Pub Date : 2023-11-27DOI: 10.1038/s41437-023-00663-0
David N. Manahan, Michael W. Nachman
A major goal of evolutionary genetics is to understand the genetic and molecular mechanisms underlying adaptation. Previous work has established that changes in gene regulation may contribute to adaptive evolution, but most studies have focused on mRNA abundance and only a few studies have investigated the role of post-transcriptional processing. Here, we use a combination of exome sequences and short-read RNA-Seq data from wild house mice (Mus musculus domesticus) collected along a latitudinal transect in eastern North America to identify candidate genes for local adaptation through alternative splicing. First, we identified alternatively spliced transcripts that differ in frequency between mice from the northern-most and southern-most populations in this transect. We then identified the subset of these transcripts that exhibit clinal patterns of variation among all populations in the transect. Finally, we conducted association studies to identify cis-acting splicing quantitative trait loci (cis-sQTL), and we identified cis-sQTL that overlapped with previously ascertained targets of selection from genome scans. Together, these analyses identified a small set of alternatively spliced transcripts that may underlie environmental adaptation in house mice. Many of these genes have known phenotypes associated with body size, a trait that varies clinally in these populations. We observed no overlap between these genes and genes previously identified by changes in mRNA abundance, indicating that alternative splicing and changes in mRNA abundance may provide separate molecular mechanisms of adaptation.
{"title":"Alternative splicing and environmental adaptation in wild house mice","authors":"David N. Manahan, Michael W. Nachman","doi":"10.1038/s41437-023-00663-0","DOIUrl":"10.1038/s41437-023-00663-0","url":null,"abstract":"A major goal of evolutionary genetics is to understand the genetic and molecular mechanisms underlying adaptation. Previous work has established that changes in gene regulation may contribute to adaptive evolution, but most studies have focused on mRNA abundance and only a few studies have investigated the role of post-transcriptional processing. Here, we use a combination of exome sequences and short-read RNA-Seq data from wild house mice (Mus musculus domesticus) collected along a latitudinal transect in eastern North America to identify candidate genes for local adaptation through alternative splicing. First, we identified alternatively spliced transcripts that differ in frequency between mice from the northern-most and southern-most populations in this transect. We then identified the subset of these transcripts that exhibit clinal patterns of variation among all populations in the transect. Finally, we conducted association studies to identify cis-acting splicing quantitative trait loci (cis-sQTL), and we identified cis-sQTL that overlapped with previously ascertained targets of selection from genome scans. Together, these analyses identified a small set of alternatively spliced transcripts that may underlie environmental adaptation in house mice. Many of these genes have known phenotypes associated with body size, a trait that varies clinally in these populations. We observed no overlap between these genes and genes previously identified by changes in mRNA abundance, indicating that alternative splicing and changes in mRNA abundance may provide separate molecular mechanisms of adaptation.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-20DOI: 10.1038/s41437-023-00662-1
Henrique Batalha-Filho, Silvia Britto Barreto, Mario Henrique Barros Silveira, Cristina Yumi Miyaki, Sandra Afonso, Nuno Ferrand, Miguel Carneiro, Fernando Sequeira
Investigating the impact of landscape features on patterns of genetic variation is crucial to understand spatially dependent evolutionary processes. Here, we assess the population genomic variation of two bird species (Conopophaga cearae and Sclerurus cearensis) through the Caatinga moist forest enclaves in northeastern Brazil. To infer the evolutionary dynamics of bird populations through the Late Quaternary, we used genome-wide polymorphism data obtained from double-digestion restriction-site-associated DNA sequencing (ddRADseq), and integrated population structure analyses, historical demography models, paleodistribution modeling, and landscape genetics analyses. We found the population differentiation among enclaves to be significantly related to the geographic distance and historical resistance across the rugged landscape. The climate changes at the end of the Pleistocene to the Holocene likely triggered synchronic population decline in all enclaves for both species. Our findings revealed that both geographic distance and historical connectivity through highlands are important factors that can explain the current patterns of genetic variation. Our results further suggest that levels of population differentiation and connectivity cannot be explained purely on the basis of contemporary environmental conditions. By combining historical demographic analyses and niche modeling predictions in a historical framework, we provide strong evidence that climate fluctuations of the Quaternary promoted population differentiation and a high degree of temporal synchrony among population size changes in both species.
