首页 > 最新文献

Health Care Management Science最新文献

英文 中文
A study of "left against medical advice" emergency department patients: an optimized explainable artificial intelligence framework. 急诊科 "违抗医嘱离院 "患者研究:优化的可解释人工智能框架。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1007/s10729-024-09684-5
Abdulaziz Ahmed, Khalid Y Aram, Salih Tutun, Dursun Delen

The issue of left against medical advice (LAMA) patients is common in today's emergency departments (EDs). This issue represents a medico-legal risk and may result in potential readmission, mortality, or revenue loss. Thus, understanding the factors that cause patients to "leave against medical advice" is vital to mitigate and potentially eliminate these adverse outcomes. This paper proposes a framework for studying the factors that affect LAMA in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization-one of the main challenges of machine learning model development. Adaptive tabu simulated annealing (ATSA) metaheuristic algorithm is utilized for optimizing the parameters of extreme gradient boosting (XGB). The optimized XGB models are used to predict the LAMA outcomes for patients under treatment in ED. The designed algorithms are trained and tested using four data groups which are created using feature selection. The model with the best predictive performance is then interpreted using the SHaply Additive exPlanations (SHAP) method. The results show that best model has an area under the curve (AUC) and sensitivity of 76% and 82%, respectively. The best model was explained using SHAP method.

不听医嘱(LAMA)的病人在当今的急诊科(ED)中很常见。这一问题代表着医疗法律风险,并可能导致再次入院、死亡或收入损失。因此,了解导致患者 "违抗医嘱离院 "的因素对于减轻和消除这些不良后果至关重要。本文提出了一个研究 ED 中影响 LAMA 的因素的框架。该框架整合了机器学习、元启发式优化和模型解释技术。元启发式优化用于超参数优化--这是机器学习模型开发的主要挑战之一。自适应塔布模拟退火(ATSA)元启发式算法用于优化极梯度提升(XGB)参数。优化后的 XGB 模型用于预测 ED 患者的 LAMA 治疗结果。设计的算法通过使用特征选择创建的四个数据组进行训练和测试。然后,使用 "SHAPly Additive exPlanations (SHAP) "方法对具有最佳预测性能的模型进行解释。结果显示,最佳模型的曲线下面积(AUC)和灵敏度分别为 76% 和 82%。最佳模型是用 SHAP 方法解释的。
{"title":"A study of \"left against medical advice\" emergency department patients: an optimized explainable artificial intelligence framework.","authors":"Abdulaziz Ahmed, Khalid Y Aram, Salih Tutun, Dursun Delen","doi":"10.1007/s10729-024-09684-5","DOIUrl":"10.1007/s10729-024-09684-5","url":null,"abstract":"<p><p>The issue of left against medical advice (LAMA) patients is common in today's emergency departments (EDs). This issue represents a medico-legal risk and may result in potential readmission, mortality, or revenue loss. Thus, understanding the factors that cause patients to \"leave against medical advice\" is vital to mitigate and potentially eliminate these adverse outcomes. This paper proposes a framework for studying the factors that affect LAMA in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization-one of the main challenges of machine learning model development. Adaptive tabu simulated annealing (ATSA) metaheuristic algorithm is utilized for optimizing the parameters of extreme gradient boosting (XGB). The optimized XGB models are used to predict the LAMA outcomes for patients under treatment in ED. The designed algorithms are trained and tested using four data groups which are created using feature selection. The model with the best predictive performance is then interpreted using the SHaply Additive exPlanations (SHAP) method. The results show that best model has an area under the curve (AUC) and sensitivity of 76% and 82%, respectively. The best model was explained using SHAP method.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"485-502"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The benefits (or detriments) of adapting to demand disruptions in a hospital pharmacy with supply chain disruptions. 医院药房在供应链中断的情况下适应需求中断的好处(或坏处)。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1007/s10729-024-09686-3
Lauren L Czerniak, Mariel S Lavieri, Mark S Daskin, Eunshin Byon, Karl Renius, Burgunda V Sweet, Jennifer Leja, Matthew A Tupps

Supply chain disruptions and demand disruptions make it challenging for hospital pharmacy managers to determine how much inventory to have on-hand. Having insufficient inventory leads to drug shortages, while having excess inventory leads to drug waste. To mitigate drug shortages and waste, hospital pharmacy managers can implement inventory policies that account for supply chain disruptions and adapt these inventory policies over time to respond to demand disruptions. Demand disruptions were prevalent during the Covid-19 pandemic. However, it remains unclear how a drug's shortage-waste weighting (i.e., concern for shortages versus concern for waste) as well as the duration of and time between supply chain disruptions influence the benefits (or detriments) of adapting to demand disruptions. We develop an adaptive inventory system (i.e., inventory policies change over time) and conduct an extensive numerical analysis using real-world demand data from the University of Michigan's Central Pharmacy to address this research question. For a fixed mean duration of and mean time between supply chain disruptions, we find a drug's shortage-waste weighting dictates the magnitude of the benefits (or detriments) of adaptive inventory policies. We create a ranking procedure that provides a way of discerning which drugs are of most concern and illustrates which policies to update given that a limited number of inventory policies can be updated. When applying our framework to over 300 drugs, we find a decision-maker needs to update a very small proportion of drugs (e.g., < 5 % ) at any point in time to get the greatest benefits of adaptive inventory policies.

