Pub Date : 2025-01-06DOI: 10.1016/j.immuni.2024.12.002
Omkar Shinde, Joshua A. Boyer, Stephanie Cambier, Jordyn J. VanPortfliet, Xuewu Sui, Gaya P. Yadav, Elizabeth G. Viverette, Mario J. Borgnia, A. Phillip West, Qi Zhang, Daniel B. Stetson, Pingwei Li
Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.
{"title":"Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export","authors":"Omkar Shinde, Joshua A. Boyer, Stephanie Cambier, Jordyn J. VanPortfliet, Xuewu Sui, Gaya P. Yadav, Elizabeth G. Viverette, Mario J. Borgnia, A. Phillip West, Qi Zhang, Daniel B. Stetson, Pingwei Li","doi":"10.1016/j.immuni.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.12.002","url":null,"abstract":"Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"12 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1016/j.immuni.2024.12.004
Julien Champagne, Morten M. Nielsen, Xiaodong Feng, Jasmine Montenegro Navarro, Abhijeet Pataskar, Rhianne Voogd, Lisanne Giebel, Remco Nagel, Nadine Berenst, Amos Fumagalli, Adva Kochavi, Domenica Lovecchio, Lorenzo Valcanover, Yuval Malka, Weiwen Yang, Maarja Laos, Yingqian Li, Natalie Proost, Marieke van de Ven, Olaf van Tellingen, Reuven Agami
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A∗24:02 allele. We identified a T cell receptor (TCRTMBIM6W>F.1) possessing high affinity and specificity toward TMBIM6W>F/HLA-A∗24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCRTMBIM6W>F.1 T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide in vivo proof of concept for clinical application, whereby TCRMART1 T cells promote cancer cell killing by TCRTMBIM6W>F.1 T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.
{"title":"Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation","authors":"Julien Champagne, Morten M. Nielsen, Xiaodong Feng, Jasmine Montenegro Navarro, Abhijeet Pataskar, Rhianne Voogd, Lisanne Giebel, Remco Nagel, Nadine Berenst, Amos Fumagalli, Adva Kochavi, Domenica Lovecchio, Lorenzo Valcanover, Yuval Malka, Weiwen Yang, Maarja Laos, Yingqian Li, Natalie Proost, Marieke van de Ven, Olaf van Tellingen, Reuven Agami","doi":"10.1016/j.immuni.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.12.004","url":null,"abstract":"Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A<sup>∗</sup>24:02 allele. We identified a T cell receptor (TCR<sup>TMBIM6W>F.1</sup>) possessing high affinity and specificity toward TMBIM6<sup>W>F</sup>/HLA-A<sup>∗</sup>24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCR<sup>TMBIM6W>F.1</sup> T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide <em>in vivo</em> proof of concept for clinical application, whereby TCR<sup>MART1</sup> T cells promote cancer cell killing by TCR<sup>TMBIM6W>F.1</sup> T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"14 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.immuni.2024.12.006
Thumbi Ndung’u, Johanna A. Joyce, Chuan Wu, Miriam Merad, Gabriel A. Rabinovich, Jamie Rossjohn, Muzlifah Haniffa, Stephen C. Jameson
There are many dimensions to scientific life. We asked investigators about the impact of service to the scientific community and beyond and how service has shaped their experience, perspective, and research path.
{"title":"Service","authors":"Thumbi Ndung’u, Johanna A. Joyce, Chuan Wu, Miriam Merad, Gabriel A. Rabinovich, Jamie Rossjohn, Muzlifah Haniffa, Stephen C. Jameson","doi":"10.1016/j.immuni.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.12.006","url":null,"abstract":"There are many dimensions to scientific life. We asked investigators about the impact of service to the scientific community and beyond and how service has shaped their experience, perspective, and research path.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"97 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.immuni.2024.12.003
Anneka Allman, Brian T. Gaudette, Samantha Kelly, Nagham Alouche, Léolène J. Carrington, Eric Perkey, Joshua D. Brandstadter, Riley Outen, Ashley Vanderbeck, Katlyn Lederer, Yeqiao Zhou, Robert B. Faryabi, Tanner F. Robertson, Janis K. Burkhardt, Anastasia Tikhonova, Iannis Aifantis, Leonardo Scarpellino, Ute Koch, Freddy Radtke, Mechthild Lütge, Ivan Maillard
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.
