首页 > 最新文献

Hydrology Research最新文献

英文 中文
Unexpected contribution of cloud seeding to NPP increase during drought 干旱期间云层播种对 NPP 增长的意外贡献
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-19 DOI: 10.2166/nh.2023.075
Munseok Lee, Chulsang Yoo, Ki-Ho Chang
Cloud seeding is generally used to secure additional water resources, which is not an easy goal to achieve, as the spatial variability of rainfall is high. Instead, the increased rain may moisten the neighboring forest. This study focuses on this situation and estimates the possible increase in the net primary production (NPP) due to cloud seeding. This study considers the Boryeong Dam basin in Korea as a study area and uses the Carnegie–Ames–Stanford Approach (CASA) model to estimate the NPP at 8-day intervals. As a result, first, the increase of the current 8-day NPP is greater when the rainfall amount during the last 16-day period is 50 mm or more. The mean increase of the 8-day NPP is estimated at about 1.873 g/m2 of carbon. Second, the increase of the NPP with the target 16-day rainfall of 50 mm is estimated at about 3%, which is about 4% with the target 16-day rainfall of 100 mm. Simply extrapolating the derived result to the entire forest in Korea, the increased carbon accumulation can be extended to about 0.6 and 0.8% of the total carbon emission in 2018, respectively. These amounts correspond to about 1.2 and 1.5% of the target amount of carbon reduction by 2030 in Korea.
云层播种一般用于确保额外的水资源,但这一目标并不容易实现,因为降雨量的空间变化很大。相反,增加的雨量可能会湿润邻近的森林。本研究主要针对这种情况,估算云层播种可能导致的净初级生产力(NPP)的增加。本研究以韩国宝岭坝流域为研究区域,采用卡内基-阿姆斯-斯坦福方法(CASA)模型估算每隔 8 天的净初级生产力。结果表明:首先,当过去 16 天的降雨量达到或超过 50 毫米时,当前 8 天的净生产力增幅较大。据估计,8 天的净生产力平均增幅约为 1.873 克/平方米碳。其次,16 天目标降雨量为 50 毫米时,净生产力的增幅估计约为 3%,16 天目标降雨量为 100 毫米时,增幅约为 4%。将得出的结果简单地推断到韩国的整个森林,增加的碳积累可分别扩大到 2018 年碳排放总量的约 0.6%和 0.8%。这相当于韩国 2030 年碳减排目标量的 1.2% 和 1.5%。
{"title":"Unexpected contribution of cloud seeding to NPP increase during drought","authors":"Munseok Lee, Chulsang Yoo, Ki-Ho Chang","doi":"10.2166/nh.2023.075","DOIUrl":"https://doi.org/10.2166/nh.2023.075","url":null,"abstract":"Cloud seeding is generally used to secure additional water resources, which is not an easy goal to achieve, as the spatial variability of rainfall is high. Instead, the increased rain may moisten the neighboring forest. This study focuses on this situation and estimates the possible increase in the net primary production (NPP) due to cloud seeding. This study considers the Boryeong Dam basin in Korea as a study area and uses the Carnegie–Ames–Stanford Approach (CASA) model to estimate the NPP at 8-day intervals. As a result, first, the increase of the current 8-day NPP is greater when the rainfall amount during the last 16-day period is 50 mm or more. The mean increase of the 8-day NPP is estimated at about 1.873 g/m2 of carbon. Second, the increase of the NPP with the target 16-day rainfall of 50 mm is estimated at about 3%, which is about 4% with the target 16-day rainfall of 100 mm. Simply extrapolating the derived result to the entire forest in Korea, the increased carbon accumulation can be extended to about 0.6 and 0.8% of the total carbon emission in 2018, respectively. These amounts correspond to about 1.2 and 1.5% of the target amount of carbon reduction by 2030 in Korea.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"63 ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139172530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Next-Generation Ecosystem Experiment Arctic Rainfall Simulator: a tool to understand the effects of changing rainfall patterns in the Arctic 下一代生态系统实验北极降雨模拟器:了解北极降雨模式变化影响的工具