{"title":"Disentangling the contemporary and historical effects of landscape on the population genomic variation of two bird species restricted to the highland forest enclaves of northeastern Brazil","authors":"Henrique Batalha-Filho, Silvia Britto Barreto, Mario Henrique Barros Silveira, Cristina Yumi Miyaki, Sandra Afonso, Nuno Ferrand, Miguel Carneiro, Fernando Sequeira","doi":"10.1038/s41437-023-00662-1","DOIUrl":"10.1038/s41437-023-00662-1","url":null,"abstract":"Investigating the impact of landscape features on patterns of genetic variation is crucial to understand spatially dependent evolutionary processes. Here, we assess the population genomic variation of two bird species (Conopophaga cearae and Sclerurus cearensis) through the Caatinga moist forest enclaves in northeastern Brazil. To infer the evolutionary dynamics of bird populations through the Late Quaternary, we used genome-wide polymorphism data obtained from double-digestion restriction-site-associated DNA sequencing (ddRADseq), and integrated population structure analyses, historical demography models, paleodistribution modeling, and landscape genetics analyses. We found the population differentiation among enclaves to be significantly related to the geographic distance and historical resistance across the rugged landscape. The climate changes at the end of the Pleistocene to the Holocene likely triggered synchronic population decline in all enclaves for both species. Our findings revealed that both geographic distance and historical connectivity through highlands are important factors that can explain the current patterns of genetic variation. Our results further suggest that levels of population differentiation and connectivity cannot be explained purely on the basis of contemporary environmental conditions. By combining historical demographic analyses and niche modeling predictions in a historical framework, we provide strong evidence that climate fluctuations of the Quaternary promoted population differentiation and a high degree of temporal synchrony among population size changes in both species.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1038/s41437-023-00660-3
Fonti Kar, Shinichi Nakagawa, Daniel W. A. Noble
Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual’s growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.
{"title":"Heritability and developmental plasticity of growth in an oviparous lizard","authors":"Fonti Kar, Shinichi Nakagawa, Daniel W. A. Noble","doi":"10.1038/s41437-023-00660-3","DOIUrl":"10.1038/s41437-023-00660-3","url":null,"abstract":"Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual’s growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-023-00660-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134648848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-11DOI: 10.1038/s41437-023-00656-z
Teruhito Ishihara, Shunsuke Suzuki, Trent A. Newman, Jane C. Fenelon, Oliver W. Griffith, Geoff Shaw, Marilyn B. Renfree
The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.
{"title":"Marsupials have monoallelic MEST expression with a conserved antisense lncRNA but MEST is not imprinted","authors":"Teruhito Ishihara, Shunsuke Suzuki, Trent A. Newman, Jane C. Fenelon, Oliver W. Griffith, Geoff Shaw, Marilyn B. Renfree","doi":"10.1038/s41437-023-00656-z","DOIUrl":"10.1038/s41437-023-00656-z","url":null,"abstract":"The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1038/s41437-023-00659-w
James R. M. Bickerstaff, Bjarte H. Jordal, Markus Riegler
Sympatric lineages of inbreeding species provide an excellent opportunity to investigate species divergence patterns and processes. Many ambrosia beetle lineages (Curculionidae: Scolytinae) reproduce by predominant inbreeding through sib mating in nests excavated in woody plant parts wherein they cultivate symbiotic ambrosia fungi as their sole source of nutrition. The Xyleborini ambrosia beetle species Cnestus solidus and Cnestus pseudosolidus are sympatrically distributed across eastern Australia and have overlapping morphological variation. Using multilocus sequencing analysis of individuals collected from 19 sites spanning their sympatric distribution, we assessed their phylogenetic relationships, taxonomic status and microbial symbionts. We found no genetic differentiation between individuals morphologically identified as C. solidus and C. pseudosolidus confirming previous suggestions that C. pseudosolidus is synonymous to C. solidus. However, within C. solidus we unexpectedly discovered the sympatric coexistence of two morphologically indistinguishable but genetically distinct lineages with small nuclear yet large mitochondrial divergence. At all sites except one, individuals of both lineages carried the same primary fungal symbiont, a new Ambrosiella species, indicating that fungal symbiont differentiation may not be involved in lineage divergence. One strain of the maternally inherited bacterial endosymbiont Wolbachia was found at high prevalence in individuals of the more common lineage but not in the other, suggesting that it may influence host fitness. Our data suggest that the two Australian Cnestus lineages diverged allopatrically, and one lineage then acquired Wolbachia. Predominant inbreeding and Wolbachia infection may have reinforced reproductive barriers between these two lineages after their secondary contact contributing to their current sympatric distribution.
