首页 > 最新文献

Int. J. Sociotechnology Knowl. Dev.最新文献

英文 中文
Examining E-Government Enabling of E-Health Service Through the Lens of Structuration Theory 结构理论视角下电子医疗服务的电子政务赋能研究
Pub Date : 2020-07-01 DOI: 10.4018/ijskd.2020070102
T. Iyamu
The concepts of e-government and e-health have usually been separately studied and sparsely implemented in many developing countries. In the few studies where both concepts are combined, the role of e-government is hardly examined in the implementation and practice of e-health. This article offers an exploratory analysis and provides insight on the factors that influence the complementarity of both concepts, with focus on the Africa continent. Existing literature in the areas of e-government and e-health were gathered and used as data, from a qualitative method viewpoint. Dimensions of change from the perspective of the structuration theory was employed as a lens to guide the data analysis, which was conducted by using the hermeneutic approach. From the analysis, the role of the e-government in the implementation and practice of e-health was found to manifest from six main factors, which are source, platforms, collaboration, transparency, heterogeneity, and privacy. Based on these factors, a model was developed, which is intended to guide professionals in their practices. Also, the study might be of interest to academics from theoretical standpoint.
在许多发展中国家,电子政务和电子保健的概念通常是单独研究和很少实施的。在将这两个概念结合起来的少数研究中,电子政务在电子卫生的实施和实践中的作用几乎没有得到检验。本文对影响这两个概念互补性的因素进行了探索性分析,并提供了见解,重点是非洲大陆。从定性方法的角度,收集电子政务和电子卫生领域的现有文献并将其用作数据。以结构理论视角下的变化维度为视角指导数据分析,运用解释学方法进行数据分析。通过分析发现,电子政务在电子医疗实施和实践中的作用主要体现在六个方面,即来源、平台、协作、透明度、异质性和隐私性。基于这些因素,开发了一个模型,旨在指导专业人员的实践。此外,从理论的角度来看,该研究可能会引起学术界的兴趣。
{"title":"Examining E-Government Enabling of E-Health Service Through the Lens of Structuration Theory","authors":"T. Iyamu","doi":"10.4018/ijskd.2020070102","DOIUrl":"https://doi.org/10.4018/ijskd.2020070102","url":null,"abstract":"The concepts of e-government and e-health have usually been separately studied and sparsely implemented in many developing countries. In the few studies where both concepts are combined, the role of e-government is hardly examined in the implementation and practice of e-health. This article offers an exploratory analysis and provides insight on the factors that influence the complementarity of both concepts, with focus on the Africa continent. Existing literature in the areas of e-government and e-health were gathered and used as data, from a qualitative method viewpoint. Dimensions of change from the perspective of the structuration theory was employed as a lens to guide the data analysis, which was conducted by using the hermeneutic approach. From the analysis, the role of the e-government in the implementation and practice of e-health was found to manifest from six main factors, which are source, platforms, collaboration, transparency, heterogeneity, and privacy. Based on these factors, a model was developed, which is intended to guide professionals in their practices. Also, the study might be of interest to academics from theoretical standpoint.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"62 1","pages":"26-40"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83946512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks 一种高效的基于神经网络的异构网络预测方案
Pub Date : 2020-04-01 DOI: 10.4018/ijskd.2020040104
K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer
Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.
Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service_ (QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction。Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction。Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas。Additionally、theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers。BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation、allrandomly。Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture。Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused。Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints。Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation。Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS。
{"title":"An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks","authors":"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer","doi":"10.4018/ijskd.2020040104","DOIUrl":"https://doi.org/10.4018/ijskd.2020040104","url":null,"abstract":"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"24 1","pages":"63-76"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90828022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
New Detection Mechanism for Distributed Denial of Service Attacks in Software Defined Networks 软件定义网络分布式拒绝服务攻击的新检测机制
Pub Date : 2020-04-01 DOI: 10.4018/ijskd.2020040101
K. Hosny, Ameer E. Gouda, Ehab R. Mohamed
Softwaredefinednetworks(SDN)arearecentlydevelopedformforcontrollingnetworkmanagement byprovidingcentralizedcontrolunitcalledtheController.ThismasterControllerisagreatpower pointbutatthesametimeitisunfortunatelyafailurepointandaseriousloopholeifitistargetedand droppedbyattacks.OneofthemostserioustypesofattacksistheinabilitytoaccesstheController, whichisknownasthedistributeddenialofservice(DDoS)attack.ThisresearchshowshowDDoS attackcandeplete the resourcesof theControllerandproposesa lightweightmechanism,which worksattheControlleranddetectsaDDoSattackintheearlystages.Theproposedmechanismcan notonlydetecttheattack,butalsoidentifyattackpathsandinitiateamitigationprocesstoprovide somedegreeofprotectiontonetworkdevicesimmediatelyaftertheattackisdetected.Theproposed mechanismdependsonahybridtechniquethatmergesbetweentheaverageflowinitiationrate,and theflowspecificationofthecomingtraffictothenetwork. KeywoRDS Average Flow Initiation Rate, DDoS Attacks, Flow Initiation Rate, Flow Specification, SDN Controller, SDN, Security, Window Size
Softwaredefinednetworks(SDN)arearecentlydevelopedformforcontrollingnetworkmanagement byprovidingcentralizedcontrolunitcalledtheController。ThismasterControllerisagreatpower pointbutatthesametimeitisunfortunatelyafailurepointandaseriousloopholeifitistargetedand droppedbyattacks。OneofthemostserioustypesofattacksistheinabilitytoaccesstheController, whichisknownasthedistributeddenialofservice(DDoS)attack。ThisresearchshowshowDDoS attackcandeplete the > resourcesof theControllerandproposesa lightweightmechanism,which worksattheControlleranddetectsaDDoSattackintheearlystages。Theproposedmechanismcan notonlydetecttheattack,butalsoidentifyattackpathsandinitiateamitigationprocesstoprovide somedegreeofprotectiontonetworkdevicesimmediatelyaftertheattackisdetected。Theproposed mechanismdependsonahybridtechniquethatmergesbetweentheaverageflowinitiationrate,and theflowspecificationofthecomingtraffictothenetwork。关键词:平均流量起始率,DDoS攻击,流量起始率,流量规格,SDN控制器,SDN,安全性,窗口大小
{"title":"New Detection Mechanism for Distributed Denial of Service Attacks in Software Defined Networks","authors":"K. Hosny, Ameer E. Gouda, Ehab R. Mohamed","doi":"10.4018/ijskd.2020040101","DOIUrl":"https://doi.org/10.4018/ijskd.2020040101","url":null,"abstract":"Softwaredefinednetworks(SDN)arearecentlydevelopedformforcontrollingnetworkmanagement byprovidingcentralizedcontrolunitcalledtheController.ThismasterControllerisagreatpower pointbutatthesametimeitisunfortunatelyafailurepointandaseriousloopholeifitistargetedand droppedbyattacks.OneofthemostserioustypesofattacksistheinabilitytoaccesstheController, whichisknownasthedistributeddenialofservice(DDoS)attack.ThisresearchshowshowDDoS attackcandeplete the resourcesof theControllerandproposesa lightweightmechanism,which worksattheControlleranddetectsaDDoSattackintheearlystages.Theproposedmechanismcan notonlydetecttheattack,butalsoidentifyattackpathsandinitiateamitigationprocesstoprovide somedegreeofprotectiontonetworkdevicesimmediatelyaftertheattackisdetected.Theproposed mechanismdependsonahybridtechniquethatmergesbetweentheaverageflowinitiationrate,and theflowspecificationofthecomingtraffictothenetwork. KeywoRDS Average Flow Initiation Rate, DDoS Attacks, Flow Initiation Rate, Flow Specification, SDN Controller, SDN, Security, Window Size","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"3 1","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91041410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Deep Learning on Digital Image Splicing Detection Using CFA Artifacts 基于CFA伪影的深度学习数字图像拼接检测
