Pub Date : 2023-08-08DOI: 10.1109/TSUSC.2023.3303270
Emanuele Lattanzi;Chiara Contoli;Valerio Freschi
The design of IoT systems supporting deep learning capabilities is mainly based today on data transmission to the cloud back-end. Recently, edge computing solutions, which keep most computing and communication as close as possible to user devices have emerged as possible alternatives to reduce energy consumption, limit latency, and safeguard privacy. Early-exit models have been proposed as a way to combine models with different depths into a single architecture. The aim of this article is to investigate the energy expenditure of a distributed IoT system based on early exit architectures, by taking human activity recognition as a case study. We propose a simulation study based on an analytical model and hardware characterization to estimate the trade-off between the accuracy and energy of early exit-based configurations. Experimental results highlight nontrivial relationships between architectures, computing platforms, and communication link. For instance, we found that early-exit strategies do not ensure energy reductions with respect to a cloud-based solution if the same accuracy levels are kept; nonetheless, by tolerating a 1.5% decrease in accuracy, it is possible to achieve a reduction of around 40% of the total energy consumption.
{"title":"A Study on the Energy Sustainability of Early Exit Networks for Human Activity Recognition","authors":"Emanuele Lattanzi;Chiara Contoli;Valerio Freschi","doi":"10.1109/TSUSC.2023.3303270","DOIUrl":"10.1109/TSUSC.2023.3303270","url":null,"abstract":"The design of IoT systems supporting deep learning capabilities is mainly based today on data transmission to the cloud back-end. Recently, edge computing solutions, which keep most computing and communication as close as possible to user devices have emerged as possible alternatives to reduce energy consumption, limit latency, and safeguard privacy. Early-exit models have been proposed as a way to combine models with different depths into a single architecture. The aim of this article is to investigate the energy expenditure of a distributed IoT system based on early exit architectures, by taking human activity recognition as a case study. We propose a simulation study based on an analytical model and hardware characterization to estimate the trade-off between the accuracy and energy of early exit-based configurations. Experimental results highlight nontrivial relationships between architectures, computing platforms, and communication link. For instance, we found that early-exit strategies do not ensure energy reductions with respect to a cloud-based solution if the same accuracy levels are kept; nonetheless, by tolerating a 1.5% decrease in accuracy, it is possible to achieve a reduction of around 40% of the total energy consumption.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 1","pages":"61-74"},"PeriodicalIF":3.9,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89794687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A wide variety of Mobile Devices (MDs) are adopted in Internet of Things (IoT) environments, resulting in a dramatic increase in the volume of task data and greenhouse gas emissions. However, due to the limited battery power and computing resources of MD, it is critical to process more data with less energy. This article studies the Wireless Power Transfer-based Mobile Edge Computing (WPT-MEC) network system assisted by Intelligent Reflective Surface (IRS) to enhance communication performance while improving the battery life of MD. In order to maximize the Computation Energy Efficiency (CEE) of the system and reduce the carbon footprint of the MEC server, we jointly optimize the CPU frequencies of MDs and MEC server, the transmit power of Power Beacon (PB), the processing time of MEC server, the offloading time and the energy harvesting time of MDs, the local processing time and the offloading power of MD and the phase shift coefficient matrix of Intelligent Reflecting Surface (IRS). Moreover, we transform this joint optimization problem into a fractional programming problem. We then propose the Dinkelbach Iterative Algorithm with Gradient Updates (DIA-GU) to solve this problem effectively. With the help of convex optimization theory, we can obtain closed-form solutions, revealing the correlation between different variables. Compared to other algorithms, the DIA-GU algorithm not only exhibits superior performance in enhancing the system's CEE but also demonstrates significant reductions in carbon emissions.
{"title":"Computation Energy Efficiency Maximization for Intelligent Reflective Surface-Aided Wireless Powered Mobile Edge Computing","authors":"Junhui Du;Minxian Xu;Sukhpal Singh Gill;Huaming Wu","doi":"10.1109/TSUSC.2023.3298822","DOIUrl":"10.1109/TSUSC.2023.3298822","url":null,"abstract":"A wide variety of Mobile Devices (MDs) are adopted in Internet of Things (IoT) environments, resulting in a dramatic increase in the volume of task data and greenhouse gas emissions. However, due to the limited battery power and computing resources of MD, it is critical to process more data with less energy. This article studies the Wireless Power Transfer-based Mobile Edge Computing (WPT-MEC) network system assisted by Intelligent Reflective Surface (IRS) to enhance communication performance while improving the battery life of MD. In order to maximize the Computation Energy Efficiency (CEE) of the system and reduce the carbon footprint of the MEC server, we jointly optimize the CPU frequencies of MDs and MEC server, the transmit power of Power Beacon (PB), the processing time of MEC server, the offloading time and the energy harvesting time of MDs, the local processing time and the offloading power of MD and the phase shift coefficient matrix of Intelligent Reflecting Surface (IRS). Moreover, we transform this joint optimization problem into a fractional programming problem. We then propose the Dinkelbach Iterative Algorithm with Gradient Updates (DIA-GU) to solve this problem effectively. With the help of convex optimization theory, we can obtain closed-form solutions, revealing the correlation between different variables. Compared to other algorithms, the DIA-GU algorithm not only exhibits superior performance in enhancing the system's CEE but also demonstrates significant reductions in carbon emissions.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"371-385"},"PeriodicalIF":3.9,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78245071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless Power Transfer (WPT) is a promising technology that can potentially mitigate the energy provisioning problem for sensor networks. In order to efficiently replenish energy for these battery-powered devices, designing appropriate scheduling and charging path planning algorithms is essential and challenging. Whilst previous studies have tackled this challenge, the conjoint influences of network topology, charging path planning, and energy threshold distribution in Wireless Rechargeable Sensor Networks (WRSNs) are still in their infancy. We mitigate the aforementioned problem by proposing novel algorithmic solutions to efficient sector-based on-demand charging scheduling and path planning. Specifically, we first propose a hexagonal cluster-based deployment of nodes such that finding an NP-Complete Hamiltonian path is feasible. Second, each cluster is divided into multiple sectors and a charging path planning algorithm is implemented to yield a Hamiltonian path, aimed at improving the Mobile Charging Vehicle (MCV) efficiency and charging throughput. Third, we propose an efficient algorithm to calculate the importance