Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000329
Christian Niederwieser, Nicolaus Kröger
Molecular therapy with tyrosine kinase inhibitors (TKIs) has significantly reduced the indication for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia (CML). Treatment-free remission can be obtained in about 50% of patients with an optimal response. However, cure rates up to 90% are restricted to patients receiving HSCT. Timing is essential since HSCT in the early stages of the disease has the best outcome. Patients in a more advanced phase (AdP) than chronic-phase (chP) CML undergo HSCT with suboptimal outcomes, and the gap between chP and AdP disease is widening. First-line therapy should start with first- or second-generation (G) TKIs. Patients failing treatment (BCR-ABL1 transcripts of greater than 10% at 3 and 6 months and greater than 1% at 12 months) should be switched to second-line TKIs, and HSCT should be considered. Patients not responding to 2G-TKI therapy as well as patients in an accelerated phase (AP) or blast crisis (BC) are candidates for HSCT. Therapy resistant BCR-ABL1 mutations, high-risk additional cytogenetic abnormalities, and molecular signs of leukemia progression should trigger the indication for HSCT. Patients who, despite dose adjustments, do not tolerate or develop severe adverse events, including vascular events, to multiple TKIs are also candidates for HSCT. In AdP CML, TKIs do not show long-lasting results, and the outcome of HSCT is less optimal without pretransplant therapy. In these patients the induction of chP2 with TKIs, either alone (AP) or in combination with intensive chemotherapy (BC), followed by HSCT should be pursued.
{"title":"Transplantation in CML in the TKI era: who, when, and how?","authors":"Christian Niederwieser, Nicolaus Kröger","doi":"10.1182/hematology.2022000329","DOIUrl":"https://doi.org/10.1182/hematology.2022000329","url":null,"abstract":"<p><p>Molecular therapy with tyrosine kinase inhibitors (TKIs) has significantly reduced the indication for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia (CML). Treatment-free remission can be obtained in about 50% of patients with an optimal response. However, cure rates up to 90% are restricted to patients receiving HSCT. Timing is essential since HSCT in the early stages of the disease has the best outcome. Patients in a more advanced phase (AdP) than chronic-phase (chP) CML undergo HSCT with suboptimal outcomes, and the gap between chP and AdP disease is widening. First-line therapy should start with first- or second-generation (G) TKIs. Patients failing treatment (BCR-ABL1 transcripts of greater than 10% at 3 and 6 months and greater than 1% at 12 months) should be switched to second-line TKIs, and HSCT should be considered. Patients not responding to 2G-TKI therapy as well as patients in an accelerated phase (AP) or blast crisis (BC) are candidates for HSCT. Therapy resistant BCR-ABL1 mutations, high-risk additional cytogenetic abnormalities, and molecular signs of leukemia progression should trigger the indication for HSCT. Patients who, despite dose adjustments, do not tolerate or develop severe adverse events, including vascular events, to multiple TKIs are also candidates for HSCT. In AdP CML, TKIs do not show long-lasting results, and the outcome of HSCT is less optimal without pretransplant therapy. In these patients the induction of chP2 with TKIs, either alone (AP) or in combination with intensive chemotherapy (BC), followed by HSCT should be pursued.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"114-122"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820642/pdf/hem.2022000329.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000359
Rishi S Kotecha
Outcomes for infants diagnosed under 1 year of age with KMT2A-rearranged acute lymphoblastic leukemia (ALL) have remained stagnant over the past 20 years. Successive treatment protocols have previously focused on intensification of conventional chemotherapy, but increased treatment-related toxicity and chemoresistance have led to a plateau in survival. We have now entered an era of immunotherapy with integration of agents, such as blinatumomab or chimeric antigen receptor T-cell therapy, into the standard chemotherapy backbone, showing significant promise for improving the dismal outcomes for this disease. There remains much optimism for the future as a wealth of preclinical studies have identified additional novel targeted agents, such as venetoclax or menin inhibitors, ready for incorporation into treatment, providing further ammunition to combat this aggressive disease. In contrast, infants with KMT2A-germline ALL have demonstrated excellent survival outcomes with current therapy, but there remains a high burden of treatment-related morbidity. Greater understanding of the underlying blast genetics for infants with KMT2A-germline ALL and incorporation of immunotherapeutic approaches may enable a reduction in the intensity of chemotherapy while maintaining the excellent outcomes.