供应链中断和需求中断使医院药房经理在确定库存量时面临挑战。库存不足会导致药品短缺,而库存过剩则会造成药品浪费。为了减少药品短缺和浪费,医院药房经理可以实施考虑到供应链中断的库存政策,并随着时间的推移调整这些库存政策,以应对需求中断。在 Covid-19 大流行期间,需求中断现象十分普遍。然而,药品短缺与浪费的权重(即对短缺的关注与对浪费的关注)以及供应链中断的持续时间和间隔时间如何影响适应需求中断的益处(或害处),目前仍不清楚。我们开发了一个自适应库存系统(即库存政策随时间而改变),并利用密歇根大学中央药房的实际需求数据进行了广泛的数值分析,以解决这一研究问题。在供应链中断的平均持续时间和平均间隔时间固定的情况下,我们发现药品的短缺-浪费权重决定了适应性库存政策的收益(或损失)大小。我们创建了一个排序程序,该程序提供了一种辨别哪些药品最值得关注的方法,并说明了在可更新的库存政策数量有限的情况下,应更新哪些政策。将我们的框架应用于 300 多种药物时,我们发现决策者只需在任何时间点更新很小一部分药物(例如 5%),就能从适应性库存政策中获得最大收益。
{"title":"The benefits (or detriments) of adapting to demand disruptions in a hospital pharmacy with supply chain disruptions.","authors":"Lauren L Czerniak, Mariel S Lavieri, Mark S Daskin, Eunshin Byon, Karl Renius, Burgunda V Sweet, Jennifer Leja, Matthew A Tupps","doi":"10.1007/s10729-024-09686-3","DOIUrl":"10.1007/s10729-024-09686-3","url":null,"abstract":"<p><p>Supply chain disruptions and demand disruptions make it challenging for hospital pharmacy managers to determine how much inventory to have on-hand. Having insufficient inventory leads to drug shortages, while having excess inventory leads to drug waste. To mitigate drug shortages and waste, hospital pharmacy managers can implement inventory policies that account for supply chain disruptions and adapt these inventory policies over time to respond to demand disruptions. Demand disruptions were prevalent during the Covid-19 pandemic. However, it remains unclear how a drug's shortage-waste weighting (i.e., concern for shortages versus concern for waste) as well as the duration of and time between supply chain disruptions influence the benefits (or detriments) of adapting to demand disruptions. We develop an adaptive inventory system (i.e., inventory policies change over time) and conduct an extensive numerical analysis using real-world demand data from the University of Michigan's Central Pharmacy to address this research question. For a fixed mean duration of and mean time between supply chain disruptions, we find a drug's shortage-waste weighting dictates the magnitude of the benefits (or detriments) of adaptive inventory policies. We create a ranking procedure that provides a way of discerning which drugs are of most concern and illustrates which policies to update given that a limited number of inventory policies can be updated. When applying our framework to over 300 drugs, we find a decision-maker needs to update a very small proportion of drugs (e.g., <math><mrow><mo><</mo> <mn>5</mn> <mo>%</mo></mrow> </math> ) at any point in time to get the greatest benefits of adaptive inventory policies.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"525-554"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. 利用 SEER 登记数据评估非小细胞肺癌的机器学习模型偏差和种族差异。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1007/s10729-024-09691-6
Cameron Trentz, Jacklyn Engelbart, Jason Semprini, Amanda Kahl, Eric Anyimadu, John Buatti, Thomas Casavant, Mary Charlton, Guadalupe Canahuate

Background: Despite decades of pursuing health equity, racial and ethnic disparities persist in healthcare in America. For cancer specifically, one of the leading observed disparities is worse mortality among non-Hispanic Black patients compared to non-Hispanic White patients across the cancer care continuum. These real-world disparities are reflected in the data used to inform the decisions made to alleviate such inequities. Failing to account for inherently biased data underlying these observations could intensify racial cancer disparities and lead to misguided efforts that fail to appropriately address the real causes of health inequity.

Objective: Estimate the racial/ethnic bias of machine learning models in predicting two-year survival and surgery treatment recommendation for non-small cell lung cancer (NSCLC) patients.

Methods: A Cox survival model, and a LOGIT model as well as three other machine learning models for predicting surgery recommendation were trained using SEER data from NSCLC patients diagnosed from 2000-2018. Models were trained with a 70/30 train/test split (both including and excluding race/ethnicity) and evaluated using performance and fairness metrics. The effects of oversampling the training data were also evaluated.