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-08 DOI: 10.2166/nh.2023.146
Caleb Renner, Nathan Conroy, Evan Thaler, Adam Collins, Lauren Thomas, Shannon Dillard, Joel Rowland, Katrina Bennett
Rainfall frequency and intensity are expected to increase in the Arctic, with potential detrimental impacts on permafrost, leading to enhanced thawing and carbon release to the atmosphere. However, there have been very few studies on the effect of discrete rain events on permafrost in the Arctic and sub-Arctic. Conducting controlled rainfall experiments within permafrost landscapes can provide an improved understanding of the effect of changing intensity, duration, and timing of rain events on permafrost tundra ecosystems. Here, we describe the design and implementation of the Next-Generation Ecosystem Experiment Arctic Rainfall Simulator (NARS), a variable intensity (4–82 mm/h) rainfall simulator that can be used to study the effects of rainfall on permafrost stability. The NARS design includes a 3D-printed 4 cm H-flume and uses an eTape resistivity sensor that was calibrated (R2 = 0.9–0.96) to measure discharge from the system. NARS is designed to be lightweight, simple to construct, and can be easily deployed in remote locations. As a field validation of updated rainfall simulator design and modernized controls, NARS was tested on the Seward Peninsula, AK. Because of its portability, versatility in deployment, dimensions, and rainfall intensity, NARS represents a methodological innovation for researching the impacts of rainfall on permafrost environments.
预计北极地区的降雨频率和强度将增加,对永久冻土可能产生不利影响,导致融化加速,碳释放到大气中。然而,关于离散降雨事件对北极和亚北极永久冻土影响的研究很少。在永久冻土带景观中进行控制降雨实验可以更好地了解降雨事件的强度、持续时间和时间变化对永久冻土带生态系统的影响。在这里,我们描述了下一代生态系统实验北极降雨模拟器(NARS)的设计和实现,这是一个可变强度(4-82 mm/h)的降雨模拟器,可用于研究降雨对永久冻土稳定性的影响。NARS设计包括一个3d打印的4厘米h水槽,并使用经过校准的eTape电阻率传感器(R2 = 0.9-0.96)来测量系统的放电。NARS的设计是轻量级的,构造简单,可以很容易地部署在远程位置。作为更新的降雨模拟器设计和现代化控制的现场验证,NARS在苏厄德半岛进行了测试。由于其便携性、部署、尺寸和降雨强度的通用性,NARS代表了研究降雨对永久冻土环境影响的方法创新。
{"title":"The Next-Generation Ecosystem Experiment Arctic Rainfall Simulator: a tool to understand the effects of changing rainfall patterns in the Arctic","authors":"Caleb Renner, Nathan Conroy, Evan Thaler, Adam Collins, Lauren Thomas, Shannon Dillard, Joel Rowland, Katrina Bennett","doi":"10.2166/nh.2023.146","DOIUrl":"https://doi.org/10.2166/nh.2023.146","url":null,"abstract":"\u0000 \u0000 Rainfall frequency and intensity are expected to increase in the Arctic, with potential detrimental impacts on permafrost, leading to enhanced thawing and carbon release to the atmosphere. However, there have been very few studies on the effect of discrete rain events on permafrost in the Arctic and sub-Arctic. Conducting controlled rainfall experiments within permafrost landscapes can provide an improved understanding of the effect of changing intensity, duration, and timing of rain events on permafrost tundra ecosystems. Here, we describe the design and implementation of the Next-Generation Ecosystem Experiment Arctic Rainfall Simulator (NARS), a variable intensity (4–82 mm/h) rainfall simulator that can be used to study the effects of rainfall on permafrost stability. The NARS design includes a 3D-printed 4 cm H-flume and uses an eTape resistivity sensor that was calibrated (R2 = 0.9–0.96) to measure discharge from the system. NARS is designed to be lightweight, simple to construct, and can be easily deployed in remote locations. As a field validation of updated rainfall simulator design and modernized controls, NARS was tested on the Seward Peninsula, AK. Because of its portability, versatility in deployment, dimensions, and rainfall intensity, NARS represents a methodological innovation for researching the impacts of rainfall on permafrost environments.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"24 25","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter-comparison of global precipitation data products at the river basin scale 流域尺度全球降水数据产品的相互比较
