We reviewed optical and electrical properties of conjugated polymers. The charge transport models to describe the hole and electron transport mechanism are also included in the electrical properties of conjugated polymers. The effect of optical and electrical properties after doping is also indexed in this paper.
{"title":"Review on Optical and Electrical Properties of Conducting Polymers","authors":"M. Bajpai, R. Srivastava, R. Dhar, R. S. Tiwari","doi":"10.1155/2016/5842763","DOIUrl":"https://doi.org/10.1155/2016/5842763","url":null,"abstract":"We reviewed optical and electrical properties of conjugated polymers. The charge transport models to describe the hole and electron transport mechanism are also included in the electrical properties of conjugated polymers. The effect of optical and electrical properties after doping is also indexed in this paper.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"35 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89361813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present the thermoelectric properties of Antimony Selenide (Sb2Se3) obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time () approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient () was found to decrease with increasing temperature, electrical conductivity () was almost constant in the entire temperature range, and electronic thermal conductivity () increased with increasing temperature. With increase in temperature decreased from 1870 μV/K (at 300 K) to 719 μV/K (at 800 K), electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K) to 3.92 × 1015 W/m K s (at 800 K), and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K) to 20 × 1019/Ω m s (at 800 K). The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K) was found for hole concentration around 1019 cm−3.
本文介绍了用第一性原理计算得到的硒化锑(Sb2Se3)的热电性质。在密度泛函理论的范围内,利用FP-LAPW方法研究了电子能带结构。在300 K、600 K和800 K三种不同温度下,使用BoltzTrap代码使用恒定弛豫时间()近似计算热电性能。塞贝克系数()随温度升高而减小,电导率()在整个温度范围内几乎不变,电子导热系数()随温度升高而增大。随着温度的升高,电子导热系数从1870 μV/K (300 K)下降到719 μV/K (800 K),电子导热系数从1.56 × 1015 W/m K s (300 K)增加到3.92 × 1015 W/m K s (800 K);电导率从22 × 1019/Ω m s(在300 K时)下降到20 × 1019/Ω m s(在800 K时)。我们还计算了不同空穴浓度下的热电性能,发现在大温度范围内(从300 K到1000 K)具有良好热电性能的最佳空穴浓度为1019 cm−3左右。
{"title":"DFT Study on the Carrier Concentration and Temperature-Dependent Thermoelectric Properties of Antimony Selenide","authors":"A. Jayaraman, A. B. Kademane, Muralikrishna Molli","doi":"10.1155/2016/7296847","DOIUrl":"https://doi.org/10.1155/2016/7296847","url":null,"abstract":"We present the thermoelectric properties of Antimony Selenide (Sb2Se3) obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time () approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient () was found to decrease with increasing temperature, electrical conductivity () was almost constant in the entire temperature range, and electronic thermal conductivity () increased with increasing temperature. With increase in temperature decreased from 1870 μV/K (at 300 K) to 719 μV/K (at 800 K), electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K) to 3.92 × 1015 W/m K s (at 800 K), and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K) to 20 × 1019/Ω m s (at 800 K). The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K) was found for hole concentration around 1019 cm−3.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"78 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2016-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81317937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrasonic studies provide a wealth of information in understanding the molecular behavior and intermolecular interaction of polymer solvent mixtures. Attempts were made to measure ultrasonic velocity, density, and viscosity for the mixture of polyvinylidene fluoride (PVDF) in acetone and dimethylformamide (DMF) of various stoichiometric ratios at 300 K using crystal controlled ultrasonic interferometer (Mittal make), pyknometer (specific gravity bottle), and Ostwald viscometer, respectively. The acoustic parameters adiabatic compressibility (), intermolecular free path length (), acoustic impedance (), relative association (RA), ultrasonic attenuation (), and relaxation time () have been estimated using experimental data with well-known techniques. The variation of these acoustic parameters is explained in terms of solute-solvent molecular interaction in a polymer solution.
