimal policy more efficiently. Based on a numerical study using parameter estimates from existing literature, we find that intraday dynamic rescheduling can reduce expected cost by 15% compared to static scheduling.
{"title":"Intraday dynamic rescheduling under patient no-shows.","authors":"Aditya Shetty, Harry Groenevelt, Vera Tilson","doi":"10.1007/s10729-023-09643-6","DOIUrl":"10.1007/s10729-023-09643-6","url":null,"abstract":"<p><p>Patient no-shows are a major source of uncertainty for outpatient clinics. A common approach to hedge against the effect of no-shows is to overbook. The trade-off between patient's waiting costs and provider idling/overtime costs determines the optimal level of overbooking. Existing work on appointment scheduling assumes that appointment times cannot be updated once they have been assigned. However, advances in communication technology and the adoption of online (as opposed to in-person) appointments make it possible for appointments to be flexible. In this paper, we describe an intraday dynamic rescheduling model that adjusts upcoming appointments based on observed no-shows. We formulate the problem as a Markov Decision Process in order to compute the optimal pre-day schedule and the optimal policy to update the schedule for every scenario of no-shows. We also propose an alternative formulation based on the idea of 'atomic' actions that allows us to apply a shortest path algorithm to solve for the optimal policy more efficiently. Based on a numerical study using parameter estimates from existing literature, we find that intraday dynamic rescheduling can reduce expected cost by 15% compared to static scheduling.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 3","pages":"583-598"},"PeriodicalIF":3.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10530715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10729-023-09637-4
Márcia N F Manoel, Sérgio P Santos, Carla A F Amado
Organ transplant is one of the best options for many medical conditions, and in many cases, it may be the only treatment option. Recent evidence suggests, however, that the COVID-19 pandemic might have detrimentally affected the provision of this type of healthcare services. The main purpose of this article is to use Data Envelopment Analysis and the Malmquist Index to assess the impact that the pandemic caused by the novel coronavirus SARS-CoV-2 had on the provision of solid organ transplant services. To this purpose, we use three complementary models, each focusing on specific aspects of the organ donation and transplantation process, and data from Brazil, which has one of the most extensive public organ transplant programs in the world. Using data from 17 States plus the Federal District, the results of our analysis show a significant drop in the performance of the services in terms of the organ donation and transplantation process from 2018 to 2020, but the results also indicate that not all aspects of the process and States were equally affected. Furthermore, by using different models, this research also allows us to gain a more comprehensive and informative assessment of the performance of the States in delivering this type of service and identify opportunities for reciprocal learning, expanding our knowledge on this important issue and offering opportunities for further research.
{"title":"Assessing the impact of COVID-19 on the performance of organ transplant services using data envelopment analysis.","authors":"Márcia N F Manoel, Sérgio P Santos, Carla A F Amado","doi":"10.1007/s10729-023-09637-4","DOIUrl":"https://doi.org/10.1007/s10729-023-09637-4","url":null,"abstract":"<p><p>Organ transplant is one of the best options for many medical conditions, and in many cases, it may be the only treatment option. Recent evidence suggests, however, that the COVID-19 pandemic might have detrimentally affected the provision of this type of healthcare services. The main purpose of this article is to use Data Envelopment Analysis and the Malmquist Index to assess the impact that the pandemic caused by the novel coronavirus SARS-CoV-2 had on the provision of solid organ transplant services. To this purpose, we use three complementary models, each focusing on specific aspects of the organ donation and transplantation process, and data from Brazil, which has one of the most extensive public organ transplant programs in the world. Using data from 17 States plus the Federal District, the results of our analysis show a significant drop in the performance of the services in terms of the organ donation and transplantation process from 2018 to 2020, but the results also indicate that not all aspects of the process and States were equally affected. Furthermore, by using different models, this research also allows us to gain a more comprehensive and informative assessment of the performance of the States in delivering this type of service and identify opportunities for reciprocal learning, expanding our knowledge on this important issue and offering opportunities for further research.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"217-237"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9606293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10729-023-09631-w
Junhong Guo, William Pozehl, Amy Cohn
We consider constructing feasible annual block schedules for residents in a medical training program. We must satisfy coverage requirements to guarantee an acceptable staffing level for different services in the hospital as well as education requirements to ensure residents receive appropriate training to pursue their individual (sub-)specialty interests. The complex requirement structure makes this resident block scheduling problem a complicated combinatorial optimization problem. Solving a conventional integer program formulation for certain practical instances directly using traditional solution techniques will result in unacceptably slow performance. To address this, we propose a partial fixing approach, which completes the schedule construction iteratively through two sequential stages. The first stage focuses on the resident assignments for a small set of predetermined services through solving a much smaller and easier problem relaxation, while the second stage completes the rest of the schedule construction after fixing those assignments specified by the first stage's solution. We develop cut generation mechanisms to prune off the bad decisions made by the first stage if infeasibility arises in the second stage. We additionally propose a network-based model to assist us with an effective service selection for the first stage to work on the corresponding resident assignments to achieve an efficient and robust performance of the proposed two-stage iterative approach. Experiments using real-world inputs from our clinical collaborator show that our approach can speed up the schedule construction at least 5 times for all instances and even over 100 times for some huge-size instances compared to applying traditional techniques directly.