{"title":"Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs","authors":"Anneka Allman, Brian T. Gaudette, Samantha Kelly, Nagham Alouche, Léolène J. Carrington, Eric Perkey, Joshua D. Brandstadter, Riley Outen, Ashley Vanderbeck, Katlyn Lederer, Yeqiao Zhou, Robert B. Faryabi, Tanner F. Robertson, Janis K. Burkhardt, Anastasia Tikhonova, Iannis Aifantis, Leonardo Scarpellino, Ute Koch, Freddy Radtke, Mechthild Lütge, Ivan Maillard","doi":"10.1016/j.immuni.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.12.003","url":null,"abstract":"Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"32 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.immuni.2024.11.025
Brooke D. Huisman, Daniel A. Michelson, Sara A. Rubin, Katherine Kohlsaat, Wilson Gomarga, Yuan Fang, Ji Myung Lee, Pedro del Nido, Meena Nathan, Christophe Benoist, Leonard Zon, Diane Mathis
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models. To provide the high resolution that proved revelatory for mice, we performed single-cell RNA sequencing on purified mimetic-cell compartments from human pediatric donors. The single-cell profiles of individual donors were surprisingly similar, with diversification of neuroendocrine subtypes and expansion of the muscle subtype relative to mice. Informatic and imaging studies on the muscle-mTEC population highlighted a maturation trajectory suggestive of skeletal-muscle differentiation, some striated structures, and occasional cellular groupings reminiscent of neuromuscular junctions. We also profiled thymic mimetic cells from zebrafish. Integration of data from the three species identified species-specific adaptations but substantial interspecies conservation, highlighting the evolutionarily ancient nature of mimetic mTECs. Our findings provide a landscape view of human mimetic cells, with anticipated relevance in autoimmunity.
{"title":"Cross-species analyses of thymic mimetic cells reveal evolutionarily ancient origins and both conserved and species-specific elements","authors":"Brooke D. Huisman, Daniel A. Michelson, Sara A. Rubin, Katherine Kohlsaat, Wilson Gomarga, Yuan Fang, Ji Myung Lee, Pedro del Nido, Meena Nathan, Christophe Benoist, Leonard Zon, Diane Mathis","doi":"10.1016/j.immuni.2024.11.025","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.025","url":null,"abstract":"Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models. To provide the high resolution that proved revelatory for mice, we performed single-cell RNA sequencing on purified mimetic-cell compartments from human pediatric donors. The single-cell profiles of individual donors were surprisingly similar, with diversification of neuroendocrine subtypes and expansion of the muscle subtype relative to mice. Informatic and imaging studies on the muscle-mTEC population highlighted a maturation trajectory suggestive of skeletal-muscle differentiation, some striated structures, and occasional cellular groupings reminiscent of neuromuscular junctions. We also profiled thymic mimetic cells from zebrafish. Integration of data from the three species identified species-specific adaptations but substantial interspecies conservation, highlighting the evolutionarily ancient nature of mimetic mTECs. Our findings provide a landscape view of human mimetic cells, with anticipated relevance in autoimmunity.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"41 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1016/j.immuni.2024.11.023
Carina Diehl, Valeria Soberón, Seren Baygün, Yuanyan Chu, Jonathan Mandelbaum, Laura Kraus, Thomas Engleitner, Martina Rudelius, Marco Fangazio, Christoph Daniel, Sabrina Bortoluzzi, Sabine Helmrath, Pankaj Singroul, Vanessa Gölling, Francisco Osorio Barrios, Gönül Seyhan, Lena Oßwald, Maike Kober-Hasslacher, Theodor Zeng, Rupert Öllinger, Marc Schmidt-Supprian
B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.
