Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000388
Amit C Nathwani
The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.
{"title":"Gene therapy for hemophilia.","authors":"Amit C Nathwani","doi":"10.1182/hematology.2022000388","DOIUrl":"10.1182/hematology.2022000388","url":null,"abstract":"<p><p>The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"569-578"},"PeriodicalIF":2.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821304/pdf/hem.2022000388.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000410
David A Bond, Ajay K Gopal
{"title":"Evidence-Based Minireview: When should autologous transplant or cellular therapy be considered for follicular lymphoma?","authors":"David A Bond, Ajay K Gopal","doi":"10.1182/hematology.2022000410","DOIUrl":"https://doi.org/10.1182/hematology.2022000410","url":null,"abstract":"","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"695-698"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821310/pdf/hem.2022000410.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10492654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000374
Hanny Al-Samkari
Chemotherapy-induced thrombocytopenia (CIT) is common, resulting in increased bleeding risk and chemotherapy delays, dose reduction, and treatment discontinuation, which can negatively affect oncologic outcomes. The only agent approved by the US Food and Drug Administration to manage CIT (oprelvekin) was voluntarily withdrawn from the market by the manufacturer, leaving few options for patients. Therefore, patients experiencing CIT present a significant clinical challenge in daily practice. The availability of thrombopoietin receptor agonists has led to formal clinical trials describing efficacy in CIT as well as a rather extensive body of published observational data from off-label use in this setting but no formal regulatory indications for CIT to date. The accumulated data, however, have affected National Comprehensive Cancer Network guidelines, which now recommend consideration of TPO-RA clinical trials as well as off-label use of romiplostim. This review article details the evidence to date for the management of CIT with thrombopoietin receptor agonists (TPO-RAs), discussing the efficacy data, the specific circumstances when treatment is warranted (and when it is generally unnecessary), and safety considerations. Specific recommendations regarding patient selection, initiation, dosing, titration, and discontinuation for TPO-RA therapy in CIT are given, based on published data and expert opinion where evidence is lacking.
{"title":"Thrombopoietin receptor agonists for chemotherapy-induced thrombocytopenia: a new solution for an old problem.","authors":"Hanny Al-Samkari","doi":"10.1182/hematology.2022000374","DOIUrl":"https://doi.org/10.1182/hematology.2022000374","url":null,"abstract":"<p><p>Chemotherapy-induced thrombocytopenia (CIT) is common, resulting in increased bleeding risk and chemotherapy delays, dose reduction, and treatment discontinuation, which can negatively affect oncologic outcomes. The only agent approved by the US Food and Drug Administration to manage CIT (oprelvekin) was voluntarily withdrawn from the market by the manufacturer, leaving few options for patients. Therefore, patients experiencing CIT present a significant clinical challenge in daily practice. The availability of thrombopoietin receptor agonists has led to formal clinical trials describing efficacy in CIT as well as a rather extensive body of published observational data from off-label use in this setting but no formal regulatory indications for CIT to date. The accumulated data, however, have affected National Comprehensive Cancer Network guidelines, which now recommend consideration of TPO-RA clinical trials as well as off-label use of romiplostim. This review article details the evidence to date for the management of CIT with thrombopoietin receptor agonists (TPO-RAs), discussing the efficacy data, the specific circumstances when treatment is warranted (and when it is generally unnecessary), and safety considerations. Specific recommendations regarding patient selection, initiation, dosing, titration, and discontinuation for TPO-RA therapy in CIT are given, based on published data and expert opinion where evidence is lacking.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"286-295"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821429/pdf/hem.2022000374.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000340
Samuel B Reynolds, Kristen Pettit
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.
