Pub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1089/hum.2024.63331.oab
{"title":"ESGCT 31st Annual Congress In collaboration with SITGEC Rome, Italy October 22-25, 2024 Online Only.","authors":"","doi":"10.1089/hum.2024.63331.oab","DOIUrl":"https://doi.org/10.1089/hum.2024.63331.oab","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 3-4","pages":"e129-e557"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143407304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1089/hum.2024.160
Zhe Deng, Yan-Ling Lv, Xin-Tao Wang, Long-Hui Yuan, Kai Zhao, Zeng-Min Du, Xiao Xiao
Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield. In this study, we optimized the cell culture process with high cell density up to 2 × 107 cells/mL by employing a perfusion culture system with centrifugation and medium exchange in shake flasks and perfusion device in bioreactor. Furthermore, we utilized a design of experiments strategy to systematically modulate a series of transfection-related variables including the quantity of plasmid DNA, the DNA-to-polyethylenimine ratio, incubation duration, and the impact of post-transfection feeding strategies on the yield of recombinant AAV (rAAV). Our comprehensive analysis and subsequent optimizations actualized a remarkable unit yield reaching nearly 2 × 1012 vector genomes (vg)/mL. Importantly, the resulting single-cell yield and biological activity were found to be comparable with those obtained from fed-batch cultures, underscoring the efficacy of our approach. Based on these findings, we investigated rAAV yield via high-density suspend culture in bioreactor, particularly focusing on cell aggregation and the use of perfusion technology. Intriguingly, we attempted to elevate the yield of an oversized recombinant coagulation factor VIII AAV843 vector by 3.5-fold, reaching a yield of 1 × 1012 vg/mL. Concurrently, the medium usage rate was only double that of batch feeding, thereby significantly shrinking the upstream cost of rAAV manufacture. In summary, this strategy significantly benefits large-scale AAV production for both commercial and clinical applications.
{"title":"Production of Recombinant Adeno-Associated Virus Through High-Cell-Density Transfection of HEK293 Cells Based on Fed-Perfusion Culture.","authors":"Zhe Deng, Yan-Ling Lv, Xin-Tao Wang, Long-Hui Yuan, Kai Zhao, Zeng-Min Du, Xiao Xiao","doi":"10.1089/hum.2024.160","DOIUrl":"https://doi.org/10.1089/hum.2024.160","url":null,"abstract":"<p><p>Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield. In this study, we optimized the cell culture process with high cell density up to 2 × 10<sup>7</sup> cells/mL by employing a perfusion culture system with centrifugation and medium exchange in shake flasks and perfusion device in bioreactor. Furthermore, we utilized a design of experiments strategy to systematically modulate a series of transfection-related variables including the quantity of plasmid DNA, the DNA-to-polyethylenimine ratio, incubation duration, and the impact of post-transfection feeding strategies on the yield of recombinant AAV (rAAV). Our comprehensive analysis and subsequent optimizations actualized a remarkable unit yield reaching nearly 2 × 10<sup>12</sup> vector genomes (vg)/mL. Importantly, the resulting single-cell yield and biological activity were found to be comparable with those obtained from fed-batch cultures, underscoring the efficacy of our approach. Based on these findings, we investigated rAAV yield via high-density suspend culture in bioreactor, particularly focusing on cell aggregation and the use of perfusion technology. Intriguingly, we attempted to elevate the yield of an oversized recombinant coagulation factor VIII AAV843 vector by 3.5-fold, reaching a yield of 1 × 10<sup>12</sup> vg/mL. Concurrently, the medium usage rate was only double that of batch feeding, thereby significantly shrinking the upstream cost of rAAV manufacture. In summary, this strategy significantly benefits large-scale AAV production for both commercial and clinical applications.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 3-4","pages":"116-127"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143407309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-23DOI: 10.1089/hum.2024.179
Pasquale Piccolo, Nicola Brunetti-Pierri
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
{"title":"Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy.","authors":"Pasquale Piccolo, Nicola Brunetti-Pierri","doi":"10.1089/hum.2024.179","DOIUrl":"10.1089/hum.2024.179","url":null,"abstract":"<p><p>Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"77-87"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-26DOI: 10.1089/hum.2024.175
Yasemin Özgür Günes, Catherine Le Stunff, Pierre Bougnères
Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 (ABCD1) mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG-hABCD1 vector injected intravenously in the neonatal period prevented the disease in 2-year-old Abcd1-/- mice, the AMN mouse model. In the current study, the same vector was injected intracisternally at 18 months of age, when about half of Abcd1-/- mice start losing balance and motricity. As soon as 1-3 months after vector injection, motor tests have evolved differently in treated and untreated (UT) mice. Six months after vector, treated mice (n = 24) had near-normal motor performances, whereas neurological state had deteriorated in UT mice (n = 34). In five white matter regions of the cervical spinal cord, hABCD1 expression at 24 months of age was present in 22% (18-27) of oligodendrocytes (OLs) and 22% (17-26) of astrocytes and not detected in neurons or microglia. Abundant hABCD1 expression was also observed in OLs and astrocytes in the cerebellum and brainstem and, to a lesser level, in the lower spinal cord, not in the dorsal root ganglia or brain cortex. In conclusion, the effect of the AAV9-MAG-hABCD1 vector at an early symptomatic stage of the Abcd1-/- mouse model paves a new oligotropic way for the gene therapy of AMN.