{"title":"Effect of Solvents on the Ultrasonic Velocity and Acoustic Parameters of Polyvinylidene Fluoride Solutions","authors":"S. S. Kulkarni, U. V. Khadke","doi":"10.1155/2016/9582582","DOIUrl":"https://doi.org/10.1155/2016/9582582","url":null,"abstract":"Ultrasonic studies provide a wealth of information in understanding the molecular behavior and intermolecular interaction of polymer solvent mixtures. Attempts were made to measure ultrasonic velocity, density, and viscosity for the mixture of polyvinylidene fluoride (PVDF) in acetone and dimethylformamide (DMF) of various stoichiometric ratios at 300 K using crystal controlled ultrasonic interferometer (Mittal make), pyknometer (specific gravity bottle), and Ostwald viscometer, respectively. The acoustic parameters adiabatic compressibility (), intermolecular free path length (), acoustic impedance (), relative association (RA), ultrasonic attenuation (), and relaxation time () have been estimated using experimental data with well-known techniques. The variation of these acoustic parameters is explained in terms of solute-solvent molecular interaction in a polymer solution.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"91 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90507293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The coalescing aid of propylene glycol phenyl ether (PPh) influences on the latexes system and its film formation process have been demonstrated in this paper. The latexes with different are synthesized by seeded semicontinuous emulsion polymerization. The PPh have a significant impact on the water evaporation stage, in which PPh decreased the water evaporation rate for a low latex system but accelerated the rate for a high latex. This result was quantified using Routh-Russel model which was a useful model for the prediction of the latex particle deformation mechanisms. The different amounts of PPh can change the latex particle deformation mechanisms. The TGA results show that the PPh still exist in the latexes films during drying. The microstructures of the latex film which dry under 70°C with the PPh for different time display that the PPh can accelerate the polymer molecules motion and the diffusion rate for the latex coalescence stage.
{"title":"Coalescing Aid Influences on Acrylic Latexes Property and Film Formation Process","authors":"Wang Yi, Zhonghua Chen, Yu Fei","doi":"10.1155/2016/1380791","DOIUrl":"https://doi.org/10.1155/2016/1380791","url":null,"abstract":"The coalescing aid of propylene glycol phenyl ether (PPh) influences on the latexes system and its film formation process have been demonstrated in this paper. The latexes with different are synthesized by seeded semicontinuous emulsion polymerization. The PPh have a significant impact on the water evaporation stage, in which PPh decreased the water evaporation rate for a low latex system but accelerated the rate for a high latex. This result was quantified using Routh-Russel model which was a useful model for the prediction of the latex particle deformation mechanisms. The different amounts of PPh can change the latex particle deformation mechanisms. The TGA results show that the PPh still exist in the latexes films during drying. The microstructures of the latex film which dry under 70°C with the PPh for different time display that the PPh can accelerate the polymer molecules motion and the diffusion rate for the latex coalescence stage.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"3 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91320941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present paper attempts to investigate the relationship between fabric porosity and light permeability of the knitted structures, namely, rib 1 × 1, rib 2 × 1, single jersey, and plain structure. The rationale is that pores (in a fabric) would allow light to pass through but at the same time provide a quantitative assessment of the UV light permeability of the knitted fabrics, an indication of the protective capacity of the fabrics against UV radiation. The porosity and corresponding light permeability of the knitted structures were measured after varying the following knitting parameters: stitch length, stitch density, and tension on the machine. Furthermore, this work has enabled the development of an apparatus that can measure the amount of light transmitted through the knitted fabrics. The results generated by the equipment were validated through the use of regression equations.
{"title":"Investigating the Relationship between Knitted Fabric Porosity and Light Permeability","authors":"Manoj Kumar Imrith, R. Unmar, S. Rosunee","doi":"10.1155/2016/7536108","DOIUrl":"https://doi.org/10.1155/2016/7536108","url":null,"abstract":"The present paper attempts to investigate the relationship between fabric porosity and light permeability of the knitted structures, namely, rib 1 × 1, rib 2 × 1, single jersey, and plain structure. The rationale is that pores (in a fabric) would allow light to pass through but at the same time provide a quantitative assessment of the UV light permeability of the knitted fabrics, an indication of the protective capacity of the fabrics against UV radiation. The porosity and corresponding light permeability of the knitted structures were measured after varying the following knitting parameters: stitch length, stitch density, and tension on the machine. Furthermore, this work has enabled the development of an apparatus that can measure the amount of light transmitted through the knitted fabrics. The results generated by the equipment were validated through the use of regression equations.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"11 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87196417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microstructure evolution of AZ31 magnesium alloy in annealing process had been investigated by experiment study at heating temperature range of 150°C–450°C and holding time range of 15 min–60 min. The effects of heating temperature and holding time on grain growth had been analyzed. The results presented that the grain size tends to grow up with the increase of holding time at a certain temperature. At a certain holding time, the grain size increased firstly and then decreased at the heating temperature range of 150–250°C. And when heating temperature is higher than 250°C, the grain grows up gradually with the increase of heating temperature. The grain growth model of AZ31 Mg alloy has been established by regression based on the experimental data at temperature of 250–450°C, and the relative error between model calculation results and experimental results is less than 19.07%. Activation energy of grain growth of AZ31 magnesium alloy had been determined.