{"title":"A two-stage partial fixing approach for solving the residency block scheduling problem.","authors":"Junhong Guo, William Pozehl, Amy Cohn","doi":"10.1007/s10729-023-09631-w","DOIUrl":"https://doi.org/10.1007/s10729-023-09631-w","url":null,"abstract":"<p><p>We consider constructing feasible annual block schedules for residents in a medical training program. We must satisfy coverage requirements to guarantee an acceptable staffing level for different services in the hospital as well as education requirements to ensure residents receive appropriate training to pursue their individual (sub-)specialty interests. The complex requirement structure makes this resident block scheduling problem a complicated combinatorial optimization problem. Solving a conventional integer program formulation for certain practical instances directly using traditional solution techniques will result in unacceptably slow performance. To address this, we propose a partial fixing approach, which completes the schedule construction iteratively through two sequential stages. The first stage focuses on the resident assignments for a small set of predetermined services through solving a much smaller and easier problem relaxation, while the second stage completes the rest of the schedule construction after fixing those assignments specified by the first stage's solution. We develop cut generation mechanisms to prune off the bad decisions made by the first stage if infeasibility arises in the second stage. We additionally propose a network-based model to assist us with an effective service selection for the first stage to work on the corresponding resident assignments to achieve an efficient and robust performance of the proposed two-stage iterative approach. Experiments using real-world inputs from our clinical collaborator show that our approach can speed up the schedule construction at least 5 times for all instances and even over 100 times for some huge-size instances compared to applying traditional techniques directly.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"363-393"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10729-023-09644-5
Morteza Lalmazloumian, M Fazle Baki, Majid Ahmadi
Surgery demand is an uncertain parameter in addressing the problem of surgery block allocations, and its typical variability should be considered to ensure the feasibility of surgical planning. We develop two models, a stochastic recourse programming model and a two-stage stochastic optimization (SO) model with incorporated risk measure terms in the objective functions to determine a planning decision that is made to allocate surgical specialties to operating rooms (ORs). Our aim is to minimize the costs associated with postponements and unscheduled demands as well as the inefficient use of OR capacity. The results of these models are compared using a case of a real-life hospital to determine which model better copes with uncertainty. We propose a novel framework to transform the SO model based on its deterministic counterpart. Three SO models are proposed with respect to the variability and infeasibility of the measures of the objective function to encode the construction of the SO framework. The analysis of the experimental results demonstrates that the SO model offers better performance under a highly volatile demand environment than the recourse model. The originality of this work lies in its use of SO transformation framework and its development of stochastic models to address the problem of surgery capacity allocation based on a real case.
{"title":"A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty.","authors":"Morteza Lalmazloumian, M Fazle Baki, Majid Ahmadi","doi":"10.1007/s10729-023-09644-5","DOIUrl":"https://doi.org/10.1007/s10729-023-09644-5","url":null,"abstract":"<p><p>Surgery demand is an uncertain parameter in addressing the problem of surgery block allocations, and its typical variability should be considered to ensure the feasibility of surgical planning. We develop two models, a stochastic recourse programming model and a two-stage stochastic optimization (SO) model with incorporated risk measure terms in the objective functions to determine a planning decision that is made to allocate surgical specialties to operating rooms (ORs). Our aim is to minimize the costs associated with postponements and unscheduled demands as well as the inefficient use of OR capacity. The results of these models are compared using a case of a real-life hospital to determine which model better copes with uncertainty. We propose a novel framework to transform the SO model based on its deterministic counterpart. Three SO models are proposed with respect to the variability and infeasibility of the measures of the objective function to encode the construction of the SO framework. The analysis of the experimental results demonstrates that the SO model offers better performance under a highly volatile demand environment than the recourse model. The originality of this work lies in its use of SO transformation framework and its development of stochastic models to address the problem of surgery capacity allocation based on a real case.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"238-260"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-01-12DOI: 10.1007/s10729-022-09624-1
Ramy Elitzur, Dmitry Krass, Eyal Zimlichman
Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available - as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.
