Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66425
V. Ovsyannikov, V. I. Vasil’ev, A. Terekhov
The problems of increasing the durability of tractor parts from ferrite-pearlitic gray iron by using the process of diffusion surface doping with subsequent quenching for martensite are considered. The process of diffusion surface doping of gray iron is realized by heating the alloy in contact with the oxide of alloying elements (chromium, titanium, vanadium, etc.). At the same time, dissociation of the oxide molecule of the alloying element and the diffusion of atoms into the interior of the cast iron occur on the alloy surface. This scheme of the process makes it possible to oxidize the carbon of the cast iron base and simultaneously alloy the surface layer. Studies of the diffusion layer have shown that it has a pearlite structure, which means that it is possible to use the quenching process to obtain a martensitic structure. Important factors that determine the resistance of metals and alloys to wear include their structure, physical and mechanical properties, as well as their mutual arrangement, the quantitative ratio and the nature of the relationship between the individual components of the structure of the material. An important issue in the practical implementation of the technology in is the determination of quenching regimes that provide the required microstructure and properties of the alloy, primarily the heating time for quenching. In this paper, we consider the possibility of applying heat engineering calculations to solve the abovementioned problem. Calculation of the heating parameters for quenching was carried out by solving the heat equation in the criterial form. The heating of a cylindrical part was considered. On the basis of the determination of the Bio and Fourier criteria, heating curves were constructed, which made it possible to determine the desired values of the heat treatment regimes. Experimental verification of the obtained results showed that the microstructure of the alloy is fine-needle martensite, which confirms the applicability of the calculated determination of the quenching regimes.
{"title":"Development of elements of technology for increasing the durability of tractor components from gray cast iron","authors":"V. Ovsyannikov, V. I. Vasil’ev, A. Terekhov","doi":"10.17816/0321-4443-66425","DOIUrl":"https://doi.org/10.17816/0321-4443-66425","url":null,"abstract":"The problems of increasing the durability of tractor parts from ferrite-pearlitic gray iron by using the process of diffusion surface doping with subsequent quenching for martensite are considered. The process of diffusion surface doping of gray iron is realized by heating the alloy in contact with the oxide of alloying elements (chromium, titanium, vanadium, etc.). At the same time, dissociation of the oxide molecule of the alloying element and the diffusion of atoms into the interior of the cast iron occur on the alloy surface. This scheme of the process makes it possible to oxidize the carbon of the cast iron base and simultaneously alloy the surface layer. Studies of the diffusion layer have shown that it has a pearlite structure, which means that it is possible to use the quenching process to obtain a martensitic structure. Important factors that determine the resistance of metals and alloys to wear include their structure, physical and mechanical properties, as well as their mutual arrangement, the quantitative ratio and the nature of the relationship between the individual components of the structure of the material. An important issue in the practical implementation of the technology in is the determination of quenching regimes that provide the required microstructure and properties of the alloy, primarily the heating time for quenching. In this paper, we consider the possibility of applying heat engineering calculations to solve the abovementioned problem. Calculation of the heating parameters for quenching was carried out by solving the heat equation in the criterial form. The heating of a cylindrical part was considered. On the basis of the determination of the Bio and Fourier criteria, heating curves were constructed, which made it possible to determine the desired values of the heat treatment regimes. Experimental verification of the obtained results showed that the microstructure of the alloy is fine-needle martensite, which confirms the applicability of the calculated determination of the quenching regimes.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130189051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66421
A. Bur'yanov, M. A. Bur'yanov, I. Chervyakov
When harvesting grain crops with combine with combining fairing, the process of contact of plants with its fairing includes the impact of the head of the plant on the surface of the fairing, and movement along its surface. The greatest probability of loss of those head grains that contact through the scales covering them with the fairing of the header was analyzed. The type of impact of these grains depends on the shape of the fairing and the angle of inclination of the plant. At the direct impact of the speed before and after impact are proportional to the recovery factor and can be sent in the forward or reverse direction. If the impact is oblique and the deviation of the velocity vector is within the angle of friction the velocity after impact is determined on the basis of Newton's dry friction hypothesis. In grain crops, a stalk is of low stiffness, and, according to our data, compensates for the damping properties of the grain covering the scales. When the head strikes, the grains acquire the kinetic energy expended on the deformation of the contacting surfaces (the lost energy) and the energy of recovery. The loss of grain will occur if the energy of grain recovery is greater than the energy required for its separation. The purpose of the research, the determination of the energy released during the restoration of the head grains, contacting through the scales covering them with the header fairing. The method was tested by comparing the renewal energy of the grain of winter wheat, which is insensitive to the contact of the head with the surface of the fairing made of steel and high-strength polymers. It is established that on the eighth day of harvesting, with a breadmaking humidity of 9-11 %, the work required to separate one grain from the head is reduced to 0,0015 J. Under these conditions, the harvesting unit equipped with a combing header with a fairing made of steel can work without loss of grain in the first phase of interaction with it at speeds up to 2,3 m/s, and with a header, the fairing of which is made of ultra-high molecular weight polyethylene, at speeds up to 3,5 m/s.