{"title":"New approaches to tackle cytopenic myelofibrosis.","authors":"Samuel B Reynolds, Kristen Pettit","doi":"10.1182/hematology.2022000340","DOIUrl":"10.1182/hematology.2022000340","url":null,"abstract":"<p><p>Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"235-244"},"PeriodicalIF":2.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820710/pdf/hem.2022000340.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10868885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000350
Jesus D Gonzalez-Lugo, Amit Verma
The myelodysplastic syndromes (MDS) are a heterogeneous group of malignant hematopoietic stem cell disorders characterized by ineffective growth and differentiation of hematopoietic progenitors leading to peripheral blood cytopenias, dysplasia, and a variable risk of transformation to acute myelogenous leukemia. As most patients present with lower-risk disease, understanding the pathogenesis of ineffective hematopoiesis is important for developing therapies that will increase blood counts in patients with MDS. Various inflammatory cytokines are elevated in MDS and contribute to dysplastic differentiation. Inflammatory pathways mediated by interleukin (IL) 1b, IL-6, IL-1RAP, IL-8, and others lead to growth of aberrant MDS stem and progenitors while inhibiting healthy hematopoiesis. Spliceosome mutations can lead to missplicing of genes such as IRAK4, CASP8, and MAP3K, which lead to activation of proinflammatory nuclear factor κB-driven pathways. Therapeutically, targeting of ligands of the transforming growth factor β (TGF-β) pathway has led to approval of luspatercept in transfusion-dependent patients with MDS. Presently, various clinical trials are evaluating inhibitors of cytokines and their receptors in low-risk MDS. Taken together, an inflammatory microenvironment can support the pathogenesis of clonal hematopoiesis and low-risk MDS, and clinical trials are evaluating anti-inflammatory strategies in these diseases.
{"title":"Targeting inflammation in lower-risk MDS.","authors":"Jesus D Gonzalez-Lugo, Amit Verma","doi":"10.1182/hematology.2022000350","DOIUrl":"https://doi.org/10.1182/hematology.2022000350","url":null,"abstract":"<p><p>The myelodysplastic syndromes (MDS) are a heterogeneous group of malignant hematopoietic stem cell disorders characterized by ineffective growth and differentiation of hematopoietic progenitors leading to peripheral blood cytopenias, dysplasia, and a variable risk of transformation to acute myelogenous leukemia. As most patients present with lower-risk disease, understanding the pathogenesis of ineffective hematopoiesis is important for developing therapies that will increase blood counts in patients with MDS. Various inflammatory cytokines are elevated in MDS and contribute to dysplastic differentiation. Inflammatory pathways mediated by interleukin (IL) 1b, IL-6, IL-1RAP, IL-8, and others lead to growth of aberrant MDS stem and progenitors while inhibiting healthy hematopoiesis. Spliceosome mutations can lead to missplicing of genes such as IRAK4, CASP8, and MAP3K, which lead to activation of proinflammatory nuclear factor κB-driven pathways. Therapeutically, targeting of ligands of the transforming growth factor β (TGF-β) pathway has led to approval of luspatercept in transfusion-dependent patients with MDS. Presently, various clinical trials are evaluating inhibitors of cytokines and their receptors in low-risk MDS. Taken together, an inflammatory microenvironment can support the pathogenesis of clonal hematopoiesis and low-risk MDS, and clinical trials are evaluating anti-inflammatory strategies in these diseases.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"382-387"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821551/pdf/hem.2022000350.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10868888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000341
Jan Philipp Bewersdorf, Raajit K Rampal
The BCR-ABL-negative myeloproliferative neoplasms (MPNs) have a variable risk of progressing to accelerated- or blast-phase MPN (MPN-AP/MPN-BP), defined by the presence of 10% to 19% and more than or equal to 20% myeloid blasts in the peripheral blood or bone marrow, respectively. The molecular processes underlying the progression to MPN-AP/MPN-BP are becoming increasingly understood with the acquisition of additional mutations in epigenetic modifiers (eg, ASXL1, EZH2, TET2), TP53, the Ras pathway, or splicing factors (eg, SRSF2, U2AF1), having been described as important steps in this evolutionary process. At least partially driven by the enrichment of these high-risk molecular features, the prognosis of patients with MPN-BP remains inferior to other patients with acute myeloid leukemia, with a median overall survival of 3 to 6 months. Allogeneic hematopoietic cell transplantation remains the only potentially curative therapeutic modality, but only a minority of patients are eligible. In the absence of curative intent, therapeutic strategies or palliative treatment with hypomethylating agents as monotherapy or in combination with ruxolitinib or venetoclax can be considered. Several novel agents are in various stages of clinical development but are not available for routine use at this point, highlighting the need for ongoing research and the prioritization of clinical trial enrollment when feasible.
