Brass has an attractive combination of properties, namely, good corrosion resistance, good wear properties, and high thermal and electrical conductivity. In this study, influence of selected alloy additions (Al and Ti) on performance of leaded brass alloys (CuZn39pb3) was investigated. The observation of microstructures, compression tests, and hardness tests were performed. The results of metallographic and mechanical tests indicate some influence of small amount additives of Al and Ti. Optical emission spectrometer (OES), light optical microscope (LOM), micro-Vickers hardness tester, and compression testing machine were used in this investigation. Consequently, Al had a significant effect on microstructure and mechanical properties of CuZn39Pb3 alloy. A larger compression strength at 0.31% wt of Al was obtained, as compared with the other alloys. Adding of Al and Ti led to the modification of the microstructure; thus, the compression strength was increased.
{"title":"Influence of Al and Ti Additions on Microstructure and Mechanical Properties of Leaded Brass Alloys","authors":"R. M. Hussein, O. Abd","doi":"10.1155/2014/909506","DOIUrl":"https://doi.org/10.1155/2014/909506","url":null,"abstract":"Brass has an attractive combination of properties, namely, good corrosion resistance, good wear properties, and high thermal and electrical conductivity. In this study, influence of selected alloy additions (Al and Ti) on performance of leaded brass alloys (CuZn39pb3) was investigated. The observation of microstructures, compression tests, and hardness tests were performed. The results of metallographic and mechanical tests indicate some influence of small amount additives of Al and Ti. Optical emission spectrometer (OES), light optical microscope (LOM), micro-Vickers hardness tester, and compression testing machine were used in this investigation. Consequently, Al had a significant effect on microstructure and mechanical properties of CuZn39Pb3 alloy. A larger compression strength at 0.31% wt of Al was obtained, as compared with the other alloys. Adding of Al and Ti led to the modification of the microstructure; thus, the compression strength was increased.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"31 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91249777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.
{"title":"Effect of Rotation on Propagation of Waves in Transversely Isotropic Thermoelastic Half-Space","authors":"R. Gupta, R. Gupta","doi":"10.1155/2014/621928","DOIUrl":"https://doi.org/10.1155/2014/621928","url":null,"abstract":"The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"27 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89592771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The localized surface plasmon resonance (LSPR) based optical properties such as light scattering, absorption, and extinction efficiencies of multimetallic and metal-semiconductor nanostructures will be studied. The effect of size, surrounding medium, interaction between the particles, composition of the particles, and substrate on LSPR peak position, its line width, and maxima of cross-sections will also be discussed to optimize the selected systems for various applications like plasmonic sensors and biomedical applications and to enhance the efficiency of solar cells. Therefore, by varying all these factors, the LSPR peak of multimetallic and metal-semiconductor nanostructures can be tuned over the entire UV-visible to infrared (IR) region of the electromagnetic spectrum. Moreover the optical properties of underlying semiconductor materials can be enhanced by combining the semiconductor with noble metal nanoparticles.
{"title":"Searching for Alternative Plasmonic Materials for Specific Applications","authors":"A. Bansal, S. S. Verma","doi":"10.1155/2014/897125","DOIUrl":"https://doi.org/10.1155/2014/897125","url":null,"abstract":"The localized surface plasmon resonance (LSPR) based optical properties such as light scattering, absorption, and extinction efficiencies of multimetallic and metal-semiconductor nanostructures will be studied. The effect of size, surrounding medium, interaction between the particles, composition of the particles, and substrate on LSPR peak position, its line width, and maxima of cross-sections will also be discussed to optimize the selected systems for various applications like plasmonic sensors and biomedical applications and to enhance the efficiency of solar cells. Therefore, by varying all these factors, the LSPR peak of multimetallic and metal-semiconductor nanostructures can be tuned over the entire UV-visible to infrared (IR) region of the electromagnetic spectrum. Moreover the optical properties of underlying semiconductor materials can be enhanced by combining the semiconductor with noble metal nanoparticles.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"67 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83052789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.60, 8.10, 11.01, 13.11, and 15.08. Moles concentrations were used as alkaline activators. Geopolymer mortar mixes were prepared by considering solution-to-fly ash ratio of 0.35, 0.40, and 0.45. The temperature of oven curing was maintained at 40, 60, 90, and 120°C each for a heating period of 24 hours and tested for compressive strength at the age of 3 days as test period after specified degree of heating. Test results show that the workability and compressive strength both increase with increase in concentration of sodium hydroxide solution for all solution-to-fly ash ratios. Degree of heating also plays vital role in accelerating the strength; however there is no large change in compressive strength beyond test period of three days after specified period of oven heating.