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-07 DOI: 10.2166/nh.2023.062
Xiaolong Hu, Zheng Zhou, Haibin Xiong, Quan Gao, Xiayu Cao, Xuhai Yang
While many studies have compared global precipitation datasets at national, continental, and global scales, few have evaluated these data at the river basin scale. This study explored differences in the precipitation estimates and trends of 12 widely applied precipitation datasets, including gauge-, satellite-, and reanalysis-based products, for the world's 6,292 river basins. Results showed that disparities between the 12 precipitation datasets were considerable. A total of 3,125 river basins, with a land area of 5,989.1 × 104 km2, had differences in estimated annual average precipitation exceeding 500 mm year–1, and these basins were mainly distributed in Greenland, Africa, Oceania, and West Asia. Disparities between the precipitation datasets were particularly large during the dry season when the percentage difference between the highest and lowest precipitation estimates exceeded 500% in 1,390 river basins (4839.7 × 104 km2). Differences in rainfall trends also varied markedly between data sources. The data products do not agree on precipitation trends for all the river basins. These findings illustrate the importance of accurate precipitation data to ensure effective policy and planning in terms of hydropower generation, domestic water supply, flood protection, and drought relief at the river basin scale and highlight the uncertainty that exists in current global precipitation data.
虽然许多研究在国家、大陆和全球尺度上比较了全球降水数据集,但很少有研究在流域尺度上评估这些数据。本研究探讨了12个广泛应用的降水数据集(包括基于测量、卫星和再分析的产品)在全球6292个流域的降水估算和趋势之间的差异。结果表明,12个降水数据集之间存在较大差异。陆地面积为5,989.1 × 104 km2的3125个流域的年平均降水量存在差异,这些流域主要分布在格陵兰岛、非洲、大洋洲和西亚。在旱季,1390个流域(4839.7 × 104 km2)的最高和最低降水估算值的百分比差异超过500%,降水数据集之间的差异尤其大。不同数据来源之间的降雨趋势差异也显著不同。数据产品对所有流域的降水趋势并不一致。这些发现说明了准确的降水数据对于确保在流域尺度上水电、生活供水、防洪和抗旱等方面的有效政策和规划的重要性,并突出了当前全球降水数据中存在的不确定性。
{"title":"Inter-comparison of global precipitation data products at the river basin scale","authors":"Xiaolong Hu, Zheng Zhou, Haibin Xiong, Quan Gao, Xiayu Cao, Xuhai Yang","doi":"10.2166/nh.2023.062","DOIUrl":"https://doi.org/10.2166/nh.2023.062","url":null,"abstract":"\u0000 \u0000 While many studies have compared global precipitation datasets at national, continental, and global scales, few have evaluated these data at the river basin scale. This study explored differences in the precipitation estimates and trends of 12 widely applied precipitation datasets, including gauge-, satellite-, and reanalysis-based products, for the world's 6,292 river basins. Results showed that disparities between the 12 precipitation datasets were considerable. A total of 3,125 river basins, with a land area of 5,989.1 × 104 km2, had differences in estimated annual average precipitation exceeding 500 mm year–1, and these basins were mainly distributed in Greenland, Africa, Oceania, and West Asia. Disparities between the precipitation datasets were particularly large during the dry season when the percentage difference between the highest and lowest precipitation estimates exceeded 500% in 1,390 river basins (4839.7 × 104 km2). Differences in rainfall trends also varied markedly between data sources. The data products do not agree on precipitation trends for all the river basins. These findings illustrate the importance of accurate precipitation data to ensure effective policy and planning in terms of hydropower generation, domestic water supply, flood protection, and drought relief at the river basin scale and highlight the uncertainty that exists in current global precipitation data.