Pub Date : 2020-04-01 DOI: 10.4018/ijskd.2020040102
Nadheer Younus Hussien, R. Mahmoud, Hala H. Zayed
Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety.Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages.Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions.Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess.Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented.Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA).Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA) to reduce thedimensionalityof the resulting featurevectors.Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images.TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise.Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy.Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod. KeywoRDS Color Filter Array, Deep Belief Network, Deep Learning, Digital Image Forgery, Splicing Forgery
Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety。Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages。Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions。Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess。Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented。Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA)。Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA)→reduce→thedimensionalityof→结果→featurevectors。Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images。TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise。Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy。Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod。关键词:彩色滤波器阵列,深度信念网络,深度学习,数字图像伪造,拼接伪造
{"title":"Deep Learning on Digital Image Splicing Detection Using CFA Artifacts","authors":"Nadheer Younus Hussien, R. Mahmoud, Hala H. Zayed","doi":"10.4018/ijskd.2020040102","DOIUrl":"https://doi.org/10.4018/ijskd.2020040102","url":null,"abstract":"Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety.Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages.Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions.Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess.Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented.Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA).Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA) to reduce thedimensionalityof the resulting featurevectors.Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images.TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise.Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy.Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod. KeywoRDS Color Filter Array, Deep Belief Network, Deep Learning, Digital Image Forgery, Splicing Forgery","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"98 1","pages":"31-44"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78576533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Towards Extract-Transform-Load Operations in a Big Data context 面向大数据环境下的提取-转换-加载操作
Pub Date : 2020-04-01 DOI: 10.4018/ijskd.2020040105
Hana Mallek, Faïza Ghozzi, F. Gargouri
BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially thedecisional support systemdomain,where the integrationof processes shouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals.Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery.Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure.Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism.ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations. KEywORDS Big Data, ETL, Hbase, Map Reduce, Multidimensional Structure
BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia应用程序,如Facebook, Twitter等,在数据的不断增长中,许多领域都受到了影响,特别是thedecisional supportsystemdomain,where theintegrationof processesshouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals。Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order_ tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery。Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure。Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism。ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations。关键词:大数据,ETL, Hbase, Map Reduce,多维结构