{"title":"Machine learning for optimal test admission in the presence of resource constraints.","authors":"Ramy Elitzur, Dmitry Krass, Eyal Zimlichman","doi":"10.1007/s10729-022-09624-1","DOIUrl":"10.1007/s10729-022-09624-1","url":null,"abstract":"<p><p>Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available - as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"279-300"},"PeriodicalIF":2.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9669575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-05-22DOI: 10.1007/s10729-023-09632-9
Samantha L Zimmerman, Alexander R Rutherford, Alexa van der Waall, Monica Norena, Peter Dodek
We applied a queuing model to inform ventilator capacity planning during the first wave of the COVID-19 epidemic in the province of British Columbia (BC), Canada. The core of our framework is a multi-class Erlang loss model that represents ventilator use by both COVID-19 and non-COVID-19 patients. Input for the model includes COVID-19 case projections, and our analysis incorporates projections with different levels of transmission due to public health measures and social distancing. We incorporated data from the BC Intensive Care Unit Database to calibrate and validate the model. Using discrete event simulation, we projected ventilator access, including when capacity would be reached and how many patients would be unable to access a ventilator. Simulation results were compared with three numerical approximation methods, namely pointwise stationary approximation, modified offered load, and fixed point approximation. Using this comparison, we developed a hybrid optimization approach to efficiently identify required ventilator capacity to meet access targets. Model projections demonstrate that public health measures and social distancing potentially averted up to 50 deaths per day in BC, by ensuring that ventilator capacity was not reached during the first wave of COVID-19. Without these measures, an additional 173 ventilators would have been required to ensure that at least 95% of patients can access a ventilator immediately. Our model enables policy makers to estimate critical care utilization based on epidemic projections with different transmission levels, thereby providing a tool to quantify the interplay between public health measures, necessary critical care resources, and patient access indicators.
{"title":"A queuing model for ventilator capacity management during the COVID-19 pandemic.","authors":"Samantha L Zimmerman, Alexander R Rutherford, Alexa van der Waall, Monica Norena, Peter Dodek","doi":"10.1007/s10729-023-09632-9","DOIUrl":"10.1007/s10729-023-09632-9","url":null,"abstract":"<p><p>We applied a queuing model to inform ventilator capacity planning during the first wave of the COVID-19 epidemic in the province of British Columbia (BC), Canada. The core of our framework is a multi-class Erlang loss model that represents ventilator use by both COVID-19 and non-COVID-19 patients. Input for the model includes COVID-19 case projections, and our analysis incorporates projections with different levels of transmission due to public health measures and social distancing. We incorporated data from the BC Intensive Care Unit Database to calibrate and validate the model. Using discrete event simulation, we projected ventilator access, including when capacity would be reached and how many patients would be unable to access a ventilator. Simulation results were compared with three numerical approximation methods, namely pointwise stationary approximation, modified offered load, and fixed point approximation. Using this comparison, we developed a hybrid optimization approach to efficiently identify required ventilator capacity to meet access targets. Model projections demonstrate that public health measures and social distancing potentially averted up to 50 deaths per day in BC, by ensuring that ventilator capacity was not reached during the first wave of COVID-19. Without these measures, an additional 173 ventilators would have been required to ensure that at least 95% of patients can access a ventilator immediately. Our model enables policy makers to estimate critical care utilization based on epidemic projections with different transmission levels, thereby providing a tool to quantify the interplay between public health measures, necessary critical care resources, and patient access indicators.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"200-216"},"PeriodicalIF":2.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9990362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10729-022-09622-3
Kevin Taaffe, Yann B Ferrand, Amin Khoshkenar, Lawrence Fredendall, Dee San, Patrick Rosopa, Anjali Joseph
This study seeks to improve the safety of clinical care provided in operating rooms (OR) by examining how characteristics of both the physical environment and the procedure affect surgical team movement and contacts. We video recorded staff movements during a set of surgical procedures. Then we divided the OR into multiple zones and analyzed the frequency and duration of movement from origin to destination through zones. This data was abstracted into a generalized, agent-based, discrete event simulation model to study how OR size and OR equipment layout affected surgical staff movement and total number of surgical team contacts during a procedure. A full factorial experiment with seven input factors - OR size, OR shape, operating table orientation, circulating nurse (CN) workstation location, team size, number of doors, and procedure type - was conducted. Results were analyzed using multiple linear regression with surgical team contacts as the dependent variable. The OR size, the CN workstation location, and team size significantly affected surgical team contacts. Also, two- and three-way interactions between staff, procedure type, table orientation, and CN workstation location significantly affected contacts. We discuss implications of these findings for OR managers and for future research about designing future ORs.