Results: The survival models show disparate impact towards non-Hispanic Black patients regardless of whether race/ethnicity is used as a predictor. The models including race/ethnicity amplified the disparities observed in the data. The exclusion of race/ethnicity as a predictor in the survival and surgery recommendation models improved fairness metrics without degrading model performance. Stratified oversampling strategies reduced disparate impact while reducing the accuracy of the model.

Conclusion: NSCLC disparities are complex and multifaceted. Yet, even when accounting for age and stage at diagnosis, non-Hispanic Black patients with NSCLC are less often recommended to have surgery than non-Hispanic White patients. Machine learning models amplified the racial/ethnic disparities across the cancer care continuum (which are reflected in the data used to make model decisions). Excluding race/ethnicity lowered the bias of the models but did not affect disparate impact. Developing analytical strategies to improve fairness would in turn improve the utility of machine learning approaches analyzing population-based cancer data.

背景:尽管几十年来美国一直在追求健康公平,但在医疗保健方面种族和民族差异依然存在。具体就癌症而言,观察到的主要差距之一是在整个癌症治疗过程中,非西班牙裔黑人患者的死亡率低于非西班牙裔白人患者。这些现实世界中的差距反映在用来为缓解这种不平等现象的决策提供信息的数据中。如果不考虑这些观察所依据的固有偏差数据,可能会加剧种族癌症差异,并导致误导性的努力,无法适当解决健康不平等的真正原因:目的:评估机器学习模型在预测非小细胞肺癌(NSCLC)患者两年生存率和手术治疗建议方面的种族/族裔偏差:利用 2000-2018 年间确诊的非小细胞肺癌患者的 SEER 数据,训练了 Cox 生存模型、LOGIT 模型以及其他三种预测手术建议的机器学习模型。模型以 70/30 的训练/测试比例(包括和排除种族/族裔)进行训练,并使用性能和公平性指标进行评估。此外,还评估了对训练数据进行超采样的效果:结果:无论是否使用种族/族裔作为预测因子,生存模型都显示出对非西语裔黑人患者的不同影响。包含种族/族裔的模型扩大了数据中观察到的差异。在生存率和手术建议模型中排除种族/族裔作为预测因子,在不降低模型性能的情况下改善了公平性指标。分层过度采样策略在降低模型准确性的同时也减少了差异影响:结论:NSCLC 的差异是复杂和多方面的。然而,即使考虑到诊断时的年龄和分期,非西班牙裔黑人 NSCLC 患者接受手术治疗的推荐率也低于非西班牙裔白人患者。机器学习模型扩大了整个癌症治疗过程中的种族/民族差异(这些差异反映在用于做出模型决策的数据中)。排除种族/族裔因素会降低模型的偏差,但不会影响差异影响。开发提高公平性的分析策略反过来也会提高机器学习方法分析基于人群的癌症数据的实用性。
{"title":"Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data.","authors":"Cameron Trentz, Jacklyn Engelbart, Jason Semprini, Amanda Kahl, Eric Anyimadu, John Buatti, Thomas Casavant, Mary Charlton, Guadalupe Canahuate","doi":"10.1007/s10729-024-09691-6","DOIUrl":"10.1007/s10729-024-09691-6","url":null,"abstract":"<p><strong>Background: </strong>Despite decades of pursuing health equity, racial and ethnic disparities persist in healthcare in America. For cancer specifically, one of the leading observed disparities is worse mortality among non-Hispanic Black patients compared to non-Hispanic White patients across the cancer care continuum. These real-world disparities are reflected in the data used to inform the decisions made to alleviate such inequities. Failing to account for inherently biased data underlying these observations could intensify racial cancer disparities and lead to misguided efforts that fail to appropriately address the real causes of health inequity.</p><p><strong>Objective: </strong>Estimate the racial/ethnic bias of machine learning models in predicting two-year survival and surgery treatment recommendation for non-small cell lung cancer (NSCLC) patients.</p><p><strong>Methods: </strong>A Cox survival model, and a LOGIT model as well as three other machine learning models for predicting surgery recommendation were trained using SEER data from NSCLC patients diagnosed from 2000-2018. Models were trained with a 70/30 train/test split (both including and excluding race/ethnicity) and evaluated using performance and fairness metrics. The effects of oversampling the training data were also evaluated.</p><p><strong>Results: </strong>The survival models show disparate impact towards non-Hispanic Black patients regardless of whether race/ethnicity is used as a predictor. The models including race/ethnicity amplified the disparities observed in the data. The exclusion of race/ethnicity as a predictor in the survival and surgery recommendation models improved fairness metrics without degrading model performance. Stratified oversampling strategies reduced disparate impact while reducing the accuracy of the model.</p><p><strong>Conclusion: </strong>NSCLC disparities are complex and multifaceted. Yet, even when accounting for age and stage at diagnosis, non-Hispanic Black patients with NSCLC are less often recommended to have surgery than non-Hispanic White patients. Machine learning models amplified the racial/ethnic disparities across the cancer care continuum (which are reflected in the data used to make model decisions). Excluding race/ethnicity lowered the bias of the models but did not affect disparate impact. Developing analytical strategies to improve fairness would in turn improve the utility of machine learning approaches analyzing population-based cancer data.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"631-649"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic placement of volunteer responder system defibrillators. 战略性地安置志愿响应系统除颤器。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-09-10 DOI: 10.1007/s10729-024-09685-4
Robin Buter, Arthur Nazarian, Hendrik Koffijberg, Erwin W Hans, Remy Stieglis, Rudolph W Koster, Derya Demirtas