{"title":"Updates in infant acute lymphoblastic leukemia and the potential for targeted therapy.","authors":"Rishi S Kotecha","doi":"10.1182/hematology.2022000359","DOIUrl":"https://doi.org/10.1182/hematology.2022000359","url":null,"abstract":"<p><p>Outcomes for infants diagnosed under 1 year of age with KMT2A-rearranged acute lymphoblastic leukemia (ALL) have remained stagnant over the past 20 years. Successive treatment protocols have previously focused on intensification of conventional chemotherapy, but increased treatment-related toxicity and chemoresistance have led to a plateau in survival. We have now entered an era of immunotherapy with integration of agents, such as blinatumomab or chimeric antigen receptor T-cell therapy, into the standard chemotherapy backbone, showing significant promise for improving the dismal outcomes for this disease. There remains much optimism for the future as a wealth of preclinical studies have identified additional novel targeted agents, such as venetoclax or menin inhibitors, ready for incorporation into treatment, providing further ammunition to combat this aggressive disease. In contrast, infants with KMT2A-germline ALL have demonstrated excellent survival outcomes with current therapy, but there remains a high burden of treatment-related morbidity. Greater understanding of the underlying blast genetics for infants with KMT2A-germline ALL and incorporation of immunotherapeutic approaches may enable a reduction in the intensity of chemotherapy while maintaining the excellent outcomes.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"611-617"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821252/pdf/hem.2022000359.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022E01
A E Burnett, B Ragheb, S Kaatz
{"title":"Burnett AE, Ragheb B, Kaatz S. Perioperative consultative hematology: can you clear my patient for a procedure? Hematology Am Soc Hematol Educ Program. 2021;2021:521-528.","authors":"A E Burnett, B Ragheb, S Kaatz","doi":"10.1182/hematology.2022E01","DOIUrl":"https://doi.org/10.1182/hematology.2022E01","url":null,"abstract":"","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"723"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827474/pdf/hem.2022E01.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10504673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000363
Swetha Kambhampati, Alex F Herrera
Classical Hodgkin lymphoma (cHL) is associated with excellent outcomes with standard frontline chemotherapy or combined modality therapy. However, up to 25% of patients will have relapsed or primary refractory (RR) cHL. Improving the cure rate with frontline treatment, treatment-related complications and late effects, and poor therapy tolerance with high relapse rates in older patients are unmet needs in the initial management of cHL. The introduction of novel therapies, including the CD30-directed antibody drug conjugate brentuximab vedotin and PD-1 blockade (ie, pembrolizumab or nivolumab), has transformed the treatment of RR cHL and has the potential to address these unmet needs in the frontline setting. Incorporation of these potent, targeted immunotherapies into frontline therapy may improve outcomes, may allow for de-escalation of therapy without sacrificing efficacy to reduce treatment complications, and may allow for well-tolerated and targeted escalation of therapy for patients demonstrating an insufficient response. In this article, we provide a case-based approach to the use of novel agents in the frontline treatment of cHL.
{"title":"Incorporating novel agents into frontline treatment of Hodgkin lymphoma.","authors":"Swetha Kambhampati, Alex F Herrera","doi":"10.1182/hematology.2022000363","DOIUrl":"10.1182/hematology.2022000363","url":null,"abstract":"<p><p>Classical Hodgkin lymphoma (cHL) is associated with excellent outcomes with standard frontline chemotherapy or combined modality therapy. However, up to 25% of patients will have relapsed or primary refractory (RR) cHL. Improving the cure rate with frontline treatment, treatment-related complications and late effects, and poor therapy tolerance with high relapse rates in older patients are unmet needs in the initial management of cHL. The introduction of novel therapies, including the CD30-directed antibody drug conjugate brentuximab vedotin and PD-1 blockade (ie, pembrolizumab or nivolumab), has transformed the treatment of RR cHL and has the potential to address these unmet needs in the frontline setting. Incorporation of these potent, targeted immunotherapies into frontline therapy may improve outcomes, may allow for de-escalation of therapy without sacrificing efficacy to reduce treatment complications, and may allow for well-tolerated and targeted escalation of therapy for patients demonstrating an insufficient response. In this article, we provide a case-based approach to the use of novel agents in the frontline treatment of cHL.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"706-716"},"PeriodicalIF":2.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820976/pdf/hem.2022000363.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10506391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000398
Shukaib Arslan, Monzr M Al Malki
With increasing numbers of patients with hematologic malignancies requiring allogeneic hematopoietic cell transplant (HCT), including minority racial and ethnic groups, the limited availability of matched related donors and matched unrelated donors remains a significant obstacle. Hence, the use of alternative donors such as haploidentical and mismatched unrelated donors (MMUDs) is on the rise. Herein, we present case studies to outline a rational and stepwise approach with a focus on the use of MMUD for HCT in patients with hematologic malignancies. We also review novel approaches used to reduce the incidence of severe graft-versus-host disease and improve HCT outcomes in patients undergoing MMUD HCT.