{"title":"Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis","authors":"Carina Diehl, Valeria Soberón, Seren Baygün, Yuanyan Chu, Jonathan Mandelbaum, Laura Kraus, Thomas Engleitner, Martina Rudelius, Marco Fangazio, Christoph Daniel, Sabrina Bortoluzzi, Sabine Helmrath, Pankaj Singroul, Vanessa Gölling, Francisco Osorio Barrios, Gönül Seyhan, Lena Oßwald, Maike Kober-Hasslacher, Theodor Zeng, Rupert Öllinger, Marc Schmidt-Supprian","doi":"10.1016/j.immuni.2024.11.023","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.023","url":null,"abstract":"B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator <em>TNFAIP3</em>/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"62 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1016/j.immuni.2024.11.026
Jessica Waibl Polania, Alexandra Hoyt-Miggelbrink, William H. Tomaszewski, Lucas P. Wachsmuth, Selena J. Lorrey, Daniel S. Wilkinson, Emily Lerner, Karolina Woroniecka, John B. Finlay, Katayoun Ayasoufi, Peter E. Fecci
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)—not tumor cells—were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.
{"title":"Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion","authors":"Jessica Waibl Polania, Alexandra Hoyt-Miggelbrink, William H. Tomaszewski, Lucas P. Wachsmuth, Selena J. Lorrey, Daniel S. Wilkinson, Emily Lerner, Karolina Woroniecka, John B. Finlay, Katayoun Ayasoufi, Peter E. Fecci","doi":"10.1016/j.immuni.2024.11.026","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.026","url":null,"abstract":"Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)—not tumor cells—were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"53 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1016/j.immuni.2024.11.021
Anna Lena Kastner, Anna-Friederike Marx, Mirela Dimitrova, Tiago Abreu-Mota, Yusuf I. Ertuna, Weldy V. Bonilla, Karsten Stauffer, Marco Künzli, Ingrid Wagner, Mario Kreutzfeldt, Doron Merkler, Daniel D. Pinschewer
To interrogate the role of specific immune cells in infection, cancer, and autoimmunity, immunologists commonly use monoclonal depletion antibodies (depletion-mAbs) or genetically engineered mouse models (GEMMs). To generate a tool that combines specific advantages and avoids select drawbacks of the two methods, we engineered adeno-associated viral vectors expressing depletion mAbs (depletion-AAVs). Single-dose depletion-AAV administration durably eliminated lymphocyte subsets in mice and avoided accessory deficiencies of GEMMs, such as marginal zone defects in B cell-deficient animals. Depletion-AAVs can be used in animals of different genetic backgrounds, and multiple depletion-AAVs can readily be combined. Exploiting depletion-AAV technology, we showed that B cells were required for unimpaired CD4+ and CD8+ T cell responses to chronic lymphocytic choriomeningitis virus (LCMV) infection. Upon B cell depletion, CD8+ T cells failed to suppress viremia, and they only helped resolve chronic infection when antibodies dampened viral loads. Our study positions depletion-AAVs as a versatile tool for immunological research.