Volunteer responder systems (VRS) alert and guide nearby lay rescuers towards the location of an emergency. An application of such a system is to out-of-hospital cardiac arrests, where early cardiopulmonary resuscitation (CPR) and defibrillation with an automated external defibrillator (AED) are crucial for improving survival rates. However, many AEDs remain underutilized due to poor location choices, while other areas lack adequate AED coverage. In this paper, we present a comprehensive data-driven algorithmic approach to optimize deployment of (additional) public-access AEDs to be used in a VRS. Alongside a binary integer programming (BIP) formulation, we consider two heuristic methods, namely Greedy and Greedy Randomized Adaptive Search Procedure (GRASP), to solve the gradual Maximal Covering Location (MCLP) problem with partial coverage for AED deployment. We develop realistic gradually decreasing coverage functions for volunteers going on foot, by bike, or by car. A spatial probability distribution of cardiac arrest is estimated using kernel density estimation to be used as input for the models and to evaluate the solutions. We apply our approach to 29 real-world instances (municipalities) in the Netherlands. We show that GRASP can obtain near-optimal solutions for large problem instances in significantly less time than the exact method. The results indicate that relocating existing AEDs improves the weighted average coverage from 36% to 49% across all municipalities, with relative improvements ranging from 1% to 175%. For most municipalities, strategically placing 5 to 10 additional AEDs can already provide substantial improvements.

志愿救援者系统(VRS)可向附近的非专业救援者发出警报,并引导他们前往发生紧急情况的地点。这种系统可应用于院外心脏骤停,在这种情况下,早期心肺复苏(CPR)和使用自动体外除颤器(AED)进行除颤对于提高存活率至关重要。然而,由于位置选择不当,许多自动体外除颤器仍未得到充分利用,而其他地区则缺乏足够的自动体外除颤器覆盖范围。在本文中,我们提出了一种全面的数据驱动算法方法,用于优化在自愿救护系统中使用的(额外的)公共入口自动体外除颤器的部署。除了二进制整数编程(BIP)公式外,我们还考虑了两种启发式方法,即贪婪和贪婪随机化自适应搜索程序(GRASP),以解决部分覆盖的渐进最大覆盖位置(MCLP)问题,从而部署自动体外除颤器。我们为步行、骑自行车或开车的志愿者开发了符合实际的逐步递减覆盖函数。使用核密度估计法估算心脏骤停的空间概率分布,作为模型的输入并评估解决方案。我们将这一方法应用于荷兰的 29 个真实世界实例(城市)。结果表明,对于大型问题实例,GRASP 可以在比精确方法更短的时间内获得接近最优的解决方案。结果表明,迁移现有的自动体外除颤器可将所有城市的加权平均覆盖率从 36% 提高到 49%,相对提高幅度从 1% 到 175%。对于大多数城市来说,战略性地增设 5 到 10 台自动体外除颤器就能大幅提高覆盖率。
{"title":"Strategic placement of volunteer responder system defibrillators.","authors":"Robin Buter, Arthur Nazarian, Hendrik Koffijberg, Erwin W Hans, Remy Stieglis, Rudolph W Koster, Derya Demirtas","doi":"10.1007/s10729-024-09685-4","DOIUrl":"10.1007/s10729-024-09685-4","url":null,"abstract":"<p><p>Volunteer responder systems (VRS) alert and guide nearby lay rescuers towards the location of an emergency. An application of such a system is to out-of-hospital cardiac arrests, where early cardiopulmonary resuscitation (CPR) and defibrillation with an automated external defibrillator (AED) are crucial for improving survival rates. However, many AEDs remain underutilized due to poor location choices, while other areas lack adequate AED coverage. In this paper, we present a comprehensive data-driven algorithmic approach to optimize deployment of (additional) public-access AEDs to be used in a VRS. Alongside a binary integer programming (BIP) formulation, we consider two heuristic methods, namely Greedy and Greedy Randomized Adaptive Search Procedure (GRASP), to solve the gradual Maximal Covering Location (MCLP) problem with partial coverage for AED deployment. We develop realistic gradually decreasing coverage functions for volunteers going on foot, by bike, or by car. A spatial probability distribution of cardiac arrest is estimated using kernel density estimation to be used as input for the models and to evaluate the solutions. We apply our approach to 29 real-world instances (municipalities) in the Netherlands. We show that GRASP can obtain near-optimal solutions for large problem instances in significantly less time than the exact method. The results indicate that relocating existing AEDs improves the weighted average coverage from 36% to 49% across all municipalities, with relative improvements ranging from 1% to 175%. For most municipalities, strategically placing 5 to 10 additional AEDs can already provide substantial improvements.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"503-524"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142285860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel two-stage network data envelopment analysis model for kidney allocation problem under medical and logistical uncertainty: a real case study. 医疗和物流不确定性下肾脏分配问题的新型两阶段网络数据包络分析模型:一项实际案例研究。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-10-01 DOI: 10.1007/s10729-024-09683-6
Farhad Hamidzadeh, Mir Saman Pishvaee, Naeme Zarrinpoor