{"title":"Two sympatric lineages of Australian Cnestus solidus share Ambrosiella symbionts but not Wolbachia","authors":"James R. M. Bickerstaff, Bjarte H. Jordal, Markus Riegler","doi":"10.1038/s41437-023-00659-w","DOIUrl":"10.1038/s41437-023-00659-w","url":null,"abstract":"Sympatric lineages of inbreeding species provide an excellent opportunity to investigate species divergence patterns and processes. Many ambrosia beetle lineages (Curculionidae: Scolytinae) reproduce by predominant inbreeding through sib mating in nests excavated in woody plant parts wherein they cultivate symbiotic ambrosia fungi as their sole source of nutrition. The Xyleborini ambrosia beetle species Cnestus solidus and Cnestus pseudosolidus are sympatrically distributed across eastern Australia and have overlapping morphological variation. Using multilocus sequencing analysis of individuals collected from 19 sites spanning their sympatric distribution, we assessed their phylogenetic relationships, taxonomic status and microbial symbionts. We found no genetic differentiation between individuals morphologically identified as C. solidus and C. pseudosolidus confirming previous suggestions that C. pseudosolidus is synonymous to C. solidus. However, within C. solidus we unexpectedly discovered the sympatric coexistence of two morphologically indistinguishable but genetically distinct lineages with small nuclear yet large mitochondrial divergence. At all sites except one, individuals of both lineages carried the same primary fungal symbiont, a new Ambrosiella species, indicating that fungal symbiont differentiation may not be involved in lineage divergence. One strain of the maternally inherited bacterial endosymbiont Wolbachia was found at high prevalence in individuals of the more common lineage but not in the other, suggesting that it may influence host fitness. Our data suggest that the two Australian Cnestus lineages diverged allopatrically, and one lineage then acquired Wolbachia. Predominant inbreeding and Wolbachia infection may have reinforced reproductive barriers between these two lineages after their secondary contact contributing to their current sympatric distribution.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-023-00659-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72209133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reduced growth performance of individuals from range edges is a common phenomenon in various taxa, and considered to be an evolutionary factor that limits the species’ range. However, most studies did not distinguish between two mechanisms that can lead to this reduction: genetic load and adaptive selection to harsh conditions. To address this lack of understanding, we investigated the climatic and genetic factors underlying the growth performance of Betula ermanii saplings transplanted from 11 populations including high-altitude edge and low-latitude edge population. We estimated the climatic position of the populations within the overall B. ermanii’s distribution, and the genetic composition and diversity using restriction-site associated DNA sequencing, and measured survival, growth rates and individual size of the saplings. The high-altitude edge population (APW) was located below the 95% significance interval for the mean annual temperature range, but did not show any distinctive genetic characteristics. In contrast, the low-latitude edge population (SHK) exhibited a high level of linkage disequilibrium, low genetic diversity, a distinct genetic composition from the other populations, and a high relatedness coefficient. Both APW and SHK saplings displayed lower survival rates, heights and diameters, while SHK saplings also exhibited lower growth rates than the other populations’ saplings. The low heights and diameters of APW saplings was likely the result of adaptive selection to harsh conditions, while the low survival and growth rates of SHK saplings was likely the result of genetic load. Our findings shed light on the mechanisms underlying the reduced growth performance of range-edge populations.