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"48 19","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selecting criteria for urban basin delineation based on UAV photogrammetry: a case study in Culiacan, Mexico 选择基于无人机摄影测量的城市盆地划分标准:墨西哥库利亚坎案例研究
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-01 DOI: 10.2166/nh.2023.206
Sergio Arturo Renteria-Guevara, Jesus Gabriel Rangel Peraza, Abel Rivera-Buelna, Sergio Alberto Monjardin-Armenta, Antonio Jesus Sanhouse-Garcia, Fernando Garcia-Paez
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00106gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00106gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Urban storm drainage is essential for the large part of the population living in cities with torrential rains to protect public urban infrastructure, private property, and human lives from flooding. The most important design parameter for urban storm drainage is the flow discharge, which is normally calculated with the area, runoff coefficient, and rainfall intensity depending on basin delineation. This requires highly accurate topographic information on the urbanized terr
View largeDownload slideView largeDownload slide Close modal城市暴雨排水对于生活在暴雨城市中的大部分人来说至关重要,它可以保护城市公共基础设施、私人财产和人类生命免受洪水侵袭。城市暴雨排水系统最重要的设计参数是流量,通常根据流域的划分,用面积、径流系数和降雨强度来计算流量。这需要城市化地形的高精度地形信息,而数字高程模型由于分辨率不足,有时无法满足这一要求。本研究提出了考虑城市化的城市流域划分标准,而不需要通常的地形测量。拟议的流域划分是基于无人机(UAV)获得的高分辨率数字高程模型和对水流方向的实地验证。结果,获得了两个城市盆地的划分:一个是一个区域内的城市盆地,其排水完全流向一个天坑;另一个盆地则另外通过分水岭的其他点排出。后一个盆地不符合传统的水文盆地概念,因为它有不止一个出口。此外,该流域的面积占排入天坑的总面积的 38%。
{"title":"Selecting criteria for urban basin delineation based on UAV photogrammetry: a case study in Culiacan, Mexico","authors":"Sergio Arturo Renteria-Guevara, Jesus Gabriel Rangel Peraza, Abel Rivera-Buelna, Sergio Alberto Monjardin-Armenta, Antonio Jesus Sanhouse-Garcia, Fernando Garcia-Paez","doi":"10.2166/nh.2023.206","DOIUrl":"https://doi.org/10.2166/nh.2023.206","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&amp;Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00106gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&amp;Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&amp;Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00106gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.206/1/m_hydrology-d-23-00106gf01.png?Expires=1706783115&amp;Signature=vA3BhYuYQzXH1ensmHqd5k4RsANlQIkolard92ZDBDK0md6q0973mnoUyoOIKGZH2GkeK8tG0mv7nJUBxmy1YLERIjDE6j3OHM0kTYtHI0zTbt5vjCJgjwiZU1Lv5s-anTxFhFCgKejAUkbYV3-fKq4xv9r33xMB-fV~pxTnZovJztAoDulVAeh-gPrz0Wh4HmyJOKMgwVSpaBSU6P1uAa2nfOr85oR4NdUe7HvfDmPzvmlrkxVeRb2gxIfMlN3CB-m5uI6rK281R6Ud2LZ~LqRyJfaE55JmvRCWUlF0XMowWmbACOzVh0g0p-bfmY3bhPcOwTMFkOT~FxSCrXe~vQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;Urban storm drainage is essential for the large part of the population living in cities with torrential rains to protect public urban infrastructure, private property, and human lives from flooding. The most important design parameter for urban storm drainage is the flow discharge, which is normally calculated with the area, runoff coefficient, and rainfall intensity depending on basin delineation. This requires highly accurate topographic information on the urbanized terr","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of surrogate models for simulating multiphase NAPL transport in heterogeneous aquifers 模拟异质含水层中多相非石油溶剂迁移的代用模型的性能评估