Organ transplantation is one of the most complicated and challenging treatments in healthcare systems. Despite the significant medical advancements, many patients die while waiting for organ transplants because of the noticeable differences between organ supply and demand. In the organ transplantation supply chain, organ allocation is the most significant decision during the organ transplantation procedure, and kidney is the most widely transplanted organ. This research presents a novel method for assessing the efficiency and ranking of qualified organ-patient pairs as decision-making units (DMUs) for kidney allocation problem in the existence of COVID-19 pandemic and uncertain medical and logistical data. To achieve this goal, two-stage network data envelopment analysis (DEA) and credibility-based chance constraint programming (CCP) are utilized to develop a novel two-stage fuzzy network data envelopment analysis (TSFNDEA) method. The main benefits of the developed method can be summarized as follows: considering internal structures in kidney allocation system, investigating both medical and logistical aspects of the problem, the capability of expanding to other network structures, and unique efficiency decomposition under uncertainty. Moreover, in order to evaluate the validity and applicability of the proposed approach, a validation algorithm utilizing a real case study and different confidence levels is used. Finally, the numerical results indicate that the developed approach outperforms the existing kidney allocation system.

器官移植是医疗系统中最复杂、最具挑战性的治疗之一。尽管医学取得了重大进步,但由于器官供需之间存在明显差异,许多病人在等待器官移植期间死亡。在器官移植供应链中,器官分配是器官移植过程中最重要的决策,而肾脏是移植最多的器官。本研究提出了一种新方法,用于评估在 COVID-19 大流行、医疗和物流数据不确定的情况下,肾脏分配问题中作为决策单元(DMU)的合格器官-患者配对的效率和排序。为实现这一目标,利用两阶段网络数据包络分析(DEA)和基于可信度的机会约束编程(CCP)开发了一种新型的两阶段模糊网络数据包络分析(TSFNDEA)方法。所开发方法的主要优点可归纳如下:考虑肾脏分配系统的内部结构,同时研究医疗和物流方面的问题,能够扩展到其他网络结构,以及在不确定情况下的独特效率分解。此外,为了评估所提出方法的有效性和适用性,还利用真实案例研究和不同置信度采用了验证算法。最后,数值结果表明,所开发的方法优于现有的肾分配系统。
{"title":"A novel two-stage network data envelopment analysis model for kidney allocation problem under medical and logistical uncertainty: a real case study.","authors":"Farhad Hamidzadeh, Mir Saman Pishvaee, Naeme Zarrinpoor","doi":"10.1007/s10729-024-09683-6","DOIUrl":"10.1007/s10729-024-09683-6","url":null,"abstract":"<p><p>Organ transplantation is one of the most complicated and challenging treatments in healthcare systems. Despite the significant medical advancements, many patients die while waiting for organ transplants because of the noticeable differences between organ supply and demand. In the organ transplantation supply chain, organ allocation is the most significant decision during the organ transplantation procedure, and kidney is the most widely transplanted organ. This research presents a novel method for assessing the efficiency and ranking of qualified organ-patient pairs as decision-making units (DMUs) for kidney allocation problem in the existence of COVID-19 pandemic and uncertain medical and logistical data. To achieve this goal, two-stage network data envelopment analysis (DEA) and credibility-based chance constraint programming (CCP) are utilized to develop a novel two-stage fuzzy network data envelopment analysis (TSFNDEA) method. The main benefits of the developed method can be summarized as follows: considering internal structures in kidney allocation system, investigating both medical and logistical aspects of the problem, the capability of expanding to other network structures, and unique efficiency decomposition under uncertainty. Moreover, in order to evaluate the validity and applicability of the proposed approach, a validation algorithm utilizing a real case study and different confidence levels is used. Finally, the numerical results indicate that the developed approach outperforms the existing kidney allocation system.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"555-579"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reinforcement learning approach for the online dynamic home health care scheduling problem. 在线动态家庭保健调度问题的强化学习方法。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-12-01 Epub Date: 2024-11-14 DOI: 10.1007/s10729-024-09692-5
Quy Ta-Dinh, Tu-San Pham, Minh Hoàng Hà, Louis-Martin Rousseau