{"title":"Hitting the brakes on accelerated and blast-phase myeloproliferative neoplasms: current and emerging concepts.","authors":"Jan Philipp Bewersdorf, Raajit K Rampal","doi":"10.1182/hematology.2022000341","DOIUrl":"https://doi.org/10.1182/hematology.2022000341","url":null,"abstract":"<p><p>The BCR-ABL-negative myeloproliferative neoplasms (MPNs) have a variable risk of progressing to accelerated- or blast-phase MPN (MPN-AP/MPN-BP), defined by the presence of 10% to 19% and more than or equal to 20% myeloid blasts in the peripheral blood or bone marrow, respectively. The molecular processes underlying the progression to MPN-AP/MPN-BP are becoming increasingly understood with the acquisition of additional mutations in epigenetic modifiers (eg, ASXL1, EZH2, TET2), TP53, the Ras pathway, or splicing factors (eg, SRSF2, U2AF1), having been described as important steps in this evolutionary process. At least partially driven by the enrichment of these high-risk molecular features, the prognosis of patients with MPN-BP remains inferior to other patients with acute myeloid leukemia, with a median overall survival of 3 to 6 months. Allogeneic hematopoietic cell transplantation remains the only potentially curative therapeutic modality, but only a minority of patients are eligible. In the absence of curative intent, therapeutic strategies or palliative treatment with hypomethylating agents as monotherapy or in combination with ruxolitinib or venetoclax can be considered. Several novel agents are in various stages of clinical development but are not available for routine use at this point, highlighting the need for ongoing research and the prioritization of clinical trial enrollment when feasible.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"218-224"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820986/pdf/hem.2022000341.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10666484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000365
Alison J Moskowitz
The standard approach to treatment of primary refractory/first relapse of classical Hodgkin lymphoma (cHL) is administration of second-line therapy (SLT) followed by consolidation with high-dose therapy and autologous hematopoietic cell transplantation (HDT/AHCT). Historically, this approach cured about 50% of patients. Due to improvements in supportive care, positron emission tomography-adaptive strategies, and incorporation of novel agents into SLT, contemporary studies show that about 75% of patients with primary refractory or first relapse of cHL can be cured. Recent studies evaluating incorporation of PD-1 blockade in SLT appear to show even further improvement in remission rates and bring into question whether an aggressive approach that includes HDT/AHCT is needed for everyone. To address this question, several ongoing studies are beginning to explore the possibility of avoiding or delaying HDT/AHCT for patients with primary refractory or first relapse of cHL.