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-01 DOI: 10.2166/nh.2023.209
Litang Hu, Menglin Zhang, Lei Tian, Shiqi Huang
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00109gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00109gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>A better understanding of the distribution of nonaqueous phase liquid (NAPL) plumes is of great importance to groundwater pollution remediation and control. However, the efficiency of surrogate models in simulating the transport is still not well addressed. Selecting a leakage problem as an example, 50 sets of random permeability distributions are generated using the Monte Carlo method, and a numerical model is used to obtain benchmark data of NAPL transport. Four machine
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态更好地了解非水相液体(NAPL)羽流的分布对地下水污染修复和控制具有重要意义。然而,代用模型模拟迁移的效率问题仍未得到很好的解决。本研究以渗漏问题为例,采用蒙特卡罗方法生成了 50 组随机渗透率分布,并利用数值模型获得了 NAPL 输运的基准数据。采用四种机器学习方法来模拟点泄漏源下高密度 NAPL 的跨时空尺度迁移。模型验证表明,随机森林模型也能有效捕捉异质含水层中羽流的时空分布,最大均值绝对误差和均方根误差分别小于 5.55 × 10-4 和 5.88 × 10-5。同时,随机森林模型得出的多相结果与线性泄漏源和轻度 NAPL 输运情况下的数值结果吻合良好。使用代用模型后,计算总耗时减少了 150 多倍。结果表明,代用模型为了解异质含水层中 NAPL 的迁移提供了一种可行的方法。
{"title":"Performance evaluation of surrogate models for simulating multiphase NAPL transport in heterogeneous aquifers","authors":"Litang Hu, Menglin Zhang, Lei Tian, Shiqi Huang","doi":"10.2166/nh.2023.209","DOIUrl":"https://doi.org/10.2166/nh.2023.209","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00109gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00109gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;A better understanding of the distribution of nonaqueous phase liquid (NAPL) plumes is of great importance to groundwater pollution remediation and control. However, the efficiency of surrogate models in simulating the transport is still not well addressed. Selecting a leakage problem as an example, 50 sets of random permeability distributions are generated using the Monte Carlo method, and a numerical model is used to obtain benchmark data of NAPL transport. Four machine ","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"3 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China 基于两阶段信号分解法和 LSTM 混合模型的中国珠江径流时间序列预测
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-01 DOI: 10.2166/nh.2023.069
Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00069gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00069gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empiric
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态水文径流预测对水资源管理至关重要。非线性和非稳态径流序列以及大尺度流域的复杂水文特征使其难以预测。长短期记忆(LSTM)对径流预测有效,但对大尺度流域不稳定。本研究开发了三种结合两阶段分解和 LSTM 的混合模型,包括小波变换(WT)结合自适应噪声的完全集合经验模式分解(CEEMDAN)、变异模式分解(VMD)和局部均值分解(LMD),用于预测中国珠江的日径流量。结果表明,CEEMDAN 在径流序列预处理方面具有更广泛的信号分解适用性,而 VMD 在提取高径流特征方面更为简单。VMD-WT-LSTM 适合预测高径流和中值径流,而 CEEMDAN-WT-LSTM 则更适合预测低径流和具有低波动的高径流和中值径流。这些混合模型的 NSE 和 R2 指标预测结果令人满意,97.2% 的指标在高径流预测的可接受范围内。在高径流方面,混合模型优于传统模型和独立模型,但本研究中的分解方法都不能识别低径流子序列。本研究提供了需要较少数据和处理时间的径流预测方法,这些方法有望成为大规模流域日径流预测的替代方法。
{"title":"Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China","authors":"Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying","doi":"10.2166/nh.2023.069","DOIUrl":"https://doi.org/10.2166/nh.2023.069","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empiric","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal variability of vegetation response to meteorological drought on the Korean Peninsula 朝鲜半岛植被对气象干旱反应的时空变异性
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-01 DOI: 10.2166/nh.2023.237
Haeun Jung, Jeongeun Won, Shinuk Kang, Sangdan Kim