在采用联合整流罩收割粮食作物时,植物与其整流罩接触的过程包括植物的头部对整流罩表面的冲击和沿整流罩表面的运动。分析了通过覆盖在头部整流罩上的鳞片接触的头部颗粒损失的最大概率。这些颗粒的冲击类型取决于整流罩的形状和植物的倾斜角度。在直接撞击时,撞击前后的速度与回收系数成正比,并可向正反方向发送。如果撞击是倾斜的,并且速度矢量的偏差在摩擦角范围内,则根据牛顿干摩擦假设确定撞击后的速度。在谷物作物中,秸秆具有低刚度,并且根据我们的数据,可以补偿覆盖尺度的谷物的阻尼特性。当头部撞击时,颗粒获得了接触面变形所消耗的动能(损失的能量)和恢复的能量。如果谷物回收的能量大于其分离所需的能量,就会发生谷物的损失。本研究的目的,是测定在头部颗粒恢复过程中释放的能量,通过覆盖它们的鳞片与头部整流罩接触。通过比较冬小麦籽粒对头部与钢和高强聚合物整流罩表面接触不敏感的再生能,对该方法进行了验证。是建立在第八天的收获,breadmaking湿度的9 - 11 %,所需的工作从头部分离一粒减少到0,0015 j .在这些条件下,收获单位配备一个梳理头部整流罩的钢可以无损失的粮食在第一阶段的交互速度高达3米/秒,一个头,整流罩的超高分子量聚乙烯,速度高达3、5 m / s。
{"title":"Method and results of the evaluation of the influence of the energy of grain recovery, contacting in the head with header fairing on its parameters and quality of work","authors":"A. Bur'yanov, M. A. Bur'yanov, I. Chervyakov","doi":"10.17816/0321-4443-66421","DOIUrl":"https://doi.org/10.17816/0321-4443-66421","url":null,"abstract":"When harvesting grain crops with combine with combining fairing, the process of contact of plants with its fairing includes the impact of the head of the plant on the surface of the fairing, and movement along its surface. The greatest probability of loss of those head grains that contact through the scales covering them with the fairing of the header was analyzed. The type of impact of these grains depends on the shape of the fairing and the angle of inclination of the plant. At the direct impact of the speed before and after impact are proportional to the recovery factor and can be sent in the forward or reverse direction. If the impact is oblique and the deviation of the velocity vector is within the angle of friction the velocity after impact is determined on the basis of Newton's dry friction hypothesis. In grain crops, a stalk is of low stiffness, and, according to our data, compensates for the damping properties of the grain covering the scales. When the head strikes, the grains acquire the kinetic energy expended on the deformation of the contacting surfaces (the lost energy) and the energy of recovery. The loss of grain will occur if the energy of grain recovery is greater than the energy required for its separation. The purpose of the research, the determination of the energy released during the restoration of the head grains, contacting through the scales covering them with the header fairing. The method was tested by comparing the renewal energy of the grain of winter wheat, which is insensitive to the contact of the head with the surface of the fairing made of steel and high-strength polymers. It is established that on the eighth day of harvesting, with a breadmaking humidity of 9-11 %, the work required to separate one grain from the head is reduced to 0,0015 J. Under these conditions, the harvesting unit equipped with a combing header with a fairing made of steel can work without loss of grain in the first phase of interaction with it at speeds up to 2,3 m/s, and with a header, the fairing of which is made of ultra-high molecular weight polyethylene, at speeds up to 3,5 m/s.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124533803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66372
V. Ovchinnikov, A. Ovchinnikova
Currently, for the surface application of fertilizers, both in Europe as well as in Russia, spreader devices of various designs and arrangements are used. The metering devices in them, as a rule, are centrifugal type disk mechanisms with a vertical axis of rotation. Overview and analysis of their work shows that they do not completely meet the agrotechnical requirements, namely, distribute fertilizers on the soil surface with significant deviations from the permissible unevenness. Therefore, the development of a working body for increasing the uniformity of the distribution of mineral fertilizers over the field surface is an urgent challenge. The uniformity of the distribution of mineral fertilizers by a centrifugal working body is based on the difference in the speeds of fertilizer’s granules at the moment of their descent from the working body. The magnitude of the velocity affects the range of flight of particles (the coverage) and depends on the structural and kinematic parameters of the working body. At the department of agricultural machines of the Mordovia State University a centrifugal working body has been developed, at any point of which the descent of mineral fertilizer’s granules proceeding at different speeds. That had been achieved through the the fact that the working body contains a conical surface, along the generatrix of which, blades of different lengths are rigidly fastened. When working, the fertilizers are fed to the conical part and are distributed in a uniform layer and continue directed movement along the conical surface. The circumferential velocity of the working surface towards the base increases, and consequently the velocity of particle descent from different points of the working surface increases. The rest of the fertilizers flows continuously to the spherical disk and is directed to the soil surface by the blades. From blades of different lengths, fertilizers come off at different heights, at different angles of inclination to the horizon and at different speeds, which will affect the uniformity of their application. The results of the investigations are showed that the use of the experimental working body allows to increase the working width from 10 to 14 m and to reduce the uneven distribution of mineral fertilizers over the total width by 14,2 %.
