{"title":"Refining Research on Systemic Lupus Erythematosus with Key Considerations.","authors":"Qing Zhou","doi":"10.1002/art.42981","DOIUrl":"https://doi.org/10.1002/art.42981","url":null,"abstract":"","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clinical Images: A large disfiguring nasal mass and progressive dyspnea.","authors":"Renato Ferrandiz-Espadin, Sonal Choudhary, Didem Saygin","doi":"10.1002/art.42977","DOIUrl":"10.1002/art.42977","url":null,"abstract":"","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relapse Prediction in Antineutrophil Cytoplasmic Antibody–Associated Vasculitis","authors":"Eithne Nic an Ríogh, Mark A. Little","doi":"10.1002/art.42976","DOIUrl":"10.1002/art.42976","url":null,"abstract":"","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":"76 10","pages":"1473-1474"},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Bergmann, Sara Chenguiti Fakhouri, Thuong Trinh-Minh, Tim Filla, Aleix Rius Rigau, Arif B Ekici, Benita Merlevede, Ludwig Hallenberger, Honglin Zhu, Clara Dees, Alexandru-Emil Matei, Janina Auth, Andrea-Hermina Györfi, Xiang Zhou, Simon Rauber, Aline Bozec, Nicholas Dickel, Chunguang Liang, Meik Kunz, Georg Schett, Jörg H W Distler
Objective: Deregulation of the cJUN/AP-1 and hedgehog/GLI2 signaling pathways has been implicated in fibroblast activation in systemic sclerosis (SSc). However, the consequences of their concomitant up-regulation are unknown. Here, we tested the hypothesis that mutual amplification of both pathways might drive persistent fibroblast activation.
Methods: Cultured fibroblasts and skin sections of patients with diffuse SSc and healthy volunteers were analyzed. cJUN/AP-1 signaling and hedgehog/GLI2 signaling were inhibited using knockdown and pharmacologic approaches. Hedgehog signaling was activated in mice by fibroblast-specific overexpression of constitutively active Smoothened.
Results: cJUN and GLI2 are concomitantly up-regulated and colocalize in fibroblasts of patients with SSc compared to healthy controls. Activation of hedgehog/GLI2 signaling induces the expression of cJUN in vitro and in vivo, whereas inactivation of GLI2 inhibits cJUN expression. Likewise, inactivation of cJUN impairs the expression of GLI2. This mutual regulation occurs at the level of transcription with binding of cJUN and GLI2 to specific binding motifs. Interference with this mutual amplification of cJUN signaling and GLI2 signaling inhibits fibroblast activation and collagen release: Inhibition of cJUN/AP-1 signaling ameliorates hedgehog-induced fibroblast activation and skin fibrosis in SmoACT mice with a reduction of skin thickness of 103% (P = 0.0043) in the treatment group compared to the fibrotic control group. Moreover, combined pharmacologic inhibition of cJUN/AP-1 and hedgehog/GLI2 exerts additive antifibrotic effects in a model of TGFβ-driven experimental fibrosis (TBRACT mice).
Conclusion: The transcription factors cJUN and GLI2 reinforce each other's activity to promote fibroblast activation in SSc. Interruption of this crosstalk by combined inhibition of both pathways exerts additive antifibrotic effects at well-tolerated doses.
{"title":"Mutual Amplification of GLI2/Hedgehog and Transcription Factor JUN/AP-1 Signaling in Fibroblasts in Systemic Sclerosis: Potential Implications for Combined Therapies.","authors":"Christina Bergmann, Sara Chenguiti Fakhouri, Thuong Trinh-Minh, Tim Filla, Aleix Rius Rigau, Arif B Ekici, Benita Merlevede, Ludwig Hallenberger, Honglin Zhu, Clara Dees, Alexandru-Emil Matei, Janina Auth, Andrea-Hermina Györfi, Xiang Zhou, Simon Rauber, Aline Bozec, Nicholas Dickel, Chunguang Liang, Meik Kunz, Georg Schett, Jörg H W Distler","doi":"10.1002/art.42979","DOIUrl":"10.1002/art.42979","url":null,"abstract":"<p><strong>Objective: </strong>Deregulation of the cJUN/AP-1 and hedgehog/GLI2 signaling pathways has been implicated in fibroblast activation in systemic sclerosis (SSc). However, the consequences of their concomitant up-regulation are unknown. Here, we tested the hypothesis that mutual amplification of both pathways might drive persistent fibroblast activation.</p><p><strong>Methods: </strong>Cultured fibroblasts and skin sections of patients with diffuse SSc and healthy volunteers were analyzed. cJUN/AP-1 signaling and hedgehog/GLI2 signaling were inhibited using knockdown and pharmacologic approaches. Hedgehog signaling was activated in mice by fibroblast-specific overexpression of constitutively active Smoothened.</p><p><strong>Results: </strong>cJUN and GLI2 are concomitantly up-regulated and colocalize in fibroblasts of patients with SSc compared to healthy controls. Activation of hedgehog/GLI2 signaling induces the expression of cJUN in vitro and in vivo, whereas inactivation of GLI2 inhibits cJUN expression. Likewise, inactivation of cJUN impairs the expression of GLI2. This mutual regulation occurs at the level of transcription with binding of cJUN and GLI2 to specific binding motifs. Interference with this mutual amplification of cJUN signaling and GLI2 signaling inhibits fibroblast activation and collagen release: Inhibition of cJUN/AP-1 signaling ameliorates hedgehog-induced fibroblast activation and skin fibrosis in Smo<sup>ACT</sup> mice with a reduction of skin thickness of 103% (P = 0.0043) in the treatment group compared to the fibrotic control group. Moreover, combined pharmacologic inhibition of cJUN/AP-1 and hedgehog/GLI2 exerts additive antifibrotic effects in a model of TGFβ-driven experimental fibrosis (TBR<sup>ACT</sup> mice).</p><p><strong>Conclusion: </strong>The transcription factors cJUN and GLI2 reinforce each other's activity to promote fibroblast activation in SSc. Interruption of this crosstalk by combined inhibition of both pathways exerts additive antifibrotic effects at well-tolerated doses.</p>","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sei Muraoka, William D Brodie, Megan N Mattichak, Mikel Gurrea-Rubio, Yuzo Ikari, Caroline Foster, M Asif Amin, Neha Khanna, Hafsa Amin, Phillip L Campbell, Sirapa Vichaikul, Ellen N Model, Morgan M Omara, Steven Petrovski, Karly Kozicki, Camilia Amarista, Anna Webber, Mustafa Ali, Pamela J Palisoc, Jonatan Hervoso, Jeffrey H Ruth, Lam C Tsoi, John Varga, Johann E Gudjonsson, Dinesh Khanna, David A Fox, Pei-Suen Tsou
Objective: Systemic sclerosis (SSc) is an autoimmune multisystem disease with poorly understood pathogenesis and ineffective treatment options. Soluble CD13 (sCD13), generated by cleavage of cell surface CD13 via matrix metalloproteinase 14 (MMP14), signals through the bradykinin receptor B1 (B1R) to elicit pro-inflammatory, pro-arthritic, and pro-angiogenic responses. In this study we explored the anti-fibrotic potential of targeting the sCD13-B1R axis in SSc.