Over recent years, home health care has gained significant attention as an efficient solution to the increasing demand for healthcare services. Home health care scheduling is a challenging problem involving multiple complicated assignments and routing decisions subject to various constraints. The problem becomes even more challenging when considered on a rolling horizon with stochastic patient requests. This paper discusses the Online Dynamic Home Health Care Scheduling Problem (ODHHCSP), in which a home health care agency has to decide whether to accept or reject a patient request and determine the visit schedule and routes in case of acceptance. The objective of the problem is to maximize the number of patients served, given the limited resources. When the agency receives a patient's request, a decision must be made on the spot, which poses many challenges, such as stochastic future requests or a limited time budget for decision-making. In this paper, we model the problem as a Markov decision process and propose a reinforcement learning (RL) approach. The experimental results show that the proposed approach outperforms other algorithms in the literature in terms of solution quality. In addition, a constant runtime of less than 0.001 seconds for each decision makes the approach especially suitable for an online setting like our problem.

近年来,家庭医疗保健作为一种有效的解决方案,在满足日益增长的医疗保健服务需求方面获得了极大的关注。家庭医疗调度是一个具有挑战性的问题,涉及多个复杂的分配和路由决策,并受到各种约束条件的限制。如果考虑到滚动范围和随机病人请求,这个问题就变得更具挑战性。本文讨论的是在线动态家庭医疗调度问题(ODHHCSP),在该问题中,家庭医疗机构必须决定是否接受或拒绝病人的请求,并在接受请求的情况下确定访问日程和路线。该问题的目标是在资源有限的情况下最大限度地增加服务病人的数量。当医疗机构收到病人的请求时,必须当场做出决定,这就带来了许多挑战,如未来请求的随机性或决策时间预算的有限性。在本文中,我们将该问题建模为马尔可夫决策过程,并提出了一种强化学习(RL)方法。实验结果表明,所提出的方法在解决方案质量方面优于文献中的其他算法。此外,每次决策的运行时间恒定在 0.001 秒以内,这使得该方法特别适合像我们的问题这样的在线环境。
{"title":"A reinforcement learning approach for the online dynamic home health care scheduling problem.","authors":"Quy Ta-Dinh, Tu-San Pham, Minh Hoàng Hà, Louis-Martin Rousseau","doi":"10.1007/s10729-024-09692-5","DOIUrl":"10.1007/s10729-024-09692-5","url":null,"abstract":"<p><p>Over recent years, home health care has gained significant attention as an efficient solution to the increasing demand for healthcare services. Home health care scheduling is a challenging problem involving multiple complicated assignments and routing decisions subject to various constraints. The problem becomes even more challenging when considered on a rolling horizon with stochastic patient requests. This paper discusses the Online Dynamic Home Health Care Scheduling Problem (ODHHCSP), in which a home health care agency has to decide whether to accept or reject a patient request and determine the visit schedule and routes in case of acceptance. The objective of the problem is to maximize the number of patients served, given the limited resources. When the agency receives a patient's request, a decision must be made on the spot, which poses many challenges, such as stochastic future requests or a limited time budget for decision-making. In this paper, we model the problem as a Markov decision process and propose a reinforcement learning (RL) approach. The experimental results show that the proposed approach outperforms other algorithms in the literature in terms of solution quality. In addition, a constant runtime of less than 0.001 seconds for each decision makes the approach especially suitable for an online setting like our problem.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"650-664"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: management science for pandemic prevention, preparedness, and response. 社论:大流行病预防、准备和应对的管理科学。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-09-01 Epub Date: 2024-06-19 DOI: 10.1007/s10729-024-09674-7
Hrayer Aprahamian, Vedat Verter, Manaf Zargoush
{"title":"Editorial: management science for pandemic prevention, preparedness, and response.","authors":"Hrayer Aprahamian, Vedat Verter, Manaf Zargoush","doi":"10.1007/s10729-024-09674-7","DOIUrl":"10.1007/s10729-024-09674-7","url":null,"abstract":"","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"479-482"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set. 利用德国手术室基准计划的潜力进行规划:随时可用的手术流程数据集。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-09-01 Epub Date: 2024-05-02 DOI: 10.1007/s10729-024-09672-9
Grigory Korzhenevich, Anne Zander

We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over 320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps of the perioperative process and group the data with respect to the hospital's level of care, the surgery specialty, and the type of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room benchmarking initiatives and their usage for operating room planning.