{"title":"The working body for the application of mineral fertilizers","authors":"V. Ovchinnikov, A. Ovchinnikova","doi":"10.17816/0321-4443-66372","DOIUrl":"https://doi.org/10.17816/0321-4443-66372","url":null,"abstract":"Currently, for the surface application of fertilizers, both in Europe as well as in Russia, spreader devices of various designs and arrangements are used. The metering devices in them, as a rule, are centrifugal type disk mechanisms with a vertical axis of rotation. Overview and analysis of their work shows that they do not completely meet the agrotechnical requirements, namely, distribute fertilizers on the soil surface with significant deviations from the permissible unevenness. Therefore, the development of a working body for increasing the uniformity of the distribution of mineral fertilizers over the field surface is an urgent challenge. The uniformity of the distribution of mineral fertilizers by a centrifugal working body is based on the difference in the speeds of fertilizer’s granules at the moment of their descent from the working body. The magnitude of the velocity affects the range of flight of particles (the coverage) and depends on the structural and kinematic parameters of the working body. At the department of agricultural machines of the Mordovia State University a centrifugal working body has been developed, at any point of which the descent of mineral fertilizer’s granules proceeding at different speeds. That had been achieved through the the fact that the working body contains a conical surface, along the generatrix of which, blades of different lengths are rigidly fastened. When working, the fertilizers are fed to the conical part and are distributed in a uniform layer and continue directed movement along the conical surface. The circumferential velocity of the working surface towards the base increases, and consequently the velocity of particle descent from different points of the working surface increases. The rest of the fertilizers flows continuously to the spherical disk and is directed to the soil surface by the blades. From blades of different lengths, fertilizers come off at different heights, at different angles of inclination to the horizon and at different speeds, which will affect the uniformity of their application. The results of the investigations are showed that the use of the experimental working body allows to increase the working width from 10 to 14 m and to reduce the uneven distribution of mineral fertilizers over the total width by 14,2 %.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131607350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66394
I. Melikov
The article is devoted to the solution of an important scientific and practical problem - optimization of the tire shell design parameters of the leading wheels of combine harvesters of high productivity, operating in conditions with low bearing capacity. Optimization of the parameters of the pneumatic tire, as a link in the oscillatory system and the main element of the wheel propulsion, is one of the directions for improving the functioning of combine harvesters. One of the factors affecting the performance indicators of combine harvesters is the perfection of wheeled propellers. Their agrotechnical properties can be improved due to a rational choice of tire parameters depending on the type of rolling surface, which will also help to reduce fuel consumption. On the basis of the abovementioned, the aim of this paper is to investigate the effect on the performance of combine harvesters of the characteristics of the tires used on the driving wheels and to improve their agrotechnical properties by optimizing the parameters of the pneumatic tires. The description, methods and results of experimental studies using specially designed and providing reliable results of devices for determining deformations of the inner and outer shells of the tire relative to the rim in the circumferential and radial directions, as well as contact pressures and stresses in the soil are described. On the basis of theoretical and experimental studies of the work of combine harvesters of high productivity, the influence of the parameters of the pneumatic tires of the driving wheels on the performance of them has been established. The optimum combination of design parameters of the experimental pneumatic tire of a radial design for grain harvesters is determined. The results of the research will make it possible to develop recommendations for the selection of optimal parameters for pneumatic tires that contribute to improving the performance of grain harvesters used under various operating conditions by bundling their driving wheels with radial-type tires.