在150℃~ 450℃的加热温度和15 min ~ 60 min的保温时间下,对AZ31镁合金退火过程中的组织演变进行了实验研究。分析了加热温度和保温时间对晶粒生长的影响。结果表明:在一定温度下,随着保温时间的延长,晶粒尺寸有增大的趋势;保温一定时间后,在150 ~ 250℃的加热温度范围内,晶粒尺寸先增大后减小。当加热温度高于250℃时,随着加热温度的升高,晶粒逐渐长大。基于250 ~ 450℃温度下的实验数据,通过回归建立了AZ31镁合金晶粒长大模型,模型计算结果与实验结果的相对误差小于19.07%。测定了AZ31镁合金晶粒长大的活化能。
{"title":"Microstructure Evolution and Grain Growth Model of AZ31 Magnesium Alloy under Condition of Isothermal","authors":"Zhongtang Wang, Ling-Yi Wang, Lizhi Liu","doi":"10.1155/2015/897686","DOIUrl":"https://doi.org/10.1155/2015/897686","url":null,"abstract":"Microstructure evolution of AZ31 magnesium alloy in annealing process had been investigated by experiment study at heating temperature range of 150°C–450°C and holding time range of 15 min–60 min. The effects of heating temperature and holding time on grain growth had been analyzed. The results presented that the grain size tends to grow up with the increase of holding time at a certain temperature. At a certain holding time, the grain size increased firstly and then decreased at the heating temperature range of 150–250°C. And when heating temperature is higher than 250°C, the grain grows up gradually with the increase of heating temperature. The grain growth model of AZ31 Mg alloy has been established by regression based on the experimental data at temperature of 250–450°C, and the relative error between model calculation results and experimental results is less than 19.07%. Activation energy of grain growth of AZ31 magnesium alloy had been determined.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2015-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74492319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common wet abrasion test and corrosion in aqueous solutions as previously reported in literature. The material loss rates to wear and corrosion were determined from the equations relating to wear and corrosion based on the ASTM designations. The results show that the combined actions of wear and corrosion contribute to the total loss of piston material immersed in brake oil. This is greater than either of their effects individually on cast Al alloy in the brake oil.
{"title":"Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil","authors":"O. Ajibola, D. Oloruntoba","doi":"10.1155/2015/763618","DOIUrl":"https://doi.org/10.1155/2015/763618","url":null,"abstract":"The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common wet abrasion test and corrosion in aqueous solutions as previously reported in literature. The material loss rates to wear and corrosion were determined from the equations relating to wear and corrosion based on the ASTM designations. The results show that the combined actions of wear and corrosion contribute to the total loss of piston material immersed in brake oil. This is greater than either of their effects individually on cast Al alloy in the brake oil.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"52 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81424228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The influence of varying amount of MgFeSi inoculant on properties of cast 6061 Al alloy for brake master piston application has been studied and reported in this paper. Cast samples were produced at three pouring temperatures (700, 750, and 800°C) with MgFeSi varied from 1 to 3%. Wear resistance tests were performed on cast alloy in brake oil. Wear resistance tests results were validated by nondestructive examinations using photomicroscopy, SEM, EDX, and XRD data. The addition of MgFeSi influenced both the mechanical (hardness, strength, and wear resistance) and metallurgical properties (microstructures) of the cast alloy. Al grains were more refined and yielded good strength properties. Inoculating the melt with MgFeSi forms insoluble compound particles and is responsible for grain refinement. The increased amount of MgFeSi from 1 to 3% improved the wear resistance of the cast piston under lubricating condition using brake oil.