{"title":"Towards Extract-Transform-Load Operations in a Big Data context","authors":"Hana Mallek, Faïza Ghozzi, F. Gargouri","doi":"10.4018/ijskd.2020040105","DOIUrl":"https://doi.org/10.4018/ijskd.2020040105","url":null,"abstract":"BigDataemergedafterabigexplosionofdatafromtheWeb2.0,digitalsensors,andsocialmedia applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially thedecisional support systemdomain,where the integrationof processes shouldbeadaptedtosupportthishugeamountofdatatoimproveanalysisgoals.Thebasicpurpose ofthisresearcharticleistoadaptextract-transform-loadprocesseswithBigDatatechnologies,in order tosupportnotonlythisevolutionofdatabutalsotheknowledgediscovery.Inthisarticle, anewapproachcalledBigDimensionalETL(BigDimETL)issuggestedtodealwithETLbasic operationsandtakeintoaccountthemultidimensionalstructure.Inordertoacceleratedatahandling, theMapReduceparadigmisusedtoenhancedatawarehousingcapabilitiesandHBaseasadistributed storagemechanism.ExperimentalresultsconfirmthattheETLoperationperformswellespecially withadaptedoperations. KEywORDS Big Data, ETL, Hbase, Map Reduce, Multidimensional Structure","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"96 1","pages":"77-95"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76865075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Effect of Controlling Parameters of Tone Reservation Based on Null Subcarriers (TRNS) on the Performance of OFDM Systems 基于零子载波(TRNS)的音调保留控制参数对OFDM系统性能的影响
Pub Date : 2020-04-01 DOI: 10.4018/ijskd.2020040103
Mohamed Mounir, M. B. Mashade
High data rate communication systems usually implement Orthogonal Frequency Division Multiplexing(OFDM)tofacefrequencyselectivity.HighPeaktoAveragePowerRatio(PAPR)isan OFDMdisadvantagethatcausesBitErrorRate(BER)degradationandout-of-band(OOB)radiation whenOFDMsignalpassthroughnonlinearPowerAmplifier(PA).Inordertoovercomethisproblem largerInputBack-Off(IBO)isrequired.However, largeIBOdecreases thePAefficiency.PAPR reductiontechniquesareusedtoreducetherequiredIBO,sothatPAefficiencyissaved.Several PAPRreductionmethodsareintroducedinliterature,amongthemToneReservationbasedonNull Subcarriers(TRNS)isdownwardcompatibleversionofToneReservation(TR)withsmallexcessin theaveragepowerandlowcomputationalcomplexitycomparedtoothers.Aswillbeshown,TRNS is the best practical one of the four downward compatible techniques. Performance of TRNS is controlledbythreeparameters;numberofpeakreductiontones(PRTs),predefinedthreshold(Amax), andnumberofiterations(Itr).InordertoincreasePAPRreductiongain,enhanceBERperformance, andreducetherequiredIBOtofollowthegivenpowerspectraldensity(PSD),wehavetochoosethe valuesoftheseparametersadequately.Resultsshowedthat,wehavetoreducethethresholdvalue totheaverage(i.e.Amax=0dB).Also,wehavetoincreasenumberofPRTs.However,wehaveto maintainthespectrumshape.Finally,wehavetochoosemoderatenumberofiterations(e.g.Itr≈50), asexcessiveincreaseinnumberofiterationsisnotuseful,especiallyathighPAPRvalues. KEywORDS Orthogonal Frequency Division Multiplexing (OFDM), Peak To Average Power Ratio (PAPR), Tone Reservation Based On Null Subcarriers (TRNS) International Journal of Sociotechnology and Knowledge Development Volume 12 • Issue 2 • April-June 2020
高数据率通信系统通常实现正交频分复用(OFDM)tofacefrequencyselectivity.HighPeaktoAveragePowerRatio(PAPR)isan OFDMdisadvantagethatcausesBitErrorRate(BER)degradationandout-of-band(OOB)radiation whenOFDMsignalpassthroughnonlinearPowerAmplifier(PA)。Inordertoovercomethisproblem largerInputBack-Off(IBO)isrequired。However, largeIBOdecreases thePAefficiency。PAPR reductiontechniquesareusedtoreducetherequiredIBO,sothatPAefficiencyissaved。Several PAPRreductionmethodsareintroducedinliterature,amongthemToneReservationbasedonNull子运营商(TRNS)isdownwardcompatibleversionofToneReservation(TR)withsmallexcessin theaveragepowerandlowcomputationalcomplexitycomparedtoothers。Aswillbeshown,TRNS是四种向下兼容技术中最实用的一种。trns_的性能为controlledbythreeparameters;numberofpeakreductiontones(PRTs),predefinedthreshold(Amax), andnumberofiterations(Itr)。InordertoincreasePAPRreductiongain、enhanceBERperformance、andreducetherequiredIBOtofollowthegivenpowerspectraldensity(PSD)、wehavetochoosethe valuesoftheseparametersadequately。Resultsshowedthat、wehavetoreducethethresholdvalue totheaverage(i.e.Amax=0dB).Also、wehavetoincreasenumberofPRTs。However,wehaveto maintainthespectrumshape.Finally,wehavetochoosemoderatenumberofiterations(e.g.Itr≈50),asexcessiveincreaseinnumberofiterationsisnotuseful,especiallyathighPAPRvalues。关键词正交频分复用(OFDM),峰值平均功率比(PAPR),基于零子载波(TRNS)的音调保留国际社会技术与知识发展杂志第12卷第2期2020年4月- 6月