{"title":"Effect of Concentration of Sodium Hydroxide and Degree of Heat Curing on Fly Ash-Based Geopolymer Mortar","authors":"S. Patankar, Y. Ghugal, S. S. Jamkar","doi":"10.1155/2014/938789","DOIUrl":"https://doi.org/10.1155/2014/938789","url":null,"abstract":"Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.60, 8.10, 11.01, 13.11, and 15.08. Moles concentrations were used as alkaline activators. Geopolymer mortar mixes were prepared by considering solution-to-fly ash ratio of 0.35, 0.40, and 0.45. The temperature of oven curing was maintained at 40, 60, 90, and 120°C each for a heating period of 24 hours and tested for compressive strength at the age of 3 days as test period after specified degree of heating. Test results show that the workability and compressive strength both increase with increase in concentration of sodium hydroxide solution for all solution-to-fly ash ratios. Degree of heating also plays vital role in accelerating the strength; however there is no large change in compressive strength beyond test period of three days after specified period of oven heating.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"68 2","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91480618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the determination of the interlaminar stresses close to the free edges of general cross-ply composite laminates based on higher order equivalent single-layer theory (HESL). The laminates with finite dimensions were subjected to a bending moment, an axial force, and/or a torque for investigation. Full three-dimensional stresses in the interior and the boundary-layer regions were determined. The computed results were compared with those obtained from Reddy’s layerwise theory. It was found that HESL theory predicts precisely the interlaminar stresses near the free edges of laminates. Besides, high efficiency in terms of computational time is obtainable when HESL theory is used as compared with layerwise theory. Finally, various numerical results were presented for the cross-ply laminates. Also design guidelines were proposed to minimize the edge-effect problems in composite laminates.
{"title":"Analysis of Free Edge Stresses in Composite Laminates Using Higher Order Theories","authors":"H. Sarvestani, A. Naghashpour","doi":"10.1155/2014/253018","DOIUrl":"https://doi.org/10.1155/2014/253018","url":null,"abstract":"This paper presents the determination of the interlaminar stresses close to the free edges of general cross-ply composite laminates based on higher order equivalent single-layer theory (HESL). The laminates with finite dimensions were subjected to a bending moment, an axial force, and/or a torque for investigation. Full three-dimensional stresses in the interior and the boundary-layer regions were determined. The computed results were compared with those obtained from Reddy’s layerwise theory. It was found that HESL theory predicts precisely the interlaminar stresses near the free edges of laminates. Besides, high efficiency in terms of computational time is obtainable when HESL theory is used as compared with layerwise theory. Finally, various numerical results were presented for the cross-ply laminates. Also design guidelines were proposed to minimize the edge-effect problems in composite laminates.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"463 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86700540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently developed isothermal Kholiya’s EOS is modified to study the temperature dependent volume expansion and applied for NaCl crystal. The results obtained with the present model are in quite close agreement to the experimental values. The model is therefore extended to study the variation of bulk modulus and the coefficient of volume thermal expansion with temperature. Comparison of the obtained results with the experimental data demonstrates that an isothermal EOS may also be modified to study the temperature dependent elastic properties. The present study also reveals that the quasi harmonic approximation, that is, the product of bulk modulus and the coefficient of volume thermal expansion as constant, is valid in case of NaCl crystal.
{"title":"Temperature Dependence of Thermoelastic Properties for NaCl Crystal","authors":"K. Kholiya, J. Chandra","doi":"10.1155/2014/642726","DOIUrl":"https://doi.org/10.1155/2014/642726","url":null,"abstract":"Recently developed isothermal Kholiya’s EOS is modified to study the temperature dependent volume expansion and applied for NaCl crystal. The results obtained with the present model are in quite close agreement to the experimental values. The model is therefore extended to study the variation of bulk modulus and the coefficient of volume thermal expansion with temperature. Comparison of the obtained results with the experimental data demonstrates that an isothermal EOS may also be modified to study the temperature dependent elastic properties. The present study also reveals that the quasi harmonic approximation, that is, the product of bulk modulus and the coefficient of volume thermal expansion as constant, is valid in case of NaCl crystal.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"43 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82521868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54 nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity.