我们根据德国手术室标杆计划的处理数据,免费提供了一套手术病例组合和手术过程持续时间分布的数据集。该计划收集了 320 多家德国、奥地利和瑞士医院的手术流程数据。这些数据在数量、质量、标准化和多维度方面都达到了很高的水平,因此对运筹学中的手术室规划特别有价值。我们考虑了围手术期流程的详细步骤,并根据医院的医疗水平、手术专业和手术患者类型对数据进行了分组。我们对不同分组的病例组合进行了比较,得出的结论是它们之间存在显著差异,这表明有必要在不同的环境中测试手术室规划方法,例如使用像我们这样的数据集。此外,我们还讨论了局限性和未来的研究方向。最后,我们鼓励扩展和建立新的手术室基准计划,并将其用于手术室规划。
{"title":"Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set.","authors":"Grigory Korzhenevich, Anne Zander","doi":"10.1007/s10729-024-09672-9","DOIUrl":"10.1007/s10729-024-09672-9","url":null,"abstract":"<p><p>We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over 320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps of the perioperative process and group the data with respect to the hospital's level of care, the surgery specialty, and the type of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room benchmarking initiatives and their usage for operating room planning.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"328-351"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning. 用可解释的机器学习预测门诊病人以不满意度为考虑因素的候诊时间。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-09-01 Epub Date: 2024-06-01 DOI: 10.1007/s10729-024-09676-5
Jongkyung Shin, Donggi Augustine Lee, Juram Kim, Chiehyeon Lim, Byung-Kwan Choi

Long waiting time in outpatient departments is a crucial factor in patient dissatisfaction. We aim to analytically interpret the waiting times predicted by machine learning models and provide patients with an explanation of the expected waiting time. Here, underestimating waiting times can cause patient dissatisfaction, so preventing this in predictive models is necessary. To address this issue, we propose a framework considering dissatisfaction for estimating the waiting time in an outpatient department. In our framework, we leverage asymmetric loss functions to ensure robustness against underestimation. We also propose a dissatisfaction-aware asymmetric error score (DAES) to determine an appropriate model by considering the trade-off between underestimation and accuracy. Finally, Shapley additive explanation (SHAP) is applied to interpret the relationship trained by the model, enabling decision makers to use this information for improving outpatient service operations. We apply our framework in the endocrinology metabolism department and neurosurgery department in one of the largest hospitals in South Korea. The use of asymmetric functions prevents underestimation in the model, and with the proposed DAES, we can strike a balance in selecting the best model. By using SHAP, we can analytically interpret the waiting time in outpatient service (e.g., the length of the queue affects the waiting time the most) and provide explanations about the expected waiting time to patients. The proposed framework aids in improving operations, considering practical application in hospitals for real-time patient notification and minimizing patient dissatisfaction. Given the significance of managing hospital operations from the perspective of patients, this work is expected to contribute to operations improvement in health service practices.

门诊部等候时间过长是导致患者不满的一个重要因素。我们的目标是分析解释机器学习模型预测的候诊时间,并向患者解释预期的候诊时间。在这里,低估等候时间可能会引起患者不满,因此有必要在预测模型中防止出现这种情况。为了解决这个问题,我们提出了一个考虑到不满意度的框架,用于估计门诊部的等候时间。在我们的框架中,我们利用非对称损失函数来确保对低估的稳健性。我们还提出了不满意度感知非对称误差分值(DAES),通过考虑低估和准确性之间的权衡来确定合适的模型。最后,我们采用夏普利加法解释(SHAP)来解释模型训练出的关系,使决策者能够利用这些信息改善门诊服务的运营。我们在韩国最大医院之一的内分泌代谢科和神经外科应用了我们的框架。非对称函数的使用可防止模型中的低估,而通过建议的 DAES,我们可以在选择最佳模型时取得平衡。通过使用 SHAP,我们可以分析解释门诊服务中的等待时间(例如,队列长度对等待时间的影响最大),并向患者解释预期等待时间。考虑到医院在实时通知病人和减少病人不满方面的实际应用,所提出的框架有助于改善运营。鉴于从患者角度管理医院运营的重要性,这项工作有望为医疗服务实践中的运营改进做出贡献。
{"title":"Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning.","authors":"Jongkyung Shin, Donggi Augustine Lee, Juram Kim, Chiehyeon Lim, Byung-Kwan Choi","doi":"10.1007/s10729-024-09676-5","DOIUrl":"10.1007/s10729-024-09676-5","url":null,"abstract":"<p><p>Long waiting time in outpatient departments is a crucial factor in patient dissatisfaction. We aim to analytically interpret the waiting times predicted by machine learning models and provide patients with an explanation of the expected waiting time. Here, underestimating waiting times can cause patient dissatisfaction, so preventing this in predictive models is necessary. To address this issue, we propose a framework considering dissatisfaction for estimating the waiting time in an outpatient department. In our framework, we leverage asymmetric loss functions to ensure robustness against underestimation. We also propose a dissatisfaction-aware asymmetric error score (DAES) to determine an appropriate model by considering the trade-off between underestimation and accuracy. Finally, Shapley additive explanation (SHAP) is applied to interpret the relationship trained by the model, enabling decision makers to use this information for improving outpatient service operations. We apply our framework in the endocrinology metabolism department and neurosurgery department in one of the largest hospitals in South Korea. The use of asymmetric functions prevents underestimation in the model, and with the proposed DAES, we can strike a balance in selecting the best model. By using SHAP, we can analytically interpret the waiting time in outpatient service (e.g., the length of the queue affects the waiting time the most) and provide explanations about the expected waiting time to patients. The proposed framework aids in improving operations, considering practical application in hospitals for real-time patient notification and minimizing patient dissatisfaction. Given the significance of managing hospital operations from the perspective of patients, this work is expected to contribute to operations improvement in health service practices.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"370-390"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining chronic kidney disease screening frequency among diabetics: a POMDP approach. 研究糖尿病患者的慢性肾病筛查频率:一种 POMDP 方法。
IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Pub Date : 2024-09-01 Epub Date: 2024-06-05 DOI: 10.1007/s10729-024-09677-4
Chou-Chun Wu, Yiwen Cao, Sze-Chuan Suen, Eugene Lin

