Pub Date : 2024-03-17DOI: 10.1109/TSUSC.2024.3401003
Kangshun Li;Shumin Xie;Tianjin Zhu;Hui Wang
With the development of technology, unmanned aerial vehicles (UAVs) and Internet of Things devices are widely used in smart agriculture, resulting in significant energy consumption. In this paper, the optimization problem for UAV-assisted mobile computing in smart agriculture is modeled as a constrained multiobjective optimization problem. By jointly optimizing the deployment position of UAVs, the offloading location of the tasks, the transmit power of the devices, and the resource allocation of the UAVs, two optimization objectives (total delay and energy consumption) are minimized simultaneously. In view of the complex constraints, a constrained multiobjective algorithm named JO-DPTS is proposed. The algorithm adopts dual-population and two-stage approach to improve population convergence and diversity. The simulation results substantiate that JO-DPTS exhibits superior performance compared to the other three state-of-the-art constrained multiobjective evolutionary algorithms.
{"title":"Constrained Multiobjective Optimization for UAV-Assisted Mobile Edge Computing in Smart Agriculture: Minimizing Delay and Energy Consumption","authors":"Kangshun Li;Shumin Xie;Tianjin Zhu;Hui Wang","doi":"10.1109/TSUSC.2024.3401003","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3401003","url":null,"abstract":"With the development of technology, unmanned aerial vehicles (UAVs) and Internet of Things devices are widely used in smart agriculture, resulting in significant energy consumption. In this paper, the optimization problem for UAV-assisted mobile computing in smart agriculture is modeled as a constrained multiobjective optimization problem. By jointly optimizing the deployment position of UAVs, the offloading location of the tasks, the transmit power of the devices, and the resource allocation of the UAVs, two optimization objectives (total delay and energy consumption) are minimized simultaneously. In view of the complex constraints, a constrained multiobjective algorithm named JO-DPTS is proposed. The algorithm adopts dual-population and two-stage approach to improve population convergence and diversity. The simulation results substantiate that JO-DPTS exhibits superior performance compared to the other three state-of-the-art constrained multiobjective evolutionary algorithms.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"948-957"},"PeriodicalIF":3.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-08DOI: 10.1109/TSUSC.2024.3371544
Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia
E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.
{"title":"A Timed-Release E-Voting Scheme Based on Paillier Homomorphic Encryption","authors":"Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia","doi":"10.1109/TSUSC.2024.3371544","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3371544","url":null,"abstract":"E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"740-753"},"PeriodicalIF":3.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1109/TSUSC.2024.3374049
Jinbo Wang;Ruijin Wang;Guangquan Xu;Donglin He;Xikai Pei;Fengli Zhang;Jie Gan
Federated learning is a distributed learning paradigm, which is usually combined with edge computing to meet the joint training of IoT devices. A significant challenge in federated learning lies in the statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) local data across diverse parties. This heterogeneity can result in inconsistent optimization within individual local models. Although previous research has endeavored to tackle issues stemming from heterogeneous data, our findings indicate that these attempts have not yielded high-performance neural network models. To overcome this fundamental challenge, we introduce the framework called FedPKR in this paper, which facilitates efficient federated learning through knowledge review. The core principle of FedPKR involves leveraging the knowledge representation generated by the global and local model layers to conduct periodic layer-by-layer comparative learning in a reciprocal manner. This strategy rectifies local model training, leading to enhanced outcomes. Our experimental results and subsequent analysis substantiate that FedPKR effectively augments model accuracy in image classification tasks, meanwhile demonstrating resilience to statistical heterogeneity across all participating entities.
{"title":"FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing","authors":"Jinbo Wang;Ruijin Wang;Guangquan Xu;Donglin He;Xikai Pei;Fengli Zhang;Jie Gan","doi":"10.1109/TSUSC.2024.3374049","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3374049","url":null,"abstract":"Federated learning is a distributed learning paradigm, which is usually combined with edge computing to meet the joint training of IoT devices. A significant challenge in federated learning lies in the statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) local data across diverse parties. This heterogeneity can result in inconsistent optimization within individual local models. Although previous research has endeavored to tackle issues stemming from heterogeneous data, our findings indicate that these attempts have not yielded high-performance neural network models. To overcome this fundamental challenge, we introduce the framework called FedPKR in this paper, which facilitates efficient federated learning through knowledge review. The core principle of FedPKR involves leveraging the knowledge representation generated by the global and local model layers to conduct periodic layer-by-layer comparative learning in a reciprocal manner. This strategy rectifies local model training, leading to enhanced outcomes. Our experimental results and subsequent analysis substantiate that FedPKR effectively augments model accuracy in image classification tasks, meanwhile demonstrating resilience to statistical heterogeneity across all participating entities.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"902-912"},"PeriodicalIF":3.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1109/TSUSC.2024.3370837
Vidushi Agarwal;Omid Ardakanian;Sujata Pal
With the rollout of smart meters, a vast amount of energy time-series became available from homes, enabling applications such as non-intrusive load monitoring (NILM). The inconspicuous collection of this data, however, poses a risk to the privacy of customers. Federated Learning (FL) eliminates the problem of sharing raw data with a cloud service provider by allowing machine learning models to be trained in a collaborative fashion on decentralized data. Although several NILM techniques that rely on FL to train a deep neural network for identifying the energy consumption of individual appliances have been proposed in recent years, the robustness of these techniques to malicious users and their ability to fully protect the user privacy remain unexplored. In this paper, we present a robust and privacy-preserving FL-based framework to train a bidirectional transformer architecture for NILM. This framework takes advantage of a meta-learning algorithm to handle the data heterogeneity prevalent in real-world settings. The efficacy of the proposed framework is corroborated through comparative experiments using two real-world NILM datasets. The results show that this framework can attain an accuracy that is on par with a centrally-trained energy disaggregation model, while preserving user privacy.
{"title":"A Robust and Privacy-Aware Federated Learning Framework for Non-Intrusive Load Monitoring","authors":"Vidushi Agarwal;Omid Ardakanian;Sujata Pal","doi":"10.1109/TSUSC.2024.3370837","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3370837","url":null,"abstract":"With the rollout of smart meters, a vast amount of energy time-series became available from homes, enabling applications such as non-intrusive load monitoring (NILM). The inconspicuous collection of this data, however, poses a risk to the privacy of customers. Federated Learning (FL) eliminates the problem of sharing raw data with a cloud service provider by allowing machine learning models to be trained in a collaborative fashion on decentralized data. Although several NILM techniques that rely on FL to train a deep neural network for identifying the energy consumption of individual appliances have been proposed in recent years, the robustness of these techniques to malicious users and their ability to fully protect the user privacy remain unexplored. In this paper, we present a robust and privacy-preserving FL-based framework to train a bidirectional transformer architecture for NILM. This framework takes advantage of a meta-learning algorithm to handle the data heterogeneity prevalent in real-world settings. The efficacy of the proposed framework is corroborated through comparative experiments using two real-world NILM datasets. The results show that this framework can attain an accuracy that is on par with a centrally-trained energy disaggregation model, while preserving user privacy.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"766-777"},"PeriodicalIF":3.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1109/TSUSC.2024.3369333
Pierre Jacquet;Thomas Ledoux;Romain Rouvoy
Despite continuous improvements, cloud physical resources remain underused, hence severely impacting the efficiency of these infrastructures at large. To overcome this inefficiency, Infrastructure-as-a-Service (IaaS) providers usually compensate for oversized Virtual Machines (VMs) by offering more virtual resources than are physically available on a host. However, this technique—known as oversubscription