Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.
{"title":"CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds","authors":"Darong Huang;Luis Costero;Ali Pahlevan;Marina Zapater;David Atienza","doi":"10.1109/TSUSC.2024.3359325","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3359325","url":null,"abstract":"Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"661-676"},"PeriodicalIF":3.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1109/TSUSC.2024.3358915
Aman Mishra;Yash Garg;Om Jee Pandey;Mahendra K. Shukla;Athanasios V. Vasilakos;Rajesh M. Hegde
At present, the centralized learning models, used for IoT applications generating large amount of data, face several challenges such as bandwidth scarcity, more energy consumption, increased uses of computing resources, poor connectivity, high computational complexity, reduced privacy, and large latency towards data transfer. In order to address the aforementioned challenges, Blockchain-Enabled Federated Learning Networks (BFLNs) emerged recently, which deal with trained model parameters only, rather than raw data. BFLNs provide enhanced security along with improved energy-efficiency and Quality-of-Service (QoS). However, BFLNs suffer with the challenges of exponential increased action space in deciding various parameter levels towards training and block generation. Motivated by aforementioned challenges of BFLNs, in this work, we are proposing an actor-critic Reinforcement Learning (RL) method to model the Machine Learning Model Owner (MLMO) in selecting the optimal set of parameter levels, addressing the challenges of exponential grow of action space in BFLNs. Further, due to the implicit entropy exploration, actor-critic RL method balances the exploration-exploitation trade-off and shows better performance than most off-policy methods, on large discrete action spaces. Therefore, in this work, considering the mobile scenario of the devices, MLMO decides the data and energy levels that the mobile devices use for the training and determine the block generation rate. This leads to minimized system latency and reduced overall cost, while achieving the target accuracy. Specifically, we have used Proximal Policy Optimization (PPO) as an on-policy actor-critic method with it's two variants, one based on Monte Carlo (MC) returns and another based on Generalized Advantage Estimate (GAE). We analyzed that PPO has better exploration and sample efficiency, lesser training time, and consistently higher cumulative rewards, when compared to off-policy Deep Q-Network (DQN).
{"title":"A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks","authors":"Aman Mishra;Yash Garg;Om Jee Pandey;Mahendra K. Shukla;Athanasios V. Vasilakos;Rajesh M. Hegde","doi":"10.1109/TSUSC.2024.3358915","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3358915","url":null,"abstract":"At present, the centralized learning models, used for IoT applications generating large amount of data, face several challenges such as bandwidth scarcity, more energy consumption, increased uses of computing resources, poor connectivity, high computational complexity, reduced privacy, and large latency towards data transfer. In order to address the aforementioned challenges, Blockchain-Enabled Federated Learning Networks (BFLNs) emerged recently, which deal with trained model parameters only, rather than raw data. BFLNs provide enhanced security along with improved energy-efficiency and Quality-of-Service (QoS). However, BFLNs suffer with the challenges of exponential increased action space in deciding various parameter levels towards training and block generation. Motivated by aforementioned challenges of BFLNs, in this work, we are proposing an actor-critic Reinforcement Learning (RL) method to model the Machine Learning Model Owner (MLMO) in selecting the optimal set of parameter levels, addressing the challenges of exponential grow of action space in BFLNs. Further, due to the implicit entropy exploration, actor-critic RL method balances the exploration-exploitation trade-off and shows better performance than most off-policy methods, on large discrete action spaces. Therefore, in this work, considering the mobile scenario of the devices, MLMO decides the data and energy levels that the mobile devices use for the training and determine the block generation rate. This leads to minimized system latency and reduced overall cost, while achieving the target accuracy. Specifically, we have used Proximal Policy Optimization (PPO) as an on-policy actor-critic method with it's two variants, one based on Monte Carlo (MC) returns and another based on Generalized Advantage Estimate (GAE). We analyzed that PPO has better exploration and sample efficiency, lesser training time, and consistently higher cumulative rewards, when compared to off-policy Deep Q-Network (DQN).","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"648-660"},"PeriodicalIF":3.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sea State Estimation (SSE) is essential for Internet of Things (IoT)-enabled autonomous ships, which rely on favorable sea conditions for safe and efficient navigation. Traditional methods, such as wave buoys and radars, are costly, less accurate, and lack real-time capability. Model-driven methods, based on physical models of ship dynamics, are impractical due to wave randomness. Data-driven methods are limited by the data imbalance problem, as some sea states are more frequent and observable than others. To overcome these challenges, we propose a novel data-driven approach for SSE based on ship motion data. Our approach consists of three main components: a data preprocessing module, a parallel convolution feature extractor, and a theoretical-ensured distance-based classifier. The data preprocessing module aims to enhance the data quality and reduce sensor noise. The parallel convolution feature extractor uses a kernel-varying convolutional structure to capture distinctive features. The distance-based classifier learns representative prototypes for each sea state and assigns a sample to the nearest prototype based on a distance metric. The efficiency of our model is validated through experiments on two SSE datasets and the UEA archive, encompassing thirty multivariate time series classification tasks. The results reveal the generalizability and robustness of our approach.