{"title":"Intracisternal AAV9-MAG-<i>hABCD1</i> Vector Reverses Motor Deficits in Adult Adrenomyeloneuropathy Mice.","authors":"Yasemin Özgür Günes, Catherine Le Stunff, Pierre Bougnères","doi":"10.1089/hum.2024.175","DOIUrl":"10.1089/hum.2024.175","url":null,"abstract":"<p><p>Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 (<i>ABCD1</i>) mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG-<i>hABCD1</i> vector injected intravenously in the neonatal period prevented the disease in 2-year-old <i>Abcd1-/-</i> mice, the AMN mouse model. In the current study, the same vector was injected intracisternally at 18 months of age, when about half of <i>Abcd1-/-</i> mice start losing balance and motricity. As soon as 1-3 months after vector injection, motor tests have evolved differently in treated and untreated (UT) mice. Six months after vector, treated mice (<i>n</i> = 24) had near-normal motor performances, whereas neurological state had deteriorated in UT mice (<i>n</i> = 34). In five white matter regions of the cervical spinal cord, <i>hABCD1</i> expression at 24 months of age was present in 22% (18-27) of oligodendrocytes (OLs) and 22% (17-26) of astrocytes and not detected in neurons or microglia. Abundant <i>hABCD1</i> expression was also observed in OLs and astrocytes in the cerebellum and brainstem and, to a lesser level, in the lower spinal cord, not in the dorsal root ganglia or brain cortex. In conclusion, the effect of the AAV9-MAG-<i>hABCD1</i> vector at an early symptomatic stage of the <i>Abcd1-/-</i> mouse model paves a new oligotropic way for the gene therapy of AMN.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"88-100"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Yuan, Xingshen Sun, Soo Yeun Park, Yinghua Tang, Zehua Feng, Mehrnoosh Ebadi, Yaling Yi, Adriane E Thompson, Joseph D Karippaparambil, John F Engelhardt, Ziying Yan
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of CFTR expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration. To address this, we developed a new transgenic ferret line, CFTRint1-eGFP(lsl), in which a Cre-recombinase (Cre)-excisable enhanced fluorescent protein (eGFP) reporter cassette is knocked in (KI) to intron 1 of the CFTR locus. Breeding this reporter line with CFTRG551D CF ferret resulted in a novel CF model, CFTRint1-eGFP(lsl)/G551D, with disease onset manageable via the administration of CFTR modulator VX770. In this study, we confirmed two key properties of the CFTRint1-eGFP(lsl)/G551D CF ferrets: (1) cell-type-specific expression of the CFTR(N-24)-eGFP fusion protein, driven by the intrinsic CFTR promoter, in polarized epithelial cultures and selected tissues, and (2) functional reversion of the KI allele via Cre-mediated excision of the reporter cassette. This model provides a valuable tool for studying the effects of targeted CFTR reactivation in a cell-type-specific manner, which is crucial for enhancing our understanding of CFTR's roles in modulating airway clearance and innate immunity, and for identifying relevant cellular targets for CF gene therapy.