{"title":"New strategies for mismatched unrelated donor (MMUD) hematopoietic cell transplant (HCT).","authors":"Shukaib Arslan, Monzr M Al Malki","doi":"10.1182/hematology.2022000398","DOIUrl":"https://doi.org/10.1182/hematology.2022000398","url":null,"abstract":"<p><p>With increasing numbers of patients with hematologic malignancies requiring allogeneic hematopoietic cell transplant (HCT), including minority racial and ethnic groups, the limited availability of matched related donors and matched unrelated donors remains a significant obstacle. Hence, the use of alternative donors such as haploidentical and mismatched unrelated donors (MMUDs) is on the rise. Herein, we present case studies to outline a rational and stepwise approach with a focus on the use of MMUD for HCT in patients with hematologic malignancies. We also review novel approaches used to reduce the incidence of severe graft-versus-host disease and improve HCT outcomes in patients undergoing MMUD HCT.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"74-82"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819983/pdf/hem.2022000398.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10506397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000395
Irene Roberts
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
{"title":"Leukemogenesis in infants and young children with trisomy 21.","authors":"Irene Roberts","doi":"10.1182/hematology.2022000395","DOIUrl":"https://doi.org/10.1182/hematology.2022000395","url":null,"abstract":"<p><p>Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"1-8"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820574/pdf/hem.2022000395.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9918319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000388
Amit C Nathwani
The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.
{"title":"Gene therapy for hemophilia.","authors":"Amit C Nathwani","doi":"10.1182/hematology.2022000388","DOIUrl":"10.1182/hematology.2022000388","url":null,"abstract":"<p><p>The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"569-578"},"PeriodicalIF":2.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821304/pdf/hem.2022000388.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000410
David A Bond, Ajay K Gopal
{"title":"Evidence-Based Minireview: When should autologous transplant or cellular therapy be considered for follicular lymphoma?","authors":"David A Bond, Ajay K Gopal","doi":"10.1182/hematology.2022000410","DOIUrl":"https://doi.org/10.1182/hematology.2022000410","url":null,"abstract":"","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"695-698"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821310/pdf/hem.2022000410.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10492654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000374
Hanny Al-Samkari
Chemotherapy-induced thrombocytopenia (CIT) is common, resulting in increased bleeding risk and chemotherapy delays, dose reduction, and treatment discontinuation, which can negatively affect oncologic outcomes. The only agent approved by the US Food and Drug Administration to manage CIT (oprelvekin) was voluntarily withdrawn from the market by the manufacturer, leaving few options for patients. Therefore, patients experiencing CIT present a significant clinical challenge in daily practice. The availability of thrombopoietin receptor agonists has led to formal clinical trials describing efficacy in CIT as well as a rather extensive body of published observational data from off-label use in this setting but no formal regulatory indications for CIT to date. The accumulated data, however, have affected National Comprehensive Cancer Network guidelines, which now recommend consideration of TPO-RA clinical trials as well as off-label use of romiplostim. This review article details the evidence to date for the management of CIT with thrombopoietin receptor agonists (TPO-RAs), discussing the efficacy data, the specific circumstances when treatment is warranted (and when it is generally unnecessary), and safety considerations. Specific recommendations regarding patient selection, initiation, dosing, titration, and discontinuation for TPO-RA therapy in CIT are given, based on published data and expert opinion where evidence is lacking.
{"title":"Thrombopoietin receptor agonists for chemotherapy-induced thrombocytopenia: a new solution for an old problem.","authors":"Hanny Al-Samkari","doi":"10.1182/hematology.2022000374","DOIUrl":"https://doi.org/10.1182/hematology.2022000374","url":null,"abstract":"<p><p>Chemotherapy-induced thrombocytopenia (CIT) is common, resulting in increased bleeding risk and chemotherapy delays, dose reduction, and treatment discontinuation, which can negatively affect oncologic outcomes. The only agent approved by the US Food and Drug Administration to manage CIT (oprelvekin) was voluntarily withdrawn from the market by the manufacturer, leaving few options for patients. Therefore, patients experiencing CIT present a significant clinical challenge in daily practice. The availability of thrombopoietin receptor agonists has led to formal clinical trials describing efficacy in CIT as well as a rather extensive body of published observational data from off-label use in this setting but no formal regulatory indications for CIT to date. The accumulated data, however, have affected National Comprehensive Cancer Network guidelines, which now recommend consideration of TPO-RA clinical trials as well as off-label use of romiplostim. This review article details the evidence to date for the management of CIT with thrombopoietin receptor agonists (TPO-RAs), discussing the efficacy data, the specific circumstances when treatment is warranted (and when it is generally unnecessary), and safety considerations. Specific recommendations regarding patient selection, initiation, dosing, titration, and discontinuation for TPO-RA therapy in CIT are given, based on published data and expert opinion where evidence is lacking.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"286-295"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821429/pdf/hem.2022000374.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000340
Samuel B Reynolds, Kristen Pettit
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.
{"title":"New approaches to tackle cytopenic myelofibrosis.","authors":"Samuel B Reynolds, Kristen Pettit","doi":"10.1182/hematology.2022000340","DOIUrl":"10.1182/hematology.2022000340","url":null,"abstract":"<p><p>Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"235-244"},"PeriodicalIF":2.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820710/pdf/hem.2022000340.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10868885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}