{"title":"A Prototype-Empowered Kernel-Varying Convolutional Model for Imbalanced Sea State Estimation in IoT-Enabled Autonomous Ship","authors":"Mengna Liu;Xu Cheng;Fan Shi;Xiufeng Liu;Hongning Dai;Shengyong Chen","doi":"10.1109/TSUSC.2024.3353183","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3353183","url":null,"abstract":"Sea State Estimation (SSE) is essential for Internet of Things (IoT)-enabled autonomous ships, which rely on favorable sea conditions for safe and efficient navigation. Traditional methods, such as wave buoys and radars, are costly, less accurate, and lack real-time capability. Model-driven methods, based on physical models of ship dynamics, are impractical due to wave randomness. Data-driven methods are limited by the data imbalance problem, as some sea states are more frequent and observable than others. To overcome these challenges, we propose a novel data-driven approach for SSE based on ship motion data. Our approach consists of three main components: a data preprocessing module, a parallel convolution feature extractor, and a theoretical-ensured distance-based classifier. The data preprocessing module aims to enhance the data quality and reduce sensor noise. The parallel convolution feature extractor uses a kernel-varying convolutional structure to capture distinctive features. The distance-based classifier learns representative prototypes for each sea state and assigns a sample to the nearest prototype based on a distance metric. The efficiency of our model is validated through experiments on two SSE datasets and the UEA archive, encompassing thirty multivariate time series classification tasks. The results reveal the generalizability and robustness of our approach.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"862-873"},"PeriodicalIF":3.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1109/TSUSC.2024.3353176
Long Cheng;Yan Gu;Qingzhi Liu;Lei Yang;Cheng Liu;Ying Wang
The amalgamation of artificial intelligence with Internet of Things (AIoT) devices have seen a rapid surge in growth, largely due to the effective implementation of deep neural network (DNN) models across various domains. However, the deployment of DNNs on such devices comes with its own set of challenges, primarily related to computational capacity, storage, and energy efficiency. This survey offers an exhaustive review of techniques designed to accelerate DNN inference on AIoT devices, addressing these challenges head-on. We delve into critical model compression techniques designed to adapt to the limitations of devices and hardware optimization strategies that aim to boost efficiency. Furthermore, we examine parallelization methods that leverage parallel computing for swift inference, as well as novel optimization strategies that fine-tune the execution process. This survey also casts a future-forward glance at emerging trends, including advancements in mobile hardware, the co-design of software and hardware, privacy and security considerations, and DNN inference on AIoT devices with constrained resources. All in all, this survey aspires to serve as a holistic guide to advancements in the acceleration of DNN inference on AIoT devices, aiming to provide sustainable computing for upcoming IoT applications driven by artificial intelligence.
{"title":"Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey","authors":"Long Cheng;Yan Gu;Qingzhi Liu;Lei Yang;Cheng Liu;Ying Wang","doi":"10.1109/TSUSC.2024.3353176","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3353176","url":null,"abstract":"The amalgamation of artificial intelligence with Internet of Things (AIoT) devices have seen a rapid surge in growth, largely due to the effective implementation of deep neural network (DNN) models across various domains. However, the deployment of DNNs on such devices comes with its own set of challenges, primarily related to computational capacity, storage, and energy efficiency. This survey offers an exhaustive review of techniques designed to accelerate DNN inference on AIoT devices, addressing these challenges head-on. We delve into critical model compression techniques designed to adapt to the limitations of devices and hardware optimization strategies that aim to boost efficiency. Furthermore, we examine parallelization methods that leverage parallel computing for swift inference, as well as novel optimization strategies that fine-tune the execution process. This survey also casts a future-forward glance at emerging trends, including advancements in mobile hardware, the co-design of software and hardware, privacy and security considerations, and DNN inference on AIoT devices with constrained resources. All in all, this survey aspires to serve as a holistic guide to advancements in the acceleration of DNN inference on AIoT devices, aiming to provide sustainable computing for upcoming IoT applications driven by artificial intelligence.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"830-847"},"PeriodicalIF":3.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1109/TSUSC.2024.3351684
Jie Li;Yuhui Deng;Zhifeng Fan;Zijie Zhong;Geyong Min
The explosion of large-scale data has increased the scale and capacity of storage clusters in data centers, leading to huge power consumption issues. Cloud providers can effectively promote the energy efficiency of data centers by employing energy-aware data placement techniques, which primarily encompass storage cluster's power and cooling power. Traditional data placement approaches do not diminish the overall power consumption of the data center due to the heat recirculation effect between storage nodes. To fill this gap, we build an elaborate thermal-aware data center model. Then we propose two energy-efficient thermal-aware data placement strategies, ETDP-I and ETDP-II, to reduce the overall power consumption of the data center. The principle of our proposed algorithm is to utilize a greedy algorithm to calculate the optimal disk sequence at the minimum total power of the data center and then place the data into the optimal disk sequence. We implement these two strategies in a cloud computing simulation platform based on CloudSim. Experimental results unveil that ETDA-I and ETDP-II outperform MinTin-G and MinTout-G in terms of the supplied temperature of CRAC, storage nodes power, cooling cost, and total power consumption of the data center. In particular, ETDP-I and ETDP-II algorithms can save about 9.46 $%$