{"title":"Do all patients with primary refractory/first relapse of HL need autologous stem cell transplant?","authors":"Alison J Moskowitz","doi":"10.1182/hematology.2022000365","DOIUrl":"https://doi.org/10.1182/hematology.2022000365","url":null,"abstract":"<p><p>The standard approach to treatment of primary refractory/first relapse of classical Hodgkin lymphoma (cHL) is administration of second-line therapy (SLT) followed by consolidation with high-dose therapy and autologous hematopoietic cell transplantation (HDT/AHCT). Historically, this approach cured about 50% of patients. Due to improvements in supportive care, positron emission tomography-adaptive strategies, and incorporation of novel agents into SLT, contemporary studies show that about 75% of patients with primary refractory or first relapse of cHL can be cured. Recent studies evaluating incorporation of PD-1 blockade in SLT appear to show even further improvement in remission rates and bring into question whether an aggressive approach that includes HDT/AHCT is needed for everyone. To address this question, several ongoing studies are beginning to explore the possibility of avoiding or delaying HDT/AHCT for patients with primary refractory or first relapse of cHL.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"699-705"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821042/pdf/hem.2022000365.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10723021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000334
Christopher Cipkar, Christine Chen, Suzanne Trudel
The therapeutic landscape in multiple myeloma (MM) has changed dramatically over the last 2 decades. With the introduction of novel immunotherapies, patients with MM can expect deeper responses, longer remissions, and improved overall survival. Since its approval by the US Food and Drug Administration in 2015, the monoclonal antibody specific for CD38, daratumumab, has been incorporated into both frontline and relapsed treatment regimens. Its role as a maintenance therapy is currently being explored. Subsequently, a variety of novel antibody therapeutics have evolved from the success of daratumumab, using similar concepts to target the malignant plasma cell clone. Noteworthy naked monoclonal antibodies include isatuximab, another agent directed against CD38, and elotuzumab, an agent directed against SLAM family member 7. Antibody-drug conjugates, complex molecules composed of an antibody tethered to a cytotoxic drug, target malignant cells and deliver a lethal payload. The first to market is belantamab mafodotin, which targets B-cell maturation antigen (BCMA) on malignant plasma cells and delivers a potent microtubule inhibitor, monomethyl auristatin F. Additionally, bispecific T-cell antibodies are in development that engage the immune system directly by simultaneously binding CD3 on T cells and a target epitope-such as BCMA, G-protein coupled receptor family C group 5 member D (GPRC5d), and Fc receptor homologue 5 (FcRH5)-on malignant cells. Currently, teclistamab, an anti-BCMA bispecific, is closest to approval for commercial use. In this review, we explore the evolving landscape of antibodies in the treatment of MM, including their role in frontline and relapse settings.
{"title":"Antibodies and bispecifics for multiple myeloma: effective effector therapy.","authors":"Christopher Cipkar, Christine Chen, Suzanne Trudel","doi":"10.1182/hematology.2022000334","DOIUrl":"https://doi.org/10.1182/hematology.2022000334","url":null,"abstract":"<p><p>The therapeutic landscape in multiple myeloma (MM) has changed dramatically over the last 2 decades. With the introduction of novel immunotherapies, patients with MM can expect deeper responses, longer remissions, and improved overall survival. Since its approval by the US Food and Drug Administration in 2015, the monoclonal antibody specific for CD38, daratumumab, has been incorporated into both frontline and relapsed treatment regimens. Its role as a maintenance therapy is currently being explored. Subsequently, a variety of novel antibody therapeutics have evolved from the success of daratumumab, using similar concepts to target the malignant plasma cell clone. Noteworthy naked monoclonal antibodies include isatuximab, another agent directed against CD38, and elotuzumab, an agent directed against SLAM family member 7. Antibody-drug conjugates, complex molecules composed of an antibody tethered to a cytotoxic drug, target malignant cells and deliver a lethal payload. The first to market is belantamab mafodotin, which targets B-cell maturation antigen (BCMA) on malignant plasma cells and delivers a potent microtubule inhibitor, monomethyl auristatin F. Additionally, bispecific T-cell antibodies are in development that engage the immune system directly by simultaneously binding CD3 on T cells and a target epitope-such as BCMA, G-protein coupled receptor family C group 5 member D (GPRC5d), and Fc receptor homologue 5 (FcRH5)-on malignant cells. Currently, teclistamab, an anti-BCMA bispecific, is closest to approval for commercial use. In this review, we explore the evolving landscape of antibodies in the treatment of MM, including their role in frontline and relapse settings.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"163-172"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820318/pdf/hem.2022000334.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000338
Matthew J Wieduwilt
Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carried a very poor prognosis prior to the advent of tyrosine kinase inhibitors (TKIs) that block the activity of the BCR-ABL1 oncoprotein. With improvements in TKI efficacy and allogeneic hematopoietic cell transplantation (HCT), survival has improved over the past 3 decades, and the role of chemotherapy and allogeneic HCT is now changing. Better risk stratification, the application of the third-generation TKI ponatinib, and the use of immunotherapy with the CD19-CD3 bifunctional T-cell engaging antibody blinatumomab in place of chemotherapy has made therapy for Ph+ ALL more tolerable and arguably more efficacious, especially for older patients who comprise most patients with Ph+ ALL.