{"title":"Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection","authors":"Anna Lena Kastner, Anna-Friederike Marx, Mirela Dimitrova, Tiago Abreu-Mota, Yusuf I. Ertuna, Weldy V. Bonilla, Karsten Stauffer, Marco Künzli, Ingrid Wagner, Mario Kreutzfeldt, Doron Merkler, Daniel D. Pinschewer","doi":"10.1016/j.immuni.2024.11.021","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.021","url":null,"abstract":"To interrogate the role of specific immune cells in infection, cancer, and autoimmunity, immunologists commonly use monoclonal depletion antibodies (depletion-mAbs) or genetically engineered mouse models (GEMMs). To generate a tool that combines specific advantages and avoids select drawbacks of the two methods, we engineered adeno-associated viral vectors expressing depletion mAbs (depletion-AAVs). Single-dose depletion-AAV administration durably eliminated lymphocyte subsets in mice and avoided accessory deficiencies of GEMMs, such as marginal zone defects in B cell-deficient animals. Depletion-AAVs can be used in animals of different genetic backgrounds, and multiple depletion-AAVs can readily be combined. Exploiting depletion-AAV technology, we showed that B cells were required for unimpaired CD4<sup>+</sup> and CD8<sup>+</sup> T cell responses to chronic lymphocytic choriomeningitis virus (LCMV) infection. Upon B cell depletion, CD8<sup>+</sup> T cells failed to suppress viremia, and they only helped resolve chronic infection when antibodies dampened viral loads. Our study positions depletion-AAVs as a versatile tool for immunological research.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"14 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1016/j.immuni.2024.11.020
Youliang Rao, Chao Qin, Ali Can Savas, Qizhi Liu, Shu Feng, Guoli Hou, Taolin Xie, Pinghui Feng
Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism—such as in innate immune responses—are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction. Mechanistically, CTPS1 interacts with and deamidates interferon regulatory factor 3 (IRF3). Deamidation at N85 impairs IRF3 binding to promoters containing IRF3-responsive elements, thus muting interferon (IFN) induction. Employing CTPS1 conditional deletion and IRF3 deamidated or deamidation-resistant knockin mice, we demonstrated that CTPS1-driven IRF3 deamidation restricts IFN induction in response to viral infection in vivo. However, during immune activation, IRF3 deamidation by CTPS1 is inhibited by glycogen synthase kinase 3 beta (GSK3β) to promote IFN induction. This work demonstrates how CTPS1 tames innate immunity independent of its role in pyrimidine synthesis, thus expanding the functional repertoire of metabolic enzymes into immune regulation.
{"title":"Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3","authors":"Youliang Rao, Chao Qin, Ali Can Savas, Qizhi Liu, Shu Feng, Guoli Hou, Taolin Xie, Pinghui Feng","doi":"10.1016/j.immuni.2024.11.020","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.020","url":null,"abstract":"Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism—such as in innate immune responses—are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction. Mechanistically, CTPS1 interacts with and deamidates interferon regulatory factor 3 (IRF3). Deamidation at N85 impairs IRF3 binding to promoters containing IRF3-responsive elements, thus muting interferon (IFN) induction. Employing CTPS1 conditional deletion and IRF3 deamidated or deamidation-resistant knockin mice, we demonstrated that CTPS1-driven IRF3 deamidation restricts IFN induction in response to viral infection in vivo. However, during immune activation, IRF3 deamidation by CTPS1 is inhibited by glycogen synthase kinase 3 beta (GSK3β) to promote IFN induction. This work demonstrates how CTPS1 tames innate immunity independent of its role in pyrimidine synthesis, thus expanding the functional repertoire of metabolic enzymes into immune regulation.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"32 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1016/j.immuni.2024.11.007
Milcah C. Scott, Zoë Steier, Mark J. Pierson, J. Michael Stolley, Stephen D. O’Flanagan, Andrew G. Soerens, Sathi P. Wijeyesinghe, Lalit K. Beura, Gayathri Dileepan, Brandon J. Burbach, Marco Künzli, Clare F. Quarnstrom, Olivia C. Ghirardelli Smith, Eyob Weyu, Sara E. Hamilton, Vaiva Vezys, Alex K. Shalek, David Masopust
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs—location, stimulation history, antigen persistence, and environment—resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
{"title":"Deep profiling deconstructs features associated with memory CD8+ T cell tissue residence","authors":"Milcah C. Scott, Zoë Steier, Mark J. Pierson, J. Michael Stolley, Stephen D. O’Flanagan, Andrew G. Soerens, Sathi P. Wijeyesinghe, Lalit K. Beura, Gayathri Dileepan, Brandon J. Burbach, Marco Künzli, Clare F. Quarnstrom, Olivia C. Ghirardelli Smith, Eyob Weyu, Sara E. Hamilton, Vaiva Vezys, Alex K. Shalek, David Masopust","doi":"10.1016/j.immuni.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.11.007","url":null,"abstract":"Tissue-resident memory CD8<sup>+</sup> T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs—location, stimulation history, antigen persistence, and environment—resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"22 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}