Methods: The expression of CD13, B1R and MMP14 was examined in SSc skin and explanted dermal fibroblasts. The efficacy of B1R antagonists in the inhibition on fibrosis was determined in vitro and in vivo.
Results: Expression of the genes for CD13, B1R and MMP14 was elevated in skin biopsies from patients with diffuse cutaneous (dc)SSc. Notably, single cell analysis of SSc skin biopsies revealed the highest BDKRB1 expression in COL8A1-positive myofibroblasts, a population exclusively seen in SSc. TGF-β induced the expression of BDKRB1 and production of sCD13 by dcSSc skin fibroblasts. Treatment of dcSSc fibroblasts with sCD13 promoted fibrotic gene expression, signaling, cell proliferation, migration, and gel contraction. The profibrotic sCD13 or TGFβ responses were prevented by a B1R antagonist. Mice lacking Cd13 or Bdkrb1 were resistant to bleomycin-induced skin fibrosis and inflammation. Pharmacological B1R inhibition had a comparable antifibrotic effect.
Conclusion: These results are the first to demonstrate a key role for sCD13 in SSc skin fibrosis, and suggest that targeting the sCD13-B1R signaling axis is a promising novel therapeutic approach for SSc.
{"title":"Targeting CD13/aminopeptidase N as a novel therapeutic approach for scleroderma fibrosis.","authors":"Sei Muraoka, William D Brodie, Megan N Mattichak, Mikel Gurrea-Rubio, Yuzo Ikari, Caroline Foster, M Asif Amin, Neha Khanna, Hafsa Amin, Phillip L Campbell, Sirapa Vichaikul, Ellen N Model, Morgan M Omara, Steven Petrovski, Karly Kozicki, Camilia Amarista, Anna Webber, Mustafa Ali, Pamela J Palisoc, Jonatan Hervoso, Jeffrey H Ruth, Lam C Tsoi, John Varga, Johann E Gudjonsson, Dinesh Khanna, David A Fox, Pei-Suen Tsou","doi":"10.1002/art.42973","DOIUrl":"https://doi.org/10.1002/art.42973","url":null,"abstract":"<p><strong>Objective: </strong>Systemic sclerosis (SSc) is an autoimmune multisystem disease with poorly understood pathogenesis and ineffective treatment options. Soluble CD13 (sCD13), generated by cleavage of cell surface CD13 via matrix metalloproteinase 14 (MMP14), signals through the bradykinin receptor B1 (B1R) to elicit pro-inflammatory, pro-arthritic, and pro-angiogenic responses. In this study we explored the anti-fibrotic potential of targeting the sCD13-B1R axis in SSc.</p><p><strong>Methods: </strong>The expression of CD13, B1R and MMP14 was examined in SSc skin and explanted dermal fibroblasts. The efficacy of B1R antagonists in the inhibition on fibrosis was determined in vitro and in vivo.</p><p><strong>Results: </strong>Expression of the genes for CD13, B1R and MMP14 was elevated in skin biopsies from patients with diffuse cutaneous (dc)SSc. Notably, single cell analysis of SSc skin biopsies revealed the highest BDKRB1 expression in COL8A1-positive myofibroblasts, a population exclusively seen in SSc. TGF-β induced the expression of BDKRB1 and production of sCD13 by dcSSc skin fibroblasts. Treatment of dcSSc fibroblasts with sCD13 promoted fibrotic gene expression, signaling, cell proliferation, migration, and gel contraction. The profibrotic sCD13 or TGFβ responses were prevented by a B1R antagonist. Mice lacking Cd13 or Bdkrb1 were resistant to bleomycin-induced skin fibrosis and inflammation. Pharmacological B1R inhibition had a comparable antifibrotic effect.</p><p><strong>Conclusion: </strong>These results are the first to demonstrate a key role for sCD13 in SSc skin fibrosis, and suggest that targeting the sCD13-B1R signaling axis is a promising novel therapeutic approach for SSc.</p>","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}