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00137gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00137gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>To assess vegetation drought, it is important to understand the relationship between climate and vegetation and to accurately measure the response of vegetation activity to meteorological drought. In this study, we used the vegetation health index (VHI) to investigate the propagation time and time-lag of vegetation response to different meteorological drought indices, including the standardized precipitation index (SPI), evaporative demand drought index (EDDI), standardize
查看大图查看大图 关闭模态要评估植被干旱,必须了解气候与植被之间的关系,并准确测量植被活动对气象干旱的响应。本研究利用植被健康指数(VHI)研究了不同气象干旱指数(包括标准化降水指数(SPI)、蒸发需求干旱指数(EDDI)、标准化降水-蒸散指数(SPEI)和基于共轭的联合干旱指数(CJDI))对植被响应的传播时间和时滞。通过对不同时间尺度和时滞的气象干旱指数以及不同权重的VHIs进行相关分析,我们确定了哪些气象干旱指数及其相应的时间尺度和时滞最能代表气象干旱对朝鲜半岛植被活动的影响。我们还评估了归一化差异植被指数(NDVI)和地表温度(LST)在量化植被对气象干旱的响应方面的相对作用。用于监测朝鲜半岛植被对气象干旱响应的气象干旱指数在 1 月至 5 月使用 EDDI,在 6 月至 12 月使用 SPEI 效果最佳。植被健康状况在 1 月至 9 月主要受 LST 影响,11 月至 12 月受 NDVI 影响较大。我们希望这些结果能为植被干旱监测提供有用信息。
{"title":"Spatiotemporal variability of vegetation response to meteorological drought on the Korean Peninsula","authors":"Haeun Jung, Jeongeun Won, Shinuk Kang, Sangdan Kim","doi":"10.2166/nh.2023.237","DOIUrl":"https://doi.org/10.2166/nh.2023.237","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&amp;Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00137gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&amp;Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&amp;Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00137gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.237/1/m_hydrology-d-23-00137gf01.png?Expires=1706779572&amp;Signature=eVcslLvs0982AcjCrJebE2KfIjcCwTO83F-XhyMa1VpSqc0PSFJYYAyk1JvbPBXNZXLnyqldAZYDCzlQAcWyq~gCVK88EpJA~wm5fr-PD9QyizdLIZsd-sA2Fjn2zOqrofySNx~8OUe~dEKT4CJ7SHqs~Fx03jReiXIurWEgUvbuUn3all8NrAO1yUVDvFzuU2rm3rlQh7N7DYVzoqZgNxQSm2JInR3U0H~CKDMScEcyHoSRLOUHoJ1OyVW3Oh-A2g6QA0fac-gczATXuT9oObfsxJOGGKdTJFVbTYYllKoaanTWdstmOldwhpWRN-rlAZL0-ZglxPjn2LY4swAgWw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;To assess vegetation drought, it is important to understand the relationship between climate and vegetation and to accurately measure the response of vegetation activity to meteorological drought. In this study, we used the vegetation health index (VHI) to investigate the propagation time and time-lag of vegetation response to different meteorological drought indices, including the standardized precipitation index (SPI), evaporative demand drought index (EDDI), standardize","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"27 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Runoff variation and progressive aridity during drought in catchments in southern-central Chile 智利中南部集水区干旱期间的径流变化和逐渐干旱现象
IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-12-01 DOI: 10.2166/nh.2023.116
Guillermo Barrientos, Rafael Rubilar, Efrain Duarte, Alberto Paredes
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00116gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydrology-d-23-00116gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Persistent drought events frequently intensify the aridity of ecosystems and cause catchment runoff depletion. Here, using large and long-term data sets of meteorological and hydrologic variables (precipitation, runoff, temperature, and potential evapotranspiration) investigated the major causes that modulated catchment runoff depletion between the years 1980 and 2020 in southern-central Chile. We identified the hydrological years where aridity index intensified, analyzed