{"title":"Divergent mechanisms of reduced growth performance in Betula ermanii saplings from high-altitude and low-latitude range edges","authors":"Takaki Aihara, Kyoko Araki, Yunosuke Onuma, Yihan Cai, Aye Myat Myat Paing, Susumu Goto, Yoko Hisamoto, Nobuhiro Tomaru, Kosuke Homma, Masahiro Takagi, Toshiya Yoshida, Atsuhiro Iio, Dai Nagamatsu, Hajime Kobayashi, Mitsuru Hirota, Kentaro Uchiyama, Yoshihiko Tsumura","doi":"10.1038/s41437-023-00655-0","DOIUrl":"10.1038/s41437-023-00655-0","url":null,"abstract":"The reduced growth performance of individuals from range edges is a common phenomenon in various taxa, and considered to be an evolutionary factor that limits the species’ range. However, most studies did not distinguish between two mechanisms that can lead to this reduction: genetic load and adaptive selection to harsh conditions. To address this lack of understanding, we investigated the climatic and genetic factors underlying the growth performance of Betula ermanii saplings transplanted from 11 populations including high-altitude edge and low-latitude edge population. We estimated the climatic position of the populations within the overall B. ermanii’s distribution, and the genetic composition and diversity using restriction-site associated DNA sequencing, and measured survival, growth rates and individual size of the saplings. The high-altitude edge population (APW) was located below the 95% significance interval for the mean annual temperature range, but did not show any distinctive genetic characteristics. In contrast, the low-latitude edge population (SHK) exhibited a high level of linkage disequilibrium, low genetic diversity, a distinct genetic composition from the other populations, and a high relatedness coefficient. Both APW and SHK saplings displayed lower survival rates, heights and diameters, while SHK saplings also exhibited lower growth rates than the other populations’ saplings. The low heights and diameters of APW saplings was likely the result of adaptive selection to harsh conditions, while the low survival and growth rates of SHK saplings was likely the result of genetic load. Our findings shed light on the mechanisms underlying the reduced growth performance of range-edge populations.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71521282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1038/s41437-023-00647-0
Tongrui Chen, Jinqing Xu, Lei Wang, Handong Wang, En You, Chao Deng, Haiyan Bian, Yuhu Shen
Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists. Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157 diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136 signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects. We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on QTP and thus improve our current understanding of the genetic basis of local adaptation.
{"title":"Landscape genomics reveals adaptive genetic differentiation driven by multiple environmental variables in naked barley on the Qinghai-Tibetan Plateau","authors":"Tongrui Chen, Jinqing Xu, Lei Wang, Handong Wang, En You, Chao Deng, Haiyan Bian, Yuhu Shen","doi":"10.1038/s41437-023-00647-0","DOIUrl":"10.1038/s41437-023-00647-0","url":null,"abstract":"Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists. Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157 diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136 signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects. We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on QTP and thus improve our current understanding of the genetic basis of local adaptation.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71480951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1038/s41437-023-00658-x
Stéphane Blondeau Da Silva, Joram M. Mwacharo, Menghua Li, Abulgasim Ahbara, Farai Catherine Muchadeyi, Edgar Farai Dzomba, Johannes A. Lenstra, Anne Da Silva
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed’s level of admixture from: (i) the proportion of the genome shared by breed’s members (i.e. “genetic integrity level” assessed from ADMIXTURE software analyses), and (ii) the “AV index” (calculated from Reynolds’ genetic distances), used as a proxy for the “genetic distinctiveness”. In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
{"title":"IBD sharing patterns as intra-breed admixture indicators in small ruminants","authors":"Stéphane Blondeau Da Silva, Joram M. Mwacharo, Menghua Li, Abulgasim Ahbara, Farai Catherine Muchadeyi, Edgar Farai Dzomba, Johannes A. Lenstra, Anne Da Silva","doi":"10.1038/s41437-023-00658-x","DOIUrl":"10.1038/s41437-023-00658-x","url":null,"abstract":"In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed’s level of admixture from: (i) the proportion of the genome shared by breed’s members (i.e. “genetic integrity level” assessed from ADMIXTURE software analyses), and (ii) the “AV index” (calculated from Reynolds’ genetic distances), used as a proxy for the “genetic distinctiveness”. In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-023-00658-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71423231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1038/s41437-023-00657-y
Elahe Parvizi, Amy L. Vaughan, Manpreet K. Dhami, Angela McGaughran
Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.
{"title":"Genomic signals of local adaptation across climatically heterogenous habitats in an invasive tropical fruit fly (Bactrocera tryoni)","authors":"Elahe Parvizi, Amy L. Vaughan, Manpreet K. Dhami, Angela McGaughran","doi":"10.1038/s41437-023-00657-y","DOIUrl":"10.1038/s41437-023-00657-y","url":null,"abstract":"Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-023-00657-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71412016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1038/s41437-023-00654-1
Gonzalo Nieto Feliner, David Criado Ruiz, Inés Álvarez, Irene Villa-Machío
An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed over the period 1970–2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure, lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over time, botanists’ perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.
{"title":"The puzzle of plant hybridisation: a high propensity to hybridise but few hybrid zones reported","authors":"Gonzalo Nieto Feliner, David Criado Ruiz, Inés Álvarez, Irene Villa-Machío","doi":"10.1038/s41437-023-00654-1","DOIUrl":"10.1038/s41437-023-00654-1","url":null,"abstract":"An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed over the period 1970–2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure, lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over time, botanists’ perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54228909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}