{"title":"Biosynthesis, Characterization, and Antidermatophytic Activity of Silver Nanoparticles Using Raamphal Plant (Annona reticulata) Aqueous Leaves Extract","authors":"P. Singh, G. Vidyasagar","doi":"10.1155/2014/412452","DOIUrl":"https://doi.org/10.1155/2014/412452","url":null,"abstract":"The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54 nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"136 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2014-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76727945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pectin-g-polyacrylamide (denoted as Pec-g-PAAm) and pectin-g-polyacrylic acid (denoted as Pec-g-PAA) were synthesized using pectin, acrylamide, and acrylic acid as starting materials. The grafted polymers were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyser (TGA), and scanning electron microscopy (SEM). The corrosion inhibition behaviour of the grafted polymers on mild steel in 3.5% NaCl was evaluated electrochemically through Tafel polarization and impedance studies. The corrosion inhibition performance of both the polymers was found to be around 85%.
{"title":"Water-Soluble and Biodegradable Pectin-Grafted Polyacrylamide and Pectin-Grafted Polyacrylic Acid: Electrochemical Investigation of Corrosion-Inhibition Behaviour on Mild Steel in 3.5% NaCl Media","authors":"R. Geethanjali, A. F. Sabirneeza, S. Subhashini","doi":"10.1155/2014/356075","DOIUrl":"https://doi.org/10.1155/2014/356075","url":null,"abstract":"Pectin-g-polyacrylamide (denoted as Pec-g-PAAm) and pectin-g-polyacrylic acid (denoted as Pec-g-PAA) were synthesized using pectin, acrylamide, and acrylic acid as starting materials. The grafted polymers were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyser (TGA), and scanning electron microscopy (SEM). The corrosion inhibition behaviour of the grafted polymers on mild steel in 3.5% NaCl was evaluated electrochemically through Tafel polarization and impedance studies. The corrosion inhibition performance of both the polymers was found to be around 85%.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"15 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80422891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Tamrakar, D. P. Bisen, C. S. Robinson, I. P. Sahu, N. Brahme
Gd2O3:Yb3+ phosphor has been synthesized by the solid state reaction method with boric acid used as a flux. The resulting Gd2O3:Yb3+ phosphor was characterized by X-ray diffraction (XRD) technique, Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), and photoluminescence and thermoluminescence. The results of the XRD show that obtained Gd2O3:Yb3+ phosphor has a cubic structure. The average crystallite sizes could be calculated as 42.9 nm, confirmed by the TEM results. The study suggested that Yb3+ doped phosphors are potential luminescence material for IR laser diode pumping.
{"title":"Ytterbium Doped Gadolinium Oxide (Gd2O3:Yb3","authors":"R. Tamrakar, D. P. Bisen, C. S. Robinson, I. P. Sahu, N. Brahme","doi":"10.1155/2014/396147","DOIUrl":"https://doi.org/10.1155/2014/396147","url":null,"abstract":"Gd2O3:Yb3+ phosphor has been synthesized by the solid state reaction method with boric acid used as a flux. The resulting Gd2O3:Yb3+ phosphor was characterized by X-ray diffraction (XRD) technique, Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), and photoluminescence and thermoluminescence. The results of the XRD show that obtained Gd2O3:Yb3+ phosphor has a cubic structure. The average crystallite sizes could be calculated as 42.9 nm, confirmed by the TEM results. The study suggested that Yb3+ doped phosphors are potential luminescence material for IR laser diode pumping.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"12 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73498057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main goal of this study was to evaluate the performance of new adsorbent, treated Peganum harmala-L seeds (TPHS), for the removal of Ni (II) from aqueous solution. Batch experiments were performed as a function of various experimental parameters. The adsorption studies included both equilibrium adsorption isotherms and kinetics. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 91.74 mg/g at pH 7. Kinetics studies showed better applicability for pseudo-second-order model for both adsorbents. The negative value of confirmed the feasibility and spontaneity of TPHS for Ni (II) adsorption.
{"title":"Adsorbent Ability of Treated Peganum harmala-L Seeds for the Removal of Ni (II) from Aqueous Solutions: Kinetic, Equilibrium and Thermodynamic Studies","authors":"M. Ghasemi, N. Ghasemi, Javad Azimi-Amin","doi":"10.1155/2014/459674","DOIUrl":"https://doi.org/10.1155/2014/459674","url":null,"abstract":"The main goal of this study was to evaluate the performance of new adsorbent, treated Peganum harmala-L seeds (TPHS), for the removal of Ni (II) from aqueous solution. Batch experiments were performed as a function of various experimental parameters. The adsorption studies included both equilibrium adsorption isotherms and kinetics. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 91.74 mg/g at pH 7. Kinetics studies showed better applicability for pseudo-second-order model for both adsorbents. The negative value of confirmed the feasibility and spontaneity of TPHS for Ni (II) adsorption.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"221 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2014-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90710021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}