{"title":"Operating room design using agent-based simulation to reduce room obstructions.","authors":"Kevin Taaffe, Yann B Ferrand, Amin Khoshkenar, Lawrence Fredendall, Dee San, Patrick Rosopa, Anjali Joseph","doi":"10.1007/s10729-022-09622-3","DOIUrl":"https://doi.org/10.1007/s10729-022-09622-3","url":null,"abstract":"<p><p>This study seeks to improve the safety of clinical care provided in operating rooms (OR) by examining how characteristics of both the physical environment and the procedure affect surgical team movement and contacts. We video recorded staff movements during a set of surgical procedures. Then we divided the OR into multiple zones and analyzed the frequency and duration of movement from origin to destination through zones. This data was abstracted into a generalized, agent-based, discrete event simulation model to study how OR size and OR equipment layout affected surgical staff movement and total number of surgical team contacts during a procedure. A full factorial experiment with seven input factors - OR size, OR shape, operating table orientation, circulating nurse (CN) workstation location, team size, number of doors, and procedure type - was conducted. Results were analyzed using multiple linear regression with surgical team contacts as the dependent variable. The OR size, the CN workstation location, and team size significantly affected surgical team contacts. Also, two- and three-way interactions between staff, procedure type, table orientation, and CN workstation location significantly affected contacts. We discuss implications of these findings for OR managers and for future research about designing future ORs.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"261-278"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369668/pdf/nihms-1909061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10249264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-01-24DOI: 10.1007/s10729-023-09629-4
Reza Yaesoubi, Shiying You, Qin Xi, Nicolas A Menzies, Ashleigh Tuite, Yonatan H Grad, Joshua A Salomon
Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes and relaxation of mitigation measures leave many US communities at risk for surges of COVID-19 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop a framework to generate simple classification rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. This framework uses a simulation model of SARS-CoV-2 transmission and COVID-19 hospitalizations in the US to train classification decision trees that are robust to changes in the data-generating process and future uncertainties. These generated classification rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We show that these classification rules present reasonable accuracy, sensitivity, and specificity (all ≥ 80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19. Our proposed classification rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.
{"title":"Generating simple classification rules to predict local surges in COVID-19 hospitalizations.","authors":"Reza Yaesoubi, Shiying You, Qin Xi, Nicolas A Menzies, Ashleigh Tuite, Yonatan H Grad, Joshua A Salomon","doi":"10.1007/s10729-023-09629-4","DOIUrl":"10.1007/s10729-023-09629-4","url":null,"abstract":"<p><p>Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes and relaxation of mitigation measures leave many US communities at risk for surges of COVID-19 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop a framework to generate simple classification rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. This framework uses a simulation model of SARS-CoV-2 transmission and COVID-19 hospitalizations in the US to train classification decision trees that are robust to changes in the data-generating process and future uncertainties. These generated classification rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We show that these classification rules present reasonable accuracy, sensitivity, and specificity (all ≥ 80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19. Our proposed classification rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"301-312"},"PeriodicalIF":2.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9975996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, companies that operate pharmacy store chains have adopted centralized and automated fulfillment systems, which are called Central Fill Pharmacy Systems (CFPS). The Robotic Dispensing System (RDS) plays a crucial role by automatically storing, counting, and dispensing various medication pills to enable CFPS to fulfill high-volume prescriptions safely and efficiently. Although the RDS is highly automated by robots and software, medication pills in the RDS should still be replenished by operators in a timely manner to prevent the shortage of medication pills that causes huge delays in prescription fulfillment. Because the complex dynamics of the CFPS and manned operations are closely associated with the RDS replenishment process, there is a need for systematic approaches to developing a proper replenishment control policy. This study proposes an improved priority-based replenishment policy, which is able to generate a real-time replenishment sequence for the RDS. In particular, the policy is based on a novel criticality function calculating the refilling urgency for a canister and corresponding dispenser, which takes the inventory level and consumption rates of medication pills into account. A 3D discrete-event simulation is developed to emulate the RDS operations in the CFPS to evaluate the proposed policy based on various measurements numerically. The numerical experiment shows that the proposed priority-based replenishment policy can be easily implemented to enhance the RDS replenishment process by preventing over 90% of machine inventory shortages and saving nearly 80% product fulfillment delays.