{"title":"Effect of Controlling Parameters of Tone Reservation Based on Null Subcarriers (TRNS) on the Performance of OFDM Systems","authors":"Mohamed Mounir, M. B. Mashade","doi":"10.4018/ijskd.2020040103","DOIUrl":"https://doi.org/10.4018/ijskd.2020040103","url":null,"abstract":"High data rate communication systems usually implement Orthogonal Frequency Division Multiplexing(OFDM)tofacefrequencyselectivity.HighPeaktoAveragePowerRatio(PAPR)isan OFDMdisadvantagethatcausesBitErrorRate(BER)degradationandout-of-band(OOB)radiation whenOFDMsignalpassthroughnonlinearPowerAmplifier(PA).Inordertoovercomethisproblem largerInputBack-Off(IBO)isrequired.However, largeIBOdecreases thePAefficiency.PAPR reductiontechniquesareusedtoreducetherequiredIBO,sothatPAefficiencyissaved.Several PAPRreductionmethodsareintroducedinliterature,amongthemToneReservationbasedonNull Subcarriers(TRNS)isdownwardcompatibleversionofToneReservation(TR)withsmallexcessin theaveragepowerandlowcomputationalcomplexitycomparedtoothers.Aswillbeshown,TRNS is the best practical one of the four downward compatible techniques. Performance of TRNS is controlledbythreeparameters;numberofpeakreductiontones(PRTs),predefinedthreshold(Amax), andnumberofiterations(Itr).InordertoincreasePAPRreductiongain,enhanceBERperformance, andreducetherequiredIBOtofollowthegivenpowerspectraldensity(PSD),wehavetochoosethe valuesoftheseparametersadequately.Resultsshowedthat,wehavetoreducethethresholdvalue totheaverage(i.e.Amax=0dB).Also,wehavetoincreasenumberofPRTs.However,wehaveto maintainthespectrumshape.Finally,wehavetochoosemoderatenumberofiterations(e.g.Itr≈50), asexcessiveincreaseinnumberofiterationsisnotuseful,especiallyathighPAPRvalues. KEywORDS Orthogonal Frequency Division Multiplexing (OFDM), Peak To Average Power Ratio (PAPR), Tone Reservation Based On Null Subcarriers (TRNS) International Journal of Sociotechnology and Knowledge Development Volume 12 • Issue 2 • April-June 2020","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"2 1","pages":"45-62"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84776819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposed Frequent Itemset Discovery Algorithm Based on Item Weights and Uncertainty 一种基于项权和不确定性的频繁项集发现算法
Pub Date : 2020-01-01 DOI: 10.4018/ijskd.2020010106
Hanaa Ibrahim Abu Zahra, Shaker El-Sappagh, Tarek El-Shishtawy
Most frequent itemset mining algorithms (FIMA) discover hidden relationships from unrelated items. They find the most frequent itemsets depending only on the frequency of the item's existence in the dataset. These algorithms give all items the same importance, and neglect the differences in importance of the items. They assume the full certainty of data, but in most cases, real word data may be uncertain. As a result, the data could be incomplete and/or imprecise. These two problems are the most common challenges that face FIMA algorithms. Some new algorithms proposed some solutions to face these two issues separately. In other words, some algorithms handle item importance only, and others handle uncertainty only. Few algorithms dealt with the two issues together. In this article, the single scan for weighted itemsets over the uncertain database (SSU-Wfim) is proposed. It depends on the single scan frequent itemsets algorithm (SS_FIM), and enhances it to deal with weighted items in an uncertain database. SSU_WFIM deals with the uncertainty of data by giving each item in a transaction an additional value to indicate occurrence likelihood. It gives the items different values to define the weight of them. It uses a table called Ptable to save the items and their probability values. This table is used to generate all possible candidates itemsets. The results indicate the high performance in aspects of runtime, memory consumption and scalability of SSU-Wfim comparing with the UApriori algorithm. The proposed algorithm saves time and memory with a percentage exceeds 70% for all tested datasets.