{"title":"Optimization of design parameters of radial tires of propellers of combine harvesters","authors":"I. Melikov","doi":"10.17816/0321-4443-66394","DOIUrl":"https://doi.org/10.17816/0321-4443-66394","url":null,"abstract":"The article is devoted to the solution of an important scientific and practical problem - optimization of the tire shell design parameters of the leading wheels of combine harvesters of high productivity, operating in conditions with low bearing capacity. Optimization of the parameters of the pneumatic tire, as a link in the oscillatory system and the main element of the wheel propulsion, is one of the directions for improving the functioning of combine harvesters. One of the factors affecting the performance indicators of combine harvesters is the perfection of wheeled propellers. Their agrotechnical properties can be improved due to a rational choice of tire parameters depending on the type of rolling surface, which will also help to reduce fuel consumption. On the basis of the abovementioned, the aim of this paper is to investigate the effect on the performance of combine harvesters of the characteristics of the tires used on the driving wheels and to improve their agrotechnical properties by optimizing the parameters of the pneumatic tires. The description, methods and results of experimental studies using specially designed and providing reliable results of devices for determining deformations of the inner and outer shells of the tire relative to the rim in the circumferential and radial directions, as well as contact pressures and stresses in the soil are described. On the basis of theoretical and experimental studies of the work of combine harvesters of high productivity, the influence of the parameters of the pneumatic tires of the driving wheels on the performance of them has been established. The optimum combination of design parameters of the experimental pneumatic tire of a radial design for grain harvesters is determined. The results of the research will make it possible to develop recommendations for the selection of optimal parameters for pneumatic tires that contribute to improving the performance of grain harvesters used under various operating conditions by bundling their driving wheels with radial-type tires.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115130901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66381
A. Gots, V. Klevtsov
The possibilities of a prediction of the heads of cylinder durability of the automotive diesel engines at the design stage and their completion to specified parameters, especially for reliability are considered. Since diesel engines operate in the unsteady modes, the main load is not only mechanical, but also thermal. At that, it occurs when the operating modes of the diesel engine change. The most loaded sections in the cylinder head are the bridges between the inlet and exhaust valves, as well as the bridges between the nozzle holes and inlet and exhaust valves. Under the influence of the thermal load, the distortions of the crystal lattice appear in the sections of the cylinder head at first, which leads to the appearance in some direction in which the greatest tangential stresses act, tears, gradually change under the influence of alternating stresses in the crack. When the total accumulated damage reaches a certain critical value, and the crack substantially weakens the cross section, fatigue failure occurs. To ensure the reliability of the diesel engine in operation, it is necessary to choose such methods of calculation and testing that would ensure a specified durability of the cylinder head. Since the reliability check in operation takes considerable time, that accelerated testing is used to reduce the test time. The place occupied by the accelerated tests in the design of diesel engines, as well as the sequence of the formation of their program are considered. It is shown that in practice it is possible to achieve only a certain degree of change in the technical condition of the cylinder head due to the degree of completeness of the accounting of the interacting operational loads and their distortion during reproduced on the test equipment. Possible modes of testing the cylinder heads on a non-motorized thermal bench are proposed with the aim of a determination their durability. They correspond to the modes of accelerated tests for the reliability of the automobile diesel engines. The problem of convergence of the results at accelerated tests and the data under operating conditions is considered.
{"title":"Selection of accelerated test modes for the head of cylinder of the automobile diesel engine","authors":"A. Gots, V. Klevtsov","doi":"10.17816/0321-4443-66381","DOIUrl":"https://doi.org/10.17816/0321-4443-66381","url":null,"abstract":"The possibilities of a prediction of the heads of cylinder durability of the automotive diesel engines at the design stage and their completion to specified parameters, especially for reliability are considered. Since diesel engines operate in the unsteady modes, the main load is not only mechanical, but also thermal. At that, it occurs when the operating modes of the diesel engine change. The most loaded sections in the cylinder head are the bridges between the inlet and exhaust valves, as well as the bridges between the nozzle holes and inlet and exhaust valves. Under the influence of the thermal load, the distortions of the crystal lattice appear in the sections of the cylinder head at first, which leads to the appearance in some direction in which the greatest tangential stresses act, tears, gradually change under the influence of alternating stresses in the crack. When the total accumulated damage reaches a certain critical value, and the crack substantially weakens the cross section, fatigue failure occurs. To ensure the reliability of the diesel engine in operation, it is necessary to choose such methods of calculation and testing that would ensure a specified durability of the cylinder head. Since the reliability check in operation takes considerable time, that accelerated testing is used to reduce the test time. The place occupied by the accelerated tests in the design of diesel engines, as well as the sequence of the formation of their program are considered. It is shown that in practice it is possible to achieve only a certain degree of change in the technical condition of the cylinder head due to the degree of completeness of the accounting of the interacting operational loads and their distortion during reproduced on the test equipment. Possible modes of testing the cylinder heads on a non-motorized thermal bench are proposed with the aim of a determination their durability. They correspond to the modes of accelerated tests for the reliability of the automobile diesel engines. The problem of convergence of the results at accelerated tests and the data under operating conditions is considered.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128046966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-15DOI: 10.17816/0321-4443-66410
V. O. Sveshchinskiy, S. Bobrov, I. S. Tereshchenko
Investigation of the effect of internal pressure on the distribution of hardness in the fuel pipe wall was conducted. In the high pressure circuits of Common Rail systems, the fuel pressure is much higher than the pressure level in conventional fuel systems. Thas is why it is of practical interest to change the mechanical properties of the component materials during operation. In the present work, an attempt was made to evaluate the influence of the multi-cycle loading of the fuel pipe with a high internal pressure on the hardness of the material from which the fuel line was made. The loading was carried out under the conditions of a non-motorized test bench with a pressure of diesel fuel of 160 MPa. The test duration was 500 hours. With the selected pump shaft speed and the response frequency of the electrohydraulic control valves this was equivalent to approximately 96x106 cycles. Before and after the tests, hardness measurements were made in the cross section of the fuel lines. The distributions of hardness values are obtained, which testify the existence, under the given loading conditions of a self-hardening process of the material. In the initial state, fuel lines are characterized by a certain anisotropy of hardness and, accordingly, strength characteristics. In this case, the inhomogeneity of the field of values of hardness decreases with decreasing radius of location of the material layer. Dispersion of hardness values takes place both along the axis of the fuel pipe and in the circumferential direction. Loading of fuel pipes of the Common Rail type with pulsating hydraulic pressure leads to a redistribution of the hardness values in the fuel pipe wall. It is found that in the layers of material located closer to the central channel of the fuel pipe, the hardness equalization occurs to a greater extent as it is used, than in layers located far from the central channel. In general, the hardness is increased, which can be interpreted as the hardening of the fuel line during operation.
{"title":"Preliminary results of the study of the effect of a multi-cycle load on the hardness of a high-pressure fuel pipe","authors":"V. O. Sveshchinskiy, S. Bobrov, I. S. Tereshchenko","doi":"10.17816/0321-4443-66410","DOIUrl":"https://doi.org/10.17816/0321-4443-66410","url":null,"abstract":"Investigation of the effect of internal pressure on the distribution of hardness in the fuel pipe wall was conducted. In the high pressure circuits of Common Rail systems, the fuel pressure is much higher than the pressure level in conventional fuel systems. Thas is why it is of practical interest to change the mechanical properties of the component materials during operation. In the present work, an attempt was made to evaluate the influence of the multi-cycle loading of the fuel pipe with a high internal pressure on the hardness of the material from which the fuel line was made. The loading was carried out under the conditions of a non-motorized test bench with a pressure of diesel fuel of 160 MPa. The test duration was 500 hours. With the selected pump shaft speed and the response frequency of the electrohydraulic control valves this was equivalent to approximately 96x106 cycles. Before and after the tests, hardness measurements were made in the cross section of the fuel lines. The distributions of hardness values are obtained, which testify the existence, under the given loading conditions of a self-hardening process of the material. In the initial state, fuel lines are characterized by a certain anisotropy of hardness and, accordingly, strength characteristics. In this case, the inhomogeneity of the field of values of hardness decreases with decreasing radius of location of the material layer. Dispersion of hardness values takes place both along the axis of the fuel pipe and in the circumferential direction. Loading of fuel pipes of the Common Rail type with pulsating hydraulic pressure leads to a redistribution of the hardness values in the fuel pipe wall. It is found that in the layers of material located closer to the central channel of the fuel pipe, the hardness equalization occurs to a greater extent as it is used, than in layers located far from the central channel. In general, the hardness is increased, which can be interpreted as the hardening of the fuel line during operation.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130383084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-15DOI: 10.17816/0321-4443-66373
A. Pakhomov
To date, the main method of combating the contamination of grain and seeds in agriculture is chemical etching. Its essence lies in applying to the surface of seeds chemically active substances that destroy the parasitic microflora. However, the chemical method of sterilization is not without serious shortcomings. It is known that the most effective disinfectants - systemic fungicides - are poisonous, including for humans. The use of such substances in addition to toxicological effects contributes to the development of resistance of parasitic microorganisms, their mutations in the direction of extremely dangerous and resistant species. To avoid this, alternative methods and equipment are needed. Electrophysical effects, in particular, microwave frequency energy. At the same time, the mechanism for suppressing the parasitic microflora is fundamentally different and consists in the influence of biological organisms on the internal natural environment of biological organisms. In this environment, all the cellular processes of living organisms occur, therefore, changing its parameters, accompanied by the formation of active ions, is critical for the vital activity of parasitic microorganisms. For the ionization process to produce a significant effect, certain characteristics of microwave radiation are needed: power, duration, uniformity of supply to the material, which depends on the equipment used. The article formulates the basic requirements for decontaminating microwave equipment that can be effectively used in agriculture. The most important parameters of existing microwave devices are considered. For comparative evaluation, an almost convenient criterion is proposed - the decontamination efficiency factor, which takes into account the most important characteristics of the equipment in question in one digit. The calculation of the newly introduced coefficient for a number of microwave devices has been performed and its graphical interpretation is given. It is shown that the innovative installation SIGMA-1, developed at the Agrarian Science Center Donskoy, surpasses the analogues in terms of the decontamination efficiency factor of 1,5...3 times. Its advantages also include the possibility of further improvement by increasing the number of waveguide sections, which multiplies the productivity.
{"title":"Comparative analysis of microvave frequency devices for grain disinfection","authors":"A. Pakhomov","doi":"10.17816/0321-4443-66373