{"title":"Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.","authors":"Feng Yuan, Xingshen Sun, Soo Yeun Park, Yinghua Tang, Zehua Feng, Mehrnoosh Ebadi, Yaling Yi, Adriane E Thompson, Joseph D Karippaparambil, John F Engelhardt, Ziying Yan","doi":"10.1089/hum.2024.215","DOIUrl":"10.1089/hum.2024.215","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is caused by mutations in the <i>cystic fibrosis transmembrane conductance regulator</i> (<i>CFTR</i>). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of <i>CFTR</i> expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration. To address this, we developed a new transgenic ferret line, <i>CFTR</i><sup>int1-eGFP(lsl)</sup>, in which a Cre-recombinase (Cre)-excisable enhanced fluorescent protein (eGFP) reporter cassette is knocked in (KI) to intron 1 of the <i>CFTR</i> locus. Breeding this reporter line with <i>CFTR</i><sup>G551D</sup> CF ferret resulted in a novel CF model, <i>CFTR</i><sup>int1-eGFP(lsl)/G551D</sup>, with disease onset manageable via the administration of CFTR modulator VX770. In this study, we confirmed two key properties of the <i>CFTR</i><sup>int1-eGFP(lsl)/G551D</sup> CF ferrets: (1) cell-type-specific expression of the CFTR(N-24)-eGFP fusion protein, driven by the intrinsic <i>CFTR</i> promoter, in polarized epithelial cultures and selected tissues, and (2) functional reversion of the KI allele via Cre-mediated excision of the reporter cassette. This model provides a valuable tool for studying the effects of targeted CFTR reactivation in a cell-type-specific manner, which is crucial for enhancing our understanding of CFTR's roles in modulating airway clearance and innate immunity, and for identifying relevant cellular targets for CF gene therapy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Mueller, Guangping Gao, Terence R Flotte
{"title":"The 2024 Nobel Prize: Impact of the Discovery of miRNA on the Field of Gene Therapy.","authors":"Christian Mueller, Guangping Gao, Terence R Flotte","doi":"10.1089/hum.2024.98457","DOIUrl":"https://doi.org/10.1089/hum.2024.98457","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-25DOI: 10.1089/hum.2024.096
Angélica María Herreño-Pachón, Kazuki Sawamoto, Molly Stapleton, Shaukat Khan, Matthew Piechnik, Jose Victor Álvarez, Shunji Tomatsu
Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials. This promising approach was further validated in our current study, where we delivered AAV8 vectors expressing hGALNS, under the control of a liver-specific or ubiquitous promoter, into MPS IVA murine disease models. The results were highly encouraging, with both AAV8 vectors leading to supraphysiological enzymatic activity in plasma and improved cytoplasmic vacuolization of chondrocytes in bone lesions of MPS IVA mice. Notably, the ubiquitous promoter constructs, a potential game-changer, resulted in significantly greater enzyme activity levels in bone and improved pathological findings of cartilage lesions in these mice than in a liver-specific one during the 12-week monitoring period, reinforcing the positive outcomes of our research in MPS IVA treatment.
{"title":"Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice.","authors":"Angélica María Herreño-Pachón, Kazuki Sawamoto, Molly Stapleton, Shaukat Khan, Matthew Piechnik, Jose Victor Álvarez, Shunji Tomatsu","doi":"10.1089/hum.2024.096","DOIUrl":"10.1089/hum.2024.096","url":null,"abstract":"<p><p>Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the <i>N</i>-acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials. This promising approach was further validated in our current study, where we delivered AAV8 vectors expressing hGALNS, under the control of a liver-specific or ubiquitous promoter, into MPS IVA murine disease models. The results were highly encouraging, with both AAV8 vectors leading to supraphysiological enzymatic activity in plasma and improved cytoplasmic vacuolization of chondrocytes in bone lesions of MPS IVA mice. Notably, the ubiquitous promoter constructs, a potential game-changer, resulted in significantly greater enzyme activity levels in bone and improved pathological findings of cartilage lesions in these mice than in a liver-specific one during the 12-week monitoring period, reinforcing the positive outcomes of our research in MPS IVA treatment.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"955-968"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-25DOI: 10.1089/hum.2024.108
Alessandro Zappala, Heng Li, Ken Inoue
Systemic delivery of adeno-associated virus (AAV) vectors targeting the central nervous system has the potential to solve many neurodevelopmental disorders, yet it is made difficult by the filtering effect of the blood-brain barrier and systemic complications. To overcome this limitation, we attempted to inject a Venus-expressing, oligodendrocyte-selective AAV9 viral vector in the ventricles together with lipid microbubbles and subjected them to focused ultrasound (FUS); the resulting mechanical stimulation on the brain ventricles is able to open small, temporary gaps from which vector particles can leak and spread. Our findings indicate that FUS can increase viral vector diffusion across both the anteroposterior and left-right axes without influencing cell tropism; significant effects were found with 60 and 90 s exposure time, but no effects were observed with longer intervals. Taken together, these results highlight a new strategy for the safe and effective delivery of viral vectors and offer new perspectives for the development and application of gene therapies for central nervous system diseases.
