Conventional thresholding techniques for graph theory analysis, such as absolute, proportional and mean degree, have often been used in characterizing human brain networks under different mental disorders, such as mental stress. However, these approaches may not always be reliable as conventional thresholding approaches are subjected to human biases. Using a mental resilience study, we investigate if data-driven thresholding techniques such as Global Cost Efficiency (GCE-abs) and Orthogonal Minimum Spanning Trees (OMSTs) could provide equivalent results, whilst eliminating human biases. We implemented Phase Slope Index (PSI) to compute effective brain connectivity, and applied data-driven thresholding approaches to filter the brain networks in order to identify key features of low resilience within a cohort of healthy individuals. Our dataset encompassed resting-state EEG recordings gathered from a total of 36 participants (31 females and 5 males). Relevant features were extracted to train and validate a classifier model (Support Vector Machine, SVM). The detection of low stress resilience among healthy individuals using the SVM model scores an accuracy of 80.6% with GCE-abs, and 75% with OMSTs, respectively.
{"title":"Detection of Low Resilience Using Data-Driven Effective Connectivity Measures","authors":"Ayman Siddiqui;Rumaisa Abu Hasan;Syed Saad Azhar Ali;Irraivan Elamvazuthi;Cheng-Kai Lu;Tong Boon Tang","doi":"10.1109/TNSRE.2024.3465269","DOIUrl":"10.1109/TNSRE.2024.3465269","url":null,"abstract":"Conventional thresholding techniques for graph theory analysis, such as absolute, proportional and mean degree, have often been used in characterizing human brain networks under different mental disorders, such as mental stress. However, these approaches may not always be reliable as conventional thresholding approaches are subjected to human biases. Using a mental resilience study, we investigate if data-driven thresholding techniques such as Global Cost Efficiency (GCE-abs) and Orthogonal Minimum Spanning Trees (OMSTs) could provide equivalent results, whilst eliminating human biases. We implemented Phase Slope Index (PSI) to compute effective brain connectivity, and applied data-driven thresholding approaches to filter the brain networks in order to identify key features of low resilience within a cohort of healthy individuals. Our dataset encompassed resting-state EEG recordings gathered from a total of 36 participants (31 females and 5 males). Relevant features were extracted to train and validate a classifier model (Support Vector Machine, SVM). The detection of low stress resilience among healthy individuals using the SVM model scores an accuracy of 80.6% with GCE-abs, and 75% with OMSTs, respectively.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"32 ","pages":"3657-3668"},"PeriodicalIF":4.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1109/TNSRE.2024.3465016
Kalyn M. Kearney;Tamara Ordonez Diaz;Joel B. Harley;Jennifer A. Nichols
Muscle fatigue impacts upper extremity function but is often overlooked in biomechanical models. The present work leveraged a transfer learning approach to improve torque predictions during fatiguing upper extremity movements. We developed two artificial neural networks to model sustained elbow flexion: one trained solely on recorded data (i.e., direct learning) and one pre-trained on simulated data and fine-tuned on recorded data (i.e., transfer learning). We simulated muscle activations and joint torques using a musculoskeletal model and a muscle fatigue model (n = 1,701 simulations). We also recorded static subject-specific features (e.g., anthropometric measurements) and dynamic muscle activations and torques during sustained elbow flexion in healthy young adults (n = 25 subjects). Using the simulated dataset, we pre-trained a long short-term memory neural network (LSTM) to regress fatiguing elbow flexion torque from muscle activations. We concatenated this pre-trained LSTM with a feedforward architecture, and fine-tuned the model on recorded muscle activations and static features to predict elbow flexion torques. We trained a similar architecture solely on the recorded data and compared each neural network’s predictions on 5 leave-out subjects’ data. The transfer learning model outperformed the direct learning model, as indicated by a decrease of 24.9% in their root-mean-square-errors (6.22 Nm and 8.28 Nm, respectively). The transfer learning model and direct learning model outperformed analogous musculoskeletal simulations, which consistently underpredicted elbow flexion torque. Our results suggest that transfer learning from simulated to recorded datasets can decrease reliance on assumptions inherent to biomechanical models and yield predictions robust to real-world conditions.
{"title":"From Simulation to Reality: Predicting Torque With Fatigue Onset via Transfer Learning","authors":"Kalyn M. Kearney;Tamara Ordonez Diaz;Joel B. Harley;Jennifer A. Nichols","doi":"10.1109/TNSRE.2024.3465016","DOIUrl":"10.1109/TNSRE.2024.3465016","url":null,"abstract":"Muscle fatigue impacts upper extremity function but is often overlooked in biomechanical models. The present work leveraged a transfer learning approach to improve torque predictions during fatiguing upper extremity movements. We developed two artificial neural networks to model sustained elbow flexion: one trained solely on recorded data (i.e., direct learning) and one pre-trained on simulated data and fine-tuned on recorded data (i.e., transfer learning). We simulated muscle activations and joint torques using a musculoskeletal model and a muscle fatigue model (n = 1,701 simulations). We also recorded static subject-specific features (e.g., anthropometric measurements) and dynamic muscle activations and torques during sustained elbow flexion in healthy young adults (n = 25 subjects). Using the simulated dataset, we pre-trained a long short-term memory neural network (LSTM) to regress fatiguing elbow flexion torque from muscle activations. We concatenated this pre-trained LSTM with a feedforward architecture, and fine-tuned the model on recorded muscle activations and static features to predict elbow flexion torques. We trained a similar architecture solely on the recorded data and compared each neural network’s predictions on 5 leave-out subjects’ data. The transfer learning model outperformed the direct learning model, as indicated by a decrease of 24.9% in their root-mean-square-errors (6.22 Nm and 8.28 Nm, respectively). The transfer learning model and direct learning model outperformed analogous musculoskeletal simulations, which consistently underpredicted elbow flexion torque. Our results suggest that transfer learning from simulated to recorded datasets can decrease reliance on assumptions inherent to biomechanical models and yield predictions robust to real-world conditions.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"32 ","pages":"3669-3676"},"PeriodicalIF":4.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684821","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1109/TNSRE.2024.3462392
Tongyue He;Junxin Chen;Xu Xu;Giancarlo Fortino;Wei Wang
With the development of digital medical technology, ubiquitous smartphones are emerging as valuable tools for the detection of complex and elusive diseases. This paper exploits smartphone walking recording for early detection of Parkinson’s disease (PD) and finds that walking recording empowered by deep learning is a valid digital biomarker for early-recognizing PD patients. Specifically, the inertial sensor data is preprocessed, including normalization, scaling, and rotation, and then the processed data is fed into the proposed deep NeuroEnhanceNet. Finally, determine the individual prediction score using the PD-prone strategy and generate the detection results. The proposed deep NeuroEnhanceNet, specifically designed for inertial sensor data, can focus on both the long-term data characteristics within a single channel and the inter-channel correlations. Our method obtains a low false negative rate of 0.053 for the early detection of PD. We further analyze and compare the effectiveness of digital biomarkers captured from the walking and resting processes for early detection of PD. All the code for this work is available at: https://github.com/heyiyia/NeuroEnhanceNet