Restoring sensory function post amputation remains a major challenge. Peripheral nerve stimulation and targeted reinnervation may partially restore somatotopic feedback, but their need for surgery hinders widespread adoption. Here, we investigate the feasibility of transcutaneous spinal cord stimulation (tSCS) as a non-invasive approach for sensory restoration in upper-limb amputees. In a study involving seventeen able-bodied participants and five individuals with upper-limb amputation, we show that tSCS can evoke a range of sensations, including touch, tapping, vibration, and movement, perceived as originating from the missing limb. Notably, these perceptions were primarily isolated to the missing limb and absent in the residual limb in 98% of trials. Participants with amputations found tSCS tolerable, with some reporting increased comfort during stimulation. tSCS evoked sensations in the fingertips of 93% of able-bodied participants, though these were mainly paraesthetic. We further characterised how stimulation parameters, including electrode placement, carrier frequency, and burst frequency, modulated the quality and type of perceived sensations. Additionally, we show that tSCS maintained force proprioception necessary for effective prosthesis control. These findings support the potential of tSCS as a non-invasive sensory feedback approach for upper-limb prosthesis users.
Previously, we proposed a power-free isokinetic training robot designed to provide resistive isokinetic training for knee injury patients during advanced-stage rehabilitation. However, patients in the early stage often lack sufficient muscle strength and necessitate assistive support. To address this limitation, this study introduces a hybrid assistive-resistive isokinetic training robot that integrates active assistance for early-stage knee rehabilitation and power-free resistive training for advanced stages. The system features a compact mechanical design and a reconfigurable control circuit capable of dynamically switching among three modes: active, passive (regeneration), and passive (consumption). Ten healthy subjects and ten knee-injury patients participated in the experimental validation. The results confirmed the adaptability of the system across multiple rehabilitation stages. These findings demonstrate the feasibility of the hybrid assistive-resistive isokinetic training robot and highlight the potential of the system for both clinical application and home-based rehabilitation. Future work will focus on extending the system to multi-joint training and enhancing control algorithms for broader patient populations.
Robotic devices can expand the repertoire of rehabilitation methods by enabling actions that cannot be replicated by a physical therapist. We previously developed a technique, we term 'rapid assistance,' that can assist movements beginning within the electromechanical delay between muscle activation and muscle contraction. Here, we evaluated the effects of repeated arm extension training with rapid assistance in older adults (n = 18) during a single session. We compared training with rapid assistance to a control group that performed unassisted arm extension training. Participants positively adapted to rapid assistance indicated by quickening reaction times (15.69%, t = -1.79, p = 0.089, d = 0.36) and greater extension angular velocities (47.93%, t = 3.47, p = 0.002, d = 0.56) compared to the control group following training. These motor performance improvements following rapid assistance training may be due to reducing Golgi-tendon inhibition during muscle contraction thereby, introducing an alternate strategy to improve motor performance. This specialized assistive timing may address a trade-off present in rehabilitative practice between assisting a patient or sufficiently challenging them to facilitate functional recovery.