{"title":"Ph+ ALL in 2022: is there an optimal approach?","authors":"Matthew J Wieduwilt","doi":"10.1182/hematology.2022000338","DOIUrl":"https://doi.org/10.1182/hematology.2022000338","url":null,"abstract":"<p><p>Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carried a very poor prognosis prior to the advent of tyrosine kinase inhibitors (TKIs) that block the activity of the BCR-ABL1 oncoprotein. With improvements in TKI efficacy and allogeneic hematopoietic cell transplantation (HCT), survival has improved over the past 3 decades, and the role of chemotherapy and allogeneic HCT is now changing. Better risk stratification, the application of the third-generation TKI ponatinib, and the use of immunotherapy with the CD19-CD3 bifunctional T-cell engaging antibody blinatumomab in place of chemotherapy has made therapy for Ph+ ALL more tolerable and arguably more efficacious, especially for older patients who comprise most patients with Ph+ ALL.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"206-212"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820632/pdf/hem.2022000338.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10499515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.1182/hematology.2022000390
Nicholas L J Chornenki, Edwin Ocran, Paula D James
Gastrointestinal (GI) bleeding is an important cause of morbidity and mortality in von Willebrand disease (VWD). It has been noted that GI bleeding caused by angiodysplasia is overrepresented in VWD patients compared to other causes. The bleeding from angiodysplasia is notoriously difficult to treat; recurrences and rebleeds are common. A growing body of basic science evidence demonstrates that von Willebrand factor negatively regulates angiogenesis through multiple pathways. VWD is clinically highly associated with angiodysplasia. The predisposition to angiodysplasia likely accounts for many of the clinical difficulties related to managing GI bleeding in VWD patients. Diagnosis and treatment are challenging with the current tools available, and much further research is needed to further optimize care for these patients with regard to acute treatment, prophylaxis, and adjunctive therapies. In this review we provide an overview of the available literature on GI bleeding in VWD and explore the molecular underpinnings of angiodysplasia-related GI bleeding. Considerations for diagnostic effectiveness are discussed, as well as the natural history and recurrence of these lesions and which therapeutic options are available for acute and prophylactic management.
{"title":"Special considerations in GI bleeding in VWD patients.","authors":"Nicholas L J Chornenki, Edwin Ocran, Paula D James","doi":"10.1182/hematology.2022000390","DOIUrl":"https://doi.org/10.1182/hematology.2022000390","url":null,"abstract":"<p><p>Gastrointestinal (GI) bleeding is an important cause of morbidity and mortality in von Willebrand disease (VWD). It has been noted that GI bleeding caused by angiodysplasia is overrepresented in VWD patients compared to other causes. The bleeding from angiodysplasia is notoriously difficult to treat; recurrences and rebleeds are common. A growing body of basic science evidence demonstrates that von Willebrand factor negatively regulates angiogenesis through multiple pathways. VWD is clinically highly associated with angiodysplasia. The predisposition to angiodysplasia likely accounts for many of the clinical difficulties related to managing GI bleeding in VWD patients. Diagnosis and treatment are challenging with the current tools available, and much further research is needed to further optimize care for these patients with regard to acute treatment, prophylaxis, and adjunctive therapies. In this review we provide an overview of the available literature on GI bleeding in VWD and explore the molecular underpinnings of angiodysplasia-related GI bleeding. Considerations for diagnostic effectiveness are discussed, as well as the natural history and recurrence of these lesions and which therapeutic options are available for acute and prophylactic management.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"624-630"},"PeriodicalIF":3.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820382/pdf/hem.2022000390.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10501734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}