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态持续干旱事件经常会加剧生态系统的干旱程度并导致集水区径流枯竭。在此,我们利用气象和水文变量(降水、径流、温度和潜在蒸散量)的大量长期数据集,调查了 1980 年至 2020 年期间智利中南部地区影响集水区径流枯竭的主要原因。我们确定了干旱指数加剧的水文年份,分析了干旱指数与年径流的关系,并评估了年蒸发指数和年干旱指数对位于南纬 35 度至 40 度之间、降水机制不同的 44 个流域的水平衡的影响。我们的研究结果表明,1980 年至 2020 年期间,研究区域内 64% 的流域观测到的降水量和径流量显著减少。39%的流域潜在蒸散量显著增加。降水量减少的水文年,径流也呈减少趋势。这一结果表明,气象干旱往往会显著减少观测到的径流量。随着干旱指数从 0.3 上升到 6.7,径流值也随之下降,布迪科曲线捕捉到了所有流域 98.5% 的年变化率。
{"title":"Runoff variation and progressive aridity during drought in catchments in southern-central Chile","authors":"Guillermo Barrientos, Rafael Rubilar, Efrain Duarte, Alberto Paredes","doi":"10.2166/nh.2023.116","DOIUrl":"https://doi.org/10.2166/nh.2023.116","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&amp;Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00116gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&amp;Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&amp;Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00116gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.116/1/m_hydrology-d-23-00116gf01.png?Expires=1706803564&amp;Signature=OPSxnnGpTKnr0DgO74MSqejQhZm38GWXHZdPQD7yeLuyfnSKEfXOyuXmSLrHInBbcy~El0OE~9BUr-8kLFvMfeUjy2zXFyekW4ZHLrXd2-UuvJ23FqmrOsp0TNLmljmMiUR13ZtK81Tpj82RhPvRIbX3lO7YCzSdl4pZRLG7vr-fHMNJYEqfbjhJ9tN0YLdREYwD31QDHqhuRl-f5c3Yqy7ZGKufRKObPGeB7azTLTCWsbocprLlyXi056yrGr07aons3IDO0fyyFr~rwrTHxg6FGqHON7Wtx3EnLuhFkLXF5d1JpiYmT-XCttb-8UgfwPMjGTjZ~KbfoUJucD9yZw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;Persistent drought events frequently intensify the aridity of ecosystems and cause catchment runoff depletion. Here, using large and long-term data sets of meteorological and hydrologic variables (precipitation, runoff, temperature, and potential evapotranspiration) investigated the major causes that modulated catchment runoff depletion between the years 1980 and 2020 in southern-central Chile. We identified the hydrological years where aridity index intensified, analyzed ","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"127 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative evaluation of daily streamflow prediction by ANN and SWAT models in two karst watersheds in central south Texas ANN和SWAT模型在德克萨斯州中南部两个喀斯特流域日流量预测的对比评价
4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-11-13 DOI: 10.2166/nh.2023.229
Xiaohan Mei, Patricia K. Smith, Jing Li
Abstract This work compares the accuracy of streamflow estimated by a data-driven artificial neural network (ANN) and the physically based soil and water assessment tool (SWAT). The models were applied in two small watersheds, one highly urbanized and the other primarily covered with evergreen forest and shrubs, in the San Antonio Region of central south Texas, where karst geologic features are prevalent. Both models predicted daily streamflow in the urbanized watershed very well, with the ANN and SWAT having the Nash–Sutcliffe coefficient of efficiency (NSE) values of 0.76 and 0.72 in the validation period, respectively. However, both models predicted streamflow poorly in the nonurban watershed. The NSE values of the ANNs significantly improved when a time series autoregressive model structure using historical streamflow data was implemented in the nonurban watershed. The SWAT model only achieved trivial performance improvement after using the SWAT-CUP SUFI-2 calibration procedure. This result suggests that an ANN model may be more suitable for short-term streamflow forecasting in watersheds heavily affected by karst features where the complex processes of rapid groundwater recharge and discharge strongly influence surface water flow.