最常见的项目集挖掘算法(FIMA)是从不相关的项目中发现隐藏的关系。他们只根据项目在数据集中出现的频率找到最频繁的项目集。这些算法给予所有项目相同的重要性,而忽略了项目的重要性差异。它们假设数据是完全确定的,但在大多数情况下,真实的单词数据可能是不确定的。因此,数据可能不完整和/或不精确。这两个问题是FIMA算法面临的最常见的挑战。一些新的算法分别针对这两个问题提出了一些解决方案。换句话说,一些算法只处理项目的重要性,而另一些算法只处理不确定性。很少有算法同时处理这两个问题。本文提出了加权项集在不确定数据库上的单次扫描方法(ssu - wfilm)。该算法基于单扫描频繁项集算法(SS_FIM),并对其进行了改进,以处理不确定数据库中的加权项。SSU_WFIM处理数据的不确定性,方法是为事务中的每个项目提供一个附加值,以指示发生的可能性。它为项目提供不同的值来定义它们的权重。它使用一个名为Ptable的表来保存项目及其概率值。该表用于生成所有可能的候选项集。结果表明,与UApriori算法相比,ssu - wfilm算法在运行时间、内存消耗和可扩展性方面具有较高的性能。该算法对所有测试数据集的时间和内存节省率均超过70%。
{"title":"A Proposed Frequent Itemset Discovery Algorithm Based on Item Weights and Uncertainty","authors":"Hanaa Ibrahim Abu Zahra, Shaker El-Sappagh, Tarek El-Shishtawy","doi":"10.4018/ijskd.2020010106","DOIUrl":"https://doi.org/10.4018/ijskd.2020010106","url":null,"abstract":"Most frequent itemset mining algorithms (FIMA) discover hidden relationships from unrelated items. They find the most frequent itemsets depending only on the frequency of the item's existence in the dataset. These algorithms give all items the same importance, and neglect the differences in importance of the items. They assume the full certainty of data, but in most cases, real word data may be uncertain. As a result, the data could be incomplete and/or imprecise. These two problems are the most common challenges that face FIMA algorithms. Some new algorithms proposed some solutions to face these two issues separately. In other words, some algorithms handle item importance only, and others handle uncertainty only. Few algorithms dealt with the two issues together. In this article, the single scan for weighted itemsets over the uncertain database (SSU-Wfim) is proposed. It depends on the single scan frequent itemsets algorithm (SS_FIM), and enhances it to deal with weighted items in an uncertain database. SSU_WFIM deals with the uncertainty of data by giving each item in a transaction an additional value to indicate occurrence likelihood. It gives the items different values to define the weight of them. It uses a table called Ptable to save the items and their probability values. This table is used to generate all possible candidates itemsets. The results indicate the high performance in aspects of runtime, memory consumption and scalability of SSU-Wfim comparing with the UApriori algorithm. The proposed algorithm saves time and memory with a percentage exceeds 70% for all tested datasets.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"39 1","pages":"98-118"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84606761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Robust and Blind 3D Mesh Watermarking Approach Based on Particle Swarm Optimization 一种基于粒子群优化的鲁棒盲三维网格水印方法
Pub Date : 2020-01-01 DOI: 10.4018/ijskd.2020010102
M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien
This article presents a robust 3D mesh watermarking approach, which adopts an optimization method of selecting watermark vertices for 3D mesh models. The proposed approach can enhance the imperceptibility of the watermarked model without affecting the robustness and capacity factors. The proposed watermark approach depends on an embedding algorithm that use a clustering strategy, based on K−means clustering algorithm in conjunction with the particle swarm optimization to divide the mesh model vertices into groups. Points of interest set (POIs) are selected from these clustered groups and mark it as watermark vertices where the (POIs) are invariant to most of the geometrical and connectivity attacks. Then, the proposed approach inserts the watermark bit stream in the decimal part of spherical coordinates for these selected watermark vertices. The experimental results confirm that the proposed approach proves its superiority compared with state-of-the-art techniques with respect to imperceptibility and robustness.