{"title":"Effect of MgFeSi Inoculant on Properties of Cast 6061 Al Alloy for Brake Master Piston Application","authors":"O. Ajibola, D. Oloruntoba","doi":"10.1155/2015/756219","DOIUrl":"https://doi.org/10.1155/2015/756219","url":null,"abstract":"The influence of varying amount of MgFeSi inoculant on properties of cast 6061 Al alloy for brake master piston application has been studied and reported in this paper. Cast samples were produced at three pouring temperatures (700, 750, and 800°C) with MgFeSi varied from 1 to 3%. Wear resistance tests were performed on cast alloy in brake oil. Wear resistance tests results were validated by nondestructive examinations using photomicroscopy, SEM, EDX, and XRD data. The addition of MgFeSi influenced both the mechanical (hardness, strength, and wear resistance) and metallurgical properties (microstructures) of the cast alloy. Al grains were more refined and yielded good strength properties. Inoculating the melt with MgFeSi forms insoluble compound particles and is responsible for grain refinement. The increased amount of MgFeSi from 1 to 3% improved the wear resistance of the cast piston under lubricating condition using brake oil.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"147 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91156333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon (C) doped TiO2/CdS core-shell nanocomposite (C/TiO2/CdS) was synthesized using microemulsion method. Synthesized powder was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and UV-visible spectrophotometery. TEM images reveal that C/TiO2/CdS core-shell heterostructure is successfully prepared with CdS as a core and C doped TiO2 as a shell. UV-visible absorption spectra show that CdS nanoparticles act as a sensitizer and effectively enhance the photoabsorption capacity of C/TiO2/CdS nanocomposite in visible region. Visible light photocatalytic activity of synthesized nanocomposite was evaluated for the degradation of methylene blue. C/TiO2/CdS core-shell nanocomposite exhibits better photocatalytic activity as compared to bare TiO2, CdS, CdS/TiO2, and C doped TiO2.
{"title":"Synthesis, Characterization, and Investigation of Visible Light Photocatalytic Activity of C Doped TiO2/CdS Core-Shell Nanocomposite","authors":"A. Lavand, Y. S. Malghe, Suraj H. Singh","doi":"10.1155/2015/690568","DOIUrl":"https://doi.org/10.1155/2015/690568","url":null,"abstract":"Carbon (C) doped TiO2/CdS core-shell nanocomposite (C/TiO2/CdS) was synthesized using microemulsion method. Synthesized powder was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and UV-visible spectrophotometery. TEM images reveal that C/TiO2/CdS core-shell heterostructure is successfully prepared with CdS as a core and C doped TiO2 as a shell. UV-visible absorption spectra show that CdS nanoparticles act as a sensitizer and effectively enhance the photoabsorption capacity of C/TiO2/CdS nanocomposite in visible region. Visible light photocatalytic activity of synthesized nanocomposite was evaluated for the degradation of methylene blue. C/TiO2/CdS core-shell nanocomposite exhibits better photocatalytic activity as compared to bare TiO2, CdS, CdS/TiO2, and C doped TiO2.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"19 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81687773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Dubey, R. Tiwari, R. Tamrakar, Chandrabhushan Markande, G. Rathore, M. Pradhan
Phosphor doped with erbium ion with variable concentration (0.5–2 mol%) was synthesized by solid state reaction method. CaY2O4:Er3
采用固相反应法制备了掺有不同浓度(0.5 ~ 2 mol%)铒离子的荧光粉。CaY2O4: Er3
{"title":"Thermoluminescence and Photoluminescence Study of Erbium Doped CaY2O4 Phosphor","authors":"V. Dubey, R. Tiwari, R. Tamrakar, Chandrabhushan Markande, G. Rathore, M. Pradhan","doi":"10.1155/2015/745052","DOIUrl":"https://doi.org/10.1155/2015/745052","url":null,"abstract":"Phosphor doped with erbium ion with variable concentration (0.5–2 mol%) was synthesized by solid state reaction method. CaY2O4:Er3","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82497619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}