{"title":"Priority-based replenishment policy for robotic dispensing in central fill pharmacy systems: a simulation-based study.","authors":"Nieqing Cao, Austin Marcus, Lubna Altarawneh, Soongeol Kwon","doi":"10.1007/s10729-023-09630-x","DOIUrl":"https://doi.org/10.1007/s10729-023-09630-x","url":null,"abstract":"<p><p>In recent years, companies that operate pharmacy store chains have adopted centralized and automated fulfillment systems, which are called Central Fill Pharmacy Systems (CFPS). The Robotic Dispensing System (RDS) plays a crucial role by automatically storing, counting, and dispensing various medication pills to enable CFPS to fulfill high-volume prescriptions safely and efficiently. Although the RDS is highly automated by robots and software, medication pills in the RDS should still be replenished by operators in a timely manner to prevent the shortage of medication pills that causes huge delays in prescription fulfillment. Because the complex dynamics of the CFPS and manned operations are closely associated with the RDS replenishment process, there is a need for systematic approaches to developing a proper replenishment control policy. This study proposes an improved priority-based replenishment policy, which is able to generate a real-time replenishment sequence for the RDS. In particular, the policy is based on a novel criticality function calculating the refilling urgency for a canister and corresponding dispenser, which takes the inventory level and consumption rates of medication pills into account. A 3D discrete-event simulation is developed to emulate the RDS operations in the CFPS to evaluate the proposed policy based on various measurements numerically. The numerical experiment shows that the proposed priority-based replenishment policy can be easily implemented to enhance the RDS replenishment process by preventing over 90% of machine inventory shortages and saving nearly 80% product fulfillment delays.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"344-362"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9988803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10729-022-09626-z
J Dunstan, F Villena, J P Hoyos, V Riquelme, M Royer, H Ramírez, J Peypouquet
The Chilean public health system serves 74% of the country's population, and 19% of medical appointments are missed on average because of no-shows. The national goal is 15%, which coincides with the average no-show rate reported in the private healthcare system. Our case study, Doctor Luis Calvo Mackenna Hospital, is a public high-complexity pediatric hospital and teaching center in Santiago, Chile. Historically, it has had high no-show rates, up to 29% in certain medical specialties. Using machine learning algorithms to predict no-shows of pediatric patients in terms of demographic, social, and historical variables. To propose and evaluate metrics to assess these models, accounting for the cost-effective impact of possible intervention strategies to reduce no-shows. We analyze the relationship between a no-show and demographic, social, and historical variables, between 2015 and 2018, through the following traditional machine learning algorithms: Random Forest, Logistic Regression, Support Vector Machines, AdaBoost and algorithms to alleviate the problem of class imbalance, such as RUS Boost, Balanced Random Forest, Balanced Bagging and Easy Ensemble. These class imbalances arise from the relatively low number of no-shows to the total number of appointments. Instead of the default thresholds used by each method, we computed alternative ones via the minimization of a weighted average of type I and II errors based on cost-effectiveness criteria. 20.4% of the 395,963 appointments considered presented no-shows, with ophthalmology showing the highest rate among specialties at 29.1%. Patients in the most deprived socioeconomic group according to their insurance type and commune of residence and those in their second infancy had the highest no-show rate. The history of non-attendance is strongly related to future no-shows. An 8-week experimental design measured a decrease in no-shows of 10.3 percentage points when using our reminder strategy compared to a control group. Among the variables analyzed, those related to patients' historical behavior, the reservation delay from the creation of the appointment, and variables that can be associated with the most disadvantaged socioeconomic group, are the most relevant to predict a no-show. Moreover, the introduction of new cost-effective metrics significantly impacts the validity of our prediction models. Using a prototype to call patients with the highest risk of no-shows resulted in a noticeable decrease in the overall no-show rate.