本文提出了一种鲁棒三维网格水印方法,该方法采用一种针对三维网格模型选择水印顶点的优化方法。该方法在不影响鲁棒性和容量因子的前提下增强了水印模型的不可感知性。所提出的水印方法依赖于一种嵌入算法,该算法使用基于K均值聚类算法的聚类策略,结合粒子群优化将网格模型顶点划分为组。从这些聚类组中选择兴趣点集(poi)并将其标记为水印顶点,其中(poi)对大多数几何攻击和连通性攻击都是不变的。然后,该方法将水印比特流插入到所选水印顶点的球坐标的小数部分。实验结果表明,该方法在不可感知性和鲁棒性方面具有较好的优越性。
{"title":"A Robust and Blind 3D Mesh Watermarking Approach Based on Particle Swarm Optimization","authors":"M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien","doi":"10.4018/ijskd.2020010102","DOIUrl":"https://doi.org/10.4018/ijskd.2020010102","url":null,"abstract":"This article presents a robust 3D mesh watermarking approach, which adopts an optimization method of selecting watermark vertices for 3D mesh models. The proposed approach can enhance the imperceptibility of the watermarked model without affecting the robustness and capacity factors. The proposed watermark approach depends on an embedding algorithm that use a clustering strategy, based on K−means clustering algorithm in conjunction with the particle swarm optimization to divide the mesh model vertices into groups. Points of interest set (POIs) are selected from these clustered groups and mark it as watermark vertices where the (POIs) are invariant to most of the geometrical and connectivity attacks. Then, the proposed approach inserts the watermark bit stream in the decimal part of spherical coordinates for these selected watermark vertices. The experimental results confirm that the proposed approach proves its superiority compared with state-of-the-art techniques with respect to imperceptibility and robustness.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"10 1","pages":"24-48"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87822975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Framework for Managing Big Data in Enterprise Organizations 企业组织大数据管理框架
Pub Date : 2020-01-01 DOI: 10.4018/ijskd.2020010105
Youssef Ahmed, Walaa Medhat, Tarek El Shishtawi
Big Data management is trending research that seeks to find a framework that will give support to decision makers in governments and enterprises organizations. For the rapid growth of data, dealing with Big Data with respect to management and finding new values has drawn attention recently. Strategies should be established together with the goals, vision, and objectives of an organization to manage Big Data. Big data management frameworks are the main components for the implementation of Big Data service. Many organizations that deals with Big Data have three critical problems, how to manage Big Data, how can Big Data create new values reference to its strategies and business needs, and how it can take the correct decision in the correct time. In this article, the authors propose a Big Data management framework that will handle all Big Data operation beginning with collecting data until making analysis and how new value can be created. The proposed framework also takes care of other factors such as organization strategies, governance, and security.