Forty percent of diabetics will develop chronic kidney disease (CKD) in their lifetimes. However, as many as 50% of these CKD cases may go undiagnosed. We developed screening recommendations stratified by age and previous test history for individuals with diagnosed diabetes and unknown proteinuria status by race and gender groups. To do this, we used a Partially Observed Markov Decision Process (POMDP) to identify whether a patient should be screened at every three-month interval from ages 30-85. Model inputs were drawn from nationally-representative datasets, the medical literature, and a microsimulation that integrates this information into group-specific disease progression rates. We implement the POMDP solution policy in the microsimulation to understand how this policy may impact health outcomes and generate an easily-implementable, non-belief-based approximate policy for easier clinical interpretability. We found that the status quo policy, which is to screen annually for all ages and races, is suboptimal for maximizing expected discounted future net monetary benefits (NMB). The POMDP policy suggests more frequent screening after age 40 in all race and gender groups, with screenings 2-4 times a year for ages 61-70. Black individuals are recommended for screening more frequently than their White counterparts. This policy would increase NMB from the status quo policy between $1,000 to  $8,000 per diabetic patient at a willingness-to-pay of $150,000 per quality-adjusted life year (QALY).

40%的糖尿病患者一生中会患上慢性肾病(CKD)。然而,多达 50% 的 CKD 病例可能未得到诊断。我们针对已确诊的糖尿病患者和蛋白尿状况不明的患者,按年龄和既往检查史,分种族和性别组别制定了筛查建议。为此,我们使用了部分观测马尔可夫决策过程(POMDP)来确定患者是否应在 30-85 岁之间每三个月进行一次筛查。模型输入来自具有全国代表性的数据集、医学文献以及将这些信息整合到特定群体疾病进展率中的微观模拟。我们在微观模拟中实施了 POMDP 解决方案政策,以了解该政策如何影响健康结果,并生成了一个易于实施的、非基于信念的近似政策,以方便临床解释。我们发现,维持现状的政策,即每年对所有年龄段和种族的人群进行筛查,对于最大化预期贴现未来净货币收益(NMB)而言是次优的。POMDP 政策建议,在所有种族和性别群体中,40 岁后筛查频率更高,61-70 岁每年筛查 2-4 次。建议黑人比白人更频繁地接受筛查。该政策将使每名糖尿病患者的 NMB 从现状政策的 1,000 美元增加到 8,000 美元,每质量调整生命年(QALY)的支付意愿为 150,000 美元。
{"title":"Examining chronic kidney disease screening frequency among diabetics: a POMDP approach.","authors":"Chou-Chun Wu, Yiwen Cao, Sze-Chuan Suen, Eugene Lin","doi":"10.1007/s10729-024-09677-4","DOIUrl":"10.1007/s10729-024-09677-4","url":null,"abstract":"<p><p>Forty percent of diabetics will develop chronic kidney disease (CKD) in their lifetimes. However, as many as 50% of these CKD cases may go undiagnosed. We developed screening recommendations stratified by age and previous test history for individuals with diagnosed diabetes and unknown proteinuria status by race and gender groups. To do this, we used a Partially Observed Markov Decision Process (POMDP) to identify whether a patient should be screened at every three-month interval from ages 30-85. Model inputs were drawn from nationally-representative datasets, the medical literature, and a microsimulation that integrates this information into group-specific disease progression rates. We implement the POMDP solution policy in the microsimulation to understand how this policy may impact health outcomes and generate an easily-implementable, non-belief-based approximate policy for easier clinical interpretability. We found that the status quo policy, which is to screen annually for all ages and races, is suboptimal for maximizing expected discounted future net monetary benefits (NMB). The POMDP policy suggests more frequent screening after age 40 in all race and gender groups, with screenings 2-4 times a year for ages 61-70. Black individuals are recommended for screening more frequently than their White counterparts. This policy would increase NMB from the status quo policy between $1,000 to  $8,000 per diabetic patient at a willingness-to-pay of $150,000 per quality-adjusted life year (QALY).</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"391-414"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Health Care Management Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1