智利的公共卫生系统为全国74%的人口提供服务,平均有19%的医疗预约因未赴约而错过。国家目标是15%,这与私营医疗系统报告的平均缺勤率一致。我们的案例研究是Luis Calvo Mackenna医生医院,这是一家位于智利圣地亚哥的公立高复杂性儿科医院和教学中心。从历史上看,它的缺勤率很高,在某些医学专业高达29%。使用机器学习算法根据人口统计、社会和历史变量预测儿科患者的缺席情况。提出并评估评估这些模型的指标,考虑可能的干预策略的成本效益影响,以减少缺勤。我们通过以下传统机器学习算法:随机森林、逻辑回归、支持向量机、AdaBoost,以及缓解班级失衡问题的算法,如RUS Boost、Balanced Random Forest、Balanced Bagging和Easy Ensemble,分析了2015年至2018年间缺勤与人口、社会和历史变量之间的关系。这些阶层不平衡的原因是未到期率相对于总预约人数而言相对较低。我们没有使用每种方法使用的默认阈值,而是根据成本效益标准,通过最小化类型I和II错误的加权平均值来计算可选的阈值。在395,963次预约中,有20.4%的人没有预约,其中眼科的预约率最高,为29.1%。根据他们的保险类型和居住公社,最贫困的社会经济群体的患者和第二次婴儿的患者有最高的缺勤率。不出席的历史与未来的不出席密切相关。一项为期8周的实验设计表明,与对照组相比,使用我们的提醒策略时,缺席率降低了10.3个百分点。在分析的变量中,那些与患者的历史行为相关的变量,预约创建的预约延迟,以及与最弱势的社会经济群体相关的变量,与预测缺勤最相关。此外,引入新的成本效益指标显著影响我们的预测模型的有效性。使用一个原型来打电话给有最高失约风险的病人,结果显著降低了总体失约率。
{"title":"Predicting no-show appointments in a pediatric hospital in Chile using machine learning.","authors":"J Dunstan, F Villena, J P Hoyos, V Riquelme, M Royer, H Ramírez, J Peypouquet","doi":"10.1007/s10729-022-09626-z","DOIUrl":"https://doi.org/10.1007/s10729-022-09626-z","url":null,"abstract":"<p><p>The Chilean public health system serves 74% of the country's population, and 19% of medical appointments are missed on average because of no-shows. The national goal is 15%, which coincides with the average no-show rate reported in the private healthcare system. Our case study, Doctor Luis Calvo Mackenna Hospital, is a public high-complexity pediatric hospital and teaching center in Santiago, Chile. Historically, it has had high no-show rates, up to 29% in certain medical specialties. Using machine learning algorithms to predict no-shows of pediatric patients in terms of demographic, social, and historical variables. To propose and evaluate metrics to assess these models, accounting for the cost-effective impact of possible intervention strategies to reduce no-shows. We analyze the relationship between a no-show and demographic, social, and historical variables, between 2015 and 2018, through the following traditional machine learning algorithms: Random Forest, Logistic Regression, Support Vector Machines, AdaBoost and algorithms to alleviate the problem of class imbalance, such as RUS Boost, Balanced Random Forest, Balanced Bagging and Easy Ensemble. These class imbalances arise from the relatively low number of no-shows to the total number of appointments. Instead of the default thresholds used by each method, we computed alternative ones via the minimization of a weighted average of type I and II errors based on cost-effectiveness criteria. 20.4% of the 395,963 appointments considered presented no-shows, with ophthalmology showing the highest rate among specialties at 29.1%. Patients in the most deprived socioeconomic group according to their insurance type and commune of residence and those in their second infancy had the highest no-show rate. The history of non-attendance is strongly related to future no-shows. An 8-week experimental design measured a decrease in no-shows of 10.3 percentage points when using our reminder strategy compared to a control group. Among the variables analyzed, those related to patients' historical behavior, the reservation delay from the creation of the appointment, and variables that can be associated with the most disadvantaged socioeconomic group, are the most relevant to predict a no-show. Moreover, the introduction of new cost-effective metrics significantly impacts the validity of our prediction models. Using a prototype to call patients with the highest risk of no-shows resulted in a noticeable decrease in the overall no-show rate.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"313-329"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9607622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}