大数据管理是一项趋势研究,旨在找到一个框架,为政府和企业组织的决策者提供支持。随着数据量的快速增长,在管理方面如何处理大数据,寻找新的价值,最近受到了人们的关注。管理大数据的策略应该与组织的目标、愿景和目标一起制定。大数据管理框架是实现大数据服务的主要组成部分。许多处理大数据的组织都有三个关键问题,如何管理大数据,大数据如何根据其战略和业务需求创造新的价值,以及如何在正确的时间做出正确的决策。在本文中,作者提出了一个大数据管理框架,该框架将处理从收集数据到进行分析以及如何创造新价值的所有大数据操作。建议的框架还考虑其他因素,如组织策略、治理和安全性。
{"title":"A Framework for Managing Big Data in Enterprise Organizations","authors":"Youssef Ahmed, Walaa Medhat, Tarek El Shishtawi","doi":"10.4018/ijskd.2020010105","DOIUrl":"https://doi.org/10.4018/ijskd.2020010105","url":null,"abstract":"Big Data management is trending research that seeks to find a framework that will give support to decision makers in governments and enterprises organizations. For the rapid growth of data, dealing with Big Data with respect to management and finding new values has drawn attention recently. Strategies should be established together with the goals, vision, and objectives of an organization to manage Big Data. Big data management frameworks are the main components for the implementation of Big Data service. Many organizations that deals with Big Data have three critical problems, how to manage Big Data, how can Big Data create new values reference to its strategies and business needs, and how it can take the correct decision in the correct time. In this article, the authors propose a Big Data management framework that will handle all Big Data operation beginning with collecting data until making analysis and how new value can be created. The proposed framework also takes care of other factors such as organization strategies, governance, and security.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"82 1","pages":"84-97"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76056149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fusion Time Reduction of a Feature Level Based Multimodal Biometric Authentication System 基于特征层次的多模态生物识别认证系统融合时间缩短
Pub Date : 2020-01-01 DOI: 10.4018/ijskd.2020010104
R. Mahmoud, M. Selim, Omar A. Muhi
In the present study, a multimodal biometric authentication method is presented to confirm the identity of a person based on his face and iris features. This method depends on multiple biometric techniques that combine face and iris (left and right) features to recognize. The authors have designed and applied a system to identify people. It depends on extracting the features of the face using Rectangle Histogram of Oriented Gradient (R-HOG). The study applies a feature-level fusion using a novel fusion method which employs both the canonical correlation process and the proposed serial concatenation. A deep belief network was used for the recognition process. The performance of the proposed systems was validated and evaluated through a set of experiments on SDUMLA-HMT database. The results were compared with others, and have shown that the fusion time has been reduced by about 34.5%. The proposed system has also succeeded in achieving a lower equal error rate (EER), and a recognition accuracy up to 99%.
在本研究中,提出了一种基于人脸和虹膜特征的多模态生物识别方法来确认一个人的身份。该方法依靠多种生物识别技术,结合面部和虹膜(左右)特征进行识别。作者设计并应用了一个识别人的系统。它依赖于使用定向梯度矩形直方图(R-HOG)提取人脸特征。该研究采用了一种新的融合方法,该方法采用典型相关过程和所提出的串行连接,实现了特征级融合。在识别过程中使用了深度信念网络。通过在SDUMLA-HMT数据库上的一系列实验,对所提出系统的性能进行了验证和评估。结果表明,融合时间缩短了34.5%左右。该系统还成功地实现了较低的等错误率(EER)和高达99%的识别精度。
{"title":"Fusion Time Reduction of a Feature Level Based Multimodal Biometric Authentication System","authors":"R. Mahmoud, M. Selim, Omar A. Muhi","doi":"10.4018/ijskd.2020010104","DOIUrl":"https://doi.org/10.4018/ijskd.2020010104","url":null,"abstract":"In the present study, a multimodal biometric authentication method is presented to confirm the identity of a person based on his face and iris features. This method depends on multiple biometric techniques that combine face and iris (left and right) features to recognize. The authors have designed and applied a system to identify people. It depends on extracting the features of the face using Rectangle Histogram of Oriented Gradient (R-HOG). The study applies a feature-level fusion using a novel fusion method which employs both the canonical correlation process and the proposed serial concatenation. A deep belief network was used for the recognition process. The performance of the proposed systems was validated and evaluated through a set of experiments on SDUMLA-HMT database. The results were compared with others, and have shown that the fusion time has been reduced by about 34.5%. The proposed system has also succeeded in achieving a lower equal error rate (EER), and a recognition accuracy up to 99%.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"26 1","pages":"67-83"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86104682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Int. J. Sociotechnology Knowl. Dev.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1