{"title":"Focused Ultrasounds as an Adeno-Associated Virus Gene Therapy-Empowering Tool in Juvenile Mice via Intracerebroventricular Administration.","authors":"Alessandro Zappala, Heng Li, Ken Inoue","doi":"10.1089/hum.2024.108","DOIUrl":"10.1089/hum.2024.108","url":null,"abstract":"<p><p>Systemic delivery of adeno-associated virus (AAV) vectors targeting the central nervous system has the potential to solve many neurodevelopmental disorders, yet it is made difficult by the filtering effect of the blood-brain barrier and systemic complications. To overcome this limitation, we attempted to inject a Venus-expressing, oligodendrocyte-selective AAV9 viral vector in the ventricles together with lipid microbubbles and subjected them to focused ultrasound (FUS); the resulting mechanical stimulation on the brain ventricles is able to open small, temporary gaps from which vector particles can leak and spread. Our findings indicate that FUS can increase viral vector diffusion across both the anteroposterior and left-right axes without influencing cell tropism; significant effects were found with 60 and 90 s exposure time, but no effects were observed with longer intervals. Taken together, these results highlight a new strategy for the safe and effective delivery of viral vectors and offer new perspectives for the development and application of gene therapies for central nervous system diseases.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"989-999"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-28DOI: 10.1089/hum.2024.013
Stephen Baine, Chris Wier, Luke Lemmerman, Grace Cooper-Olson, Amber Kempton, Alex Haile, Julian Endres, Alessandra Fedoce, Ellyn Nesbit, Louise R Rodino-Klapac, Rachael A Potter
Delandistrogene moxeparvovec is a gene transfer therapy for Duchenne muscular dystrophy (DMD) that uses an adeno-associated viral vector to deliver a micro-dystrophin transgene to skeletal and cardiac muscle. This study evaluated the long-term survival and cardiac efficacy of delandistrogene moxeparvovec in a DMD-mutated (DMDMDX) rat model of DMD-related cardiomyopathy. DMDMDX male rats, aged 21-42 days, were injected with 1.33 × 1014 viral genomes/kilogram (vg/kg) delandistrogene moxeparvovec and followed for 12, 24, and 52 weeks. Ambulation was recorded via the Photobeam Activity System, whereas echocardiograms, cardiomyocyte contractility, calcium handling, and histological analysis of fibrosis were used to evaluate cardiac disease at 12-, 24-, and 52-weeks post-treatment. A separate cohort of rats was used to assess the impact of delandistrogene moxeparvovec on survival. Treatment with delandistrogene moxeparvovec extended median survival in DMDMDX rats to >25 months versus the 13-month median survival in saline-control-treated DMDMDX rats. Compared with saline control, delandistrogene moxeparvovec therapy elicited statistically significant improvements across cardiac parameters approaching wild-type values with additional benefits in mobility, histopathology, and fibrosis observed. Transgene expression was maintained up to >25 months and micro-dystrophin expression was broadly distributed across skeletal and cardiac muscle. Taken together, these findings demonstrate long-term cardiac efficacy and improved survival following delandistrogene moxeparvovec treatment in DMDMDX rats.
{"title":"Long-Term Survival and Myocardial Function Following Systemic Delivery of Delandistrogene Moxeparvovec in DMD<sup>MDX</sup> Rats.","authors":"Stephen Baine, Chris Wier, Luke Lemmerman, Grace Cooper-Olson, Amber Kempton, Alex Haile, Julian Endres, Alessandra Fedoce, Ellyn Nesbit, Louise R Rodino-Klapac, Rachael A Potter","doi":"10.1089/hum.2024.013","DOIUrl":"10.1089/hum.2024.013","url":null,"abstract":"<p><p>Delandistrogene moxeparvovec is a gene transfer therapy for Duchenne muscular dystrophy (DMD) that uses an adeno-associated viral vector to deliver a micro-dystrophin transgene to skeletal and cardiac muscle. This study evaluated the long-term survival and cardiac efficacy of delandistrogene moxeparvovec in a DMD-mutated (DMD<sup>MDX</sup>) rat model of DMD-related cardiomyopathy. DMD<sup>MDX</sup> male rats, aged 21-42 days, were injected with 1.33 × 10<sup>14</sup> viral genomes/kilogram (vg/kg) delandistrogene moxeparvovec and followed for 12, 24, and 52 weeks. Ambulation was recorded <i>via</i> the Photobeam Activity System, whereas echocardiograms, cardiomyocyte contractility, calcium handling, and histological analysis of fibrosis were used to evaluate cardiac disease at 12-, 24-, and 52-weeks post-treatment. A separate cohort of rats was used to assess the impact of delandistrogene moxeparvovec on survival. Treatment with delandistrogene moxeparvovec extended median survival in DMD<sup>MDX</sup> rats to >25 months versus the 13-month median survival in saline-control-treated DMD<sup>MDX</sup> rats. Compared with saline control, delandistrogene moxeparvovec therapy elicited statistically significant improvements across cardiac parameters approaching wild-type values with additional benefits in mobility, histopathology, and fibrosis observed. Transgene expression was maintained up to >25 months and micro-dystrophin expression was broadly distributed across skeletal and cardiac muscle. Taken together, these findings demonstrate long-term cardiac efficacy and improved survival following delandistrogene moxeparvovec treatment in DMD<sup>MDX</sup> rats.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"978-988"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}