摘要本文比较了基于数据驱动的人工神经网络(ANN)和基于物理的水土评估工具(SWAT)估算径流的精度。该模型应用于德克萨斯州中南部圣安东尼奥地区的两个小流域,一个高度城市化,另一个主要覆盖常绿森林和灌木,喀斯特地质特征普遍存在。两种模型均能较好地预测城市化流域的日流量,其中ANN和SWAT模型在验证期内的Nash-Sutcliffe效率系数(NSE)分别为0.76和0.72。然而,这两种模型对非城市流域的流量预测都很差。在非城市流域采用历史流量数据的时间序列自回归模型结构后,人工神经网络的NSE值显著提高。在使用SWAT- cup SUFI-2校准程序后,SWAT模型仅实现了微不足道的性能改进。这一结果表明,人工神经网络模型可能更适合于受岩溶特征影响较大的流域的短期流量预测,在这些流域,地下水快速补给和排放的复杂过程强烈影响地表水的流量。
{"title":"Comparative evaluation of daily streamflow prediction by ANN and SWAT models in two karst watersheds in central south Texas","authors":"Xiaohan Mei, Patricia K. Smith, Jing Li","doi":"10.2166/nh.2023.229","DOIUrl":"https://doi.org/10.2166/nh.2023.229","url":null,"abstract":"Abstract This work compares the accuracy of streamflow estimated by a data-driven artificial neural network (ANN) and the physically based soil and water assessment tool (SWAT). The models were applied in two small watersheds, one highly urbanized and the other primarily covered with evergreen forest and shrubs, in the San Antonio Region of central south Texas, where karst geologic features are prevalent. Both models predicted daily streamflow in the urbanized watershed very well, with the ANN and SWAT having the Nash–Sutcliffe coefficient of efficiency (NSE) values of 0.76 and 0.72 in the validation period, respectively. However, both models predicted streamflow poorly in the nonurban watershed. The NSE values of the ANNs significantly improved when a time series autoregressive model structure using historical streamflow data was implemented in the nonurban watershed. The SWAT model only achieved trivial performance improvement after using the SWAT-CUP SUFI-2 calibration procedure. This result suggests that an ANN model may be more suitable for short-term streamflow forecasting in watersheds heavily affected by karst features where the complex processes of rapid groundwater recharge and discharge strongly influence surface water flow.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"42 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2021 UK floods: improvements and recommendations from the flood forecasting centre 2021年英国洪水:洪水预报中心的改进和建议
4区 环境科学与生态学 Q2 WATER RESOURCES Pub Date : 2023-11-13 DOI: 10.2166/nh.2023.023
Charles Pilling, Jon Millard, Julia Perez, Katie Egan, Russel Turner, Anthony Duke
Abstract In recognition of the increased risk to national resilience from flooding, we provide an overview of recent and future improvements to flood risk forecasting and communication at the Flood Forecasting Centre (FFC). We draw on the analysis of fluvial and surface water flooding across England and Wales in 2021 to highlight these areas of improvement. Already implemented improvements in both the underpinning science and our long lead-time product are described in the context of high-magnitude, high-impact floods. In addition, we consider more substantial developments from improved modelling of convection to translating this to surface water flood risk and to the essential communication and service provision. Finally, recognising that many of the challenges are shared internationally, we distil our key recommendations for future improvement. These improvements rely on collaboration for them to be successful.
认识到洪水对国家恢复能力的风险增加,我们概述了洪水预报中心(FFC)最近和未来在洪水风险预测和沟通方面的改进。我们借鉴了2021年英格兰和威尔士的河流和地表水洪水分析,以突出这些改进领域。在高震级、高影响洪水的背景下,已经实施的基础科学和我们的长交付周期产品的改进被描述。此外,我们考虑了从改进对流建模到将其转化为地表水洪水风险以及基本通信和服务提供的更实质性的发展。最后,认识到许多挑战是国际上共同面临的,我们提炼了未来改进的关键建议。这些改进依赖于协作才能取得成功。
{"title":"2021 UK floods: improvements and recommendations from the flood forecasting centre","authors":"Charles Pilling, Jon Millard, Julia Perez, Katie Egan, Russel Turner, Anthony Duke","doi":"10.2166/nh.2023.023","DOIUrl":"https://doi.org/10.2166/nh.2023.023","url":null,"abstract":"Abstract In recognition of the increased risk to national resilience from flooding, we provide an overview of recent and future improvements to flood risk forecasting and communication at the Flood Forecasting Centre (FFC). We draw on the analysis of fluvial and surface water flooding across England and Wales in 2021 to highlight these areas of improvement. Already implemented improvements in both the underpinning science and our long lead-time product are described in the context of high-magnitude, high-impact floods. In addition, we consider more substantial developments from improved modelling of convection to translating this to surface water flood risk and to the essential communication and service provision. Finally, recognising that many of the challenges are shared internationally, we distil our key recommendations for future improvement. These improvements rely on collaboration for them to be successful.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Hydrology Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1