Pub Date : 2019-02-12DOI: 10.33555/iconiet.v2i1.10
S. Kusumadewi, S. Kusumocahyo
Polyethylene Terephthalate (PET) bottle is used as beverage packaging, which is very convenient as one time use packaging. However, the huge amount of PET bottle waste has been becoming a serious problem for the environment. The utilization of PET bottle waste is very important to reduce the environmental problem. In this work, PET bottle waste was used a raw material to develop an ultrafiltration (UF) membrane. The membrane was prepared by using a phase inversion technique. The effect of the type of solvent, additive, and non-solvent on the microstructure and ultrafiltration performance of the membrane was studied. Different type of solvent, phenol, m-cresol, and DMSO were used to dissolve PET bottle as the source of membrane polymer. Two different additives, Polyethylene Glycol (PEG) and Polyvinyl Pyrrolidone (PVP) were used. Membrane 3 with the composition of PET, phenol as solvent, and PEG as additive was prepared successfully. The variation of aqueous alcohol solutions as non-solvent resulted in different microstructures of the membranes as shown by the scanning electron microscopy (SEM). The permeation experiment result using pure water as the feed showed that membrane 3 using aqueous butanol as non-solvent (membrane 3-ButOH) exhibited the highest permeate flux compared to that of membrane 3 using aqueous propanol (membrane 3-PrOH) or ethanol as non-solvent (membrane 3-EtOH). The ultrafiltration experiment was carried out using a feed solution of water containing polyethylene glycol (PEG) 20,000. The membrane 3-EtOH showed the lowest permeate flux of 3.24 kg/m h, but the highest rejection of PEG 20,000 of 65.87%. The membrane 3-PrOH had a permeate flux of 11.57 kg/m h and a rejection of 64.73%. Whereas the membrane 3-ButOH showed the highest permeate flux of 27.78 kg/m h, but the lowest rejection 16.93%. This result was obtained due to the different membrane microstructures which were strongly affected by the type of non-solvent.
{"title":"Development of Ultrafiltration Membrane from Polyethylene Terephthalate (Pet) Bottle Waste","authors":"S. Kusumadewi, S. Kusumocahyo","doi":"10.33555/iconiet.v2i1.10","DOIUrl":"https://doi.org/10.33555/iconiet.v2i1.10","url":null,"abstract":"Polyethylene Terephthalate (PET) bottle is used as beverage packaging, which is very convenient as one time use packaging. However, the huge amount of PET bottle waste has been becoming a serious problem for the environment. The utilization of PET bottle waste is very important to reduce the environmental problem. In this work, PET bottle waste was used a raw material to develop an ultrafiltration (UF) membrane. The membrane was prepared by using a phase inversion technique. The effect of the type of solvent, additive, and non-solvent on the microstructure and ultrafiltration performance of the membrane was studied. Different type of solvent, phenol, m-cresol, and DMSO were used to dissolve PET bottle as the source of membrane polymer. Two different additives, Polyethylene Glycol (PEG) and Polyvinyl Pyrrolidone (PVP) were used. Membrane 3 with the composition of PET, phenol as solvent, and PEG as additive was prepared successfully. The variation of aqueous alcohol solutions as non-solvent resulted in different microstructures of the membranes as shown by the scanning electron microscopy (SEM). The permeation experiment result using pure water as the feed showed that membrane 3 using aqueous butanol as non-solvent (membrane 3-ButOH) exhibited the highest permeate flux compared to that of membrane 3 using aqueous propanol (membrane 3-PrOH) or ethanol as non-solvent (membrane 3-EtOH). The ultrafiltration experiment was carried out using a feed solution of water containing polyethylene glycol (PEG) 20,000. The membrane 3-EtOH showed the lowest permeate flux of 3.24 kg/m h, but the highest rejection of PEG 20,000 of 65.87%. The membrane 3-PrOH had a permeate flux of 11.57 kg/m h and a rejection of 64.73%. Whereas the membrane 3-ButOH showed the highest permeate flux of 27.78 kg/m h, but the lowest rejection 16.93%. This result was obtained due to the different membrane microstructures which were strongly affected by the type of non-solvent.","PeriodicalId":13150,"journal":{"name":"ICONIET PROCEEDING","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76710556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research was conducted for the purpose to overcome Indonesia waste problem. The samples are classified into garden waste, paper waste, wood, food waste, and MSW with objective to identify which type of waste give out more syngas since there is waste separation in Indonesia. All samples were treated by plasma gasification without pre-treatment (drying). Arc plasma torch used in this experiment was made by National Nuclear Energy Agency (BATAN) and used Argon as the gas source. Then the torch was connected to self-designed gasification chamber and gas washing system before injected into a gas bas for composition analysis. Another objective is to identify factors that may affect the gasification efficiency and the experiment shows that moisture content is not really affecting the efficiency but the duration of the process. The mass reduction of each samples were recorded, then the gas produced from the gasification process were analyzed. The result shows that food has the highest mass percentage reduced and producing the highest amount of hydrogen amongst other samples. However, treating MSW also produce considerably high amount of hydrogen. In conclusion, MSW direct treatment (without separation) using plasma gasification is feasible since it still produces desirable quality of syngas.
{"title":"Municipal Solid Waste Treatment Using Plasma Gasification with the Potential Production of Synthesis Gas (Syngas)","authors":"Angela Hartati, D. Widiputri, A. Dimyati","doi":"10.33555/ICONIET.V2I1.4","DOIUrl":"https://doi.org/10.33555/ICONIET.V2I1.4","url":null,"abstract":"This research was conducted for the purpose to overcome Indonesia waste problem. The samples are classified into garden waste, paper waste, wood, food waste, and MSW with objective to identify which type of waste give out more syngas since there is waste separation in Indonesia. All samples were treated by plasma gasification without pre-treatment (drying). Arc plasma torch used in this experiment was made by National Nuclear Energy Agency (BATAN) and used Argon as the gas source. Then the torch was connected to self-designed gasification chamber and gas washing system before injected into a gas bas for composition analysis. Another objective is to identify factors that may affect the gasification efficiency and the experiment shows that moisture content is not really affecting the efficiency but the duration of the process. The mass reduction of each samples were recorded, then the gas produced from the gasification process were analyzed. The result shows that food has the highest mass percentage reduced and producing the highest amount of hydrogen amongst other samples. However, treating MSW also produce considerably high amount of hydrogen. In conclusion, MSW direct treatment (without separation) using plasma gasification is feasible since it still produces desirable quality of syngas.","PeriodicalId":13150,"journal":{"name":"ICONIET PROCEEDING","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74983179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water hyacinth (Eichhornia crassipes) is a floating plant species, which spreads rapidly in fresh water area. This plant has found to cause environmental problems, such as clogging drainage, water intakes, and ditches, shading out other aquatic vegetation and interfering with fishing, shipping as well as recreational activities. In contrast to its drawbacks, water hyacinth is considered as one of the potential agricultural wastes in Indonesia that can be processed into an alternative solid fuel. Carbonization followed by briquetting is one of the methods that can be applied to process biomass into solid fuels. This work investigated the effect of carbonization temperature and two different types of binders on combustion characteristic of water hyacinth biomass. In this work, carbonization was carried out at three different temperatures, i.e. 350oC, 400oC and 450oC, while comparing the application of two types of binders, which were tapioca gel and polyvinyl acetate (PVAc) adhesive. The results showed that carbonization process of water hyacinth increased the fixed carbon content and the calorific value, and the best result was obtained at 450oC with tapioca gel as the binder. With this condition, the fixed carbon content in the biomass briquette could be increased up to 34.14% with a calorific value of 3,837 kcal/kg. Although the combustion efficiency was only 4.89%. The application of water hyacinth as biomass briquette has shown a promising alternative to reduce CO emission and the above-mentioned environment problems.
{"title":"Improvement of Combustion Quality of Biomass Briquette from Water Hyacinth (Eichhornia crassipes) for Alternative Energy","authors":"Andre Nugraha Pramadhana, D. Widiputri, G. Pari","doi":"10.33555/ICONIET.V2I1.2","DOIUrl":"https://doi.org/10.33555/ICONIET.V2I1.2","url":null,"abstract":"Water hyacinth (Eichhornia crassipes) is a floating plant species, which spreads rapidly in fresh water area. This plant has found to cause environmental problems, such as clogging drainage, water intakes, and ditches, shading out other aquatic vegetation and interfering with fishing, shipping as well as recreational activities. In contrast to its drawbacks, water hyacinth is considered as one of the potential agricultural wastes in Indonesia that can be processed into an alternative solid fuel. Carbonization followed by briquetting is one of the methods that can be applied to process biomass into solid fuels. This work investigated the effect of carbonization temperature and two different types of binders on combustion characteristic of water hyacinth biomass. In this work, carbonization was carried out at three different temperatures, i.e. 350oC, 400oC and 450oC, while comparing the application of two types of binders, which were tapioca gel and polyvinyl acetate (PVAc) adhesive. The results showed that carbonization process of water hyacinth increased the fixed carbon content and the calorific value, and the best result was obtained at 450oC with tapioca gel as the binder. With this condition, the fixed carbon content in the biomass briquette could be increased up to 34.14% with a calorific value of 3,837 kcal/kg. Although the combustion efficiency was only 4.89%. The application of water hyacinth as biomass briquette has shown a promising alternative to reduce CO emission and the above-mentioned environment problems.","PeriodicalId":13150,"journal":{"name":"ICONIET PROCEEDING","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86428922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, aviation sector became one of the most important transportation in the world. The demand in this sector has increased rapidly over the last 10 years. Unfortunately, the increase of the demand leads to an increase of fuel consumption and CO2 emission in the aviation’s sector. Bio-based aviation fuel is believed to be one of the solution for the reduction of CO2 emission in the aviation’s sector. Palm Fatty Acid Distillate (PFAD) which is a by product of palm oil refinery, contains a high amount of free fatty acids. The free fatty acids contained in the PFAD are able to be converted into straight hydrocarbon chain through decarboxylation process. This thesis conducted 3 different experiments to find out the best decarboxylation reaction’s condition to convert the FFA into straight chain hydrocarbons over an activated carbon catalyst. The experiments compared the results between the experiment with different reaction’s conditions and the presence of solvent in the reaction. The results have shown that the third experiment, which used heptane as solvent and hydrogen in argon gas as reaction’s environment, has the best reaction’s condition among others. Experiment 3 has converted 77.07% of the FFA, while experiment 2 and 1 only converted 58.37% and 16.30% respectively.
{"title":"Preparation of Palm Fatty Acid Distillate (PFAD) As Raw Material for Bio Aviation Fuel Production","authors":"B. Wiethoff, Evita H. Legowo, D. Widiputri","doi":"10.33555/ICONIET.V2I1.5","DOIUrl":"https://doi.org/10.33555/ICONIET.V2I1.5","url":null,"abstract":"Nowadays, aviation sector became one of the most important transportation in the world. The demand in this sector has increased rapidly over the last 10 years. Unfortunately, the increase of the demand leads to an increase of fuel consumption and CO2 emission in the aviation’s sector. Bio-based aviation fuel is believed to be one of the solution for the reduction of CO2 emission in the aviation’s sector. Palm Fatty Acid Distillate (PFAD) which is a by product of palm oil refinery, contains a high amount of free fatty acids. The free fatty acids contained in the PFAD are able to be converted into straight hydrocarbon chain through decarboxylation process. This thesis conducted 3 different experiments to find out the best decarboxylation reaction’s condition to convert the FFA into straight chain hydrocarbons over an activated carbon catalyst. The experiments compared the results between the experiment with different reaction’s conditions and the presence of solvent in the reaction. The results have shown that the third experiment, which used heptane as solvent and hydrogen in argon gas as reaction’s environment, has the best reaction’s condition among others. Experiment 3 has converted 77.07% of the FFA, while experiment 2 and 1 only converted 58.37% and 16.30% respectively.","PeriodicalId":13150,"journal":{"name":"ICONIET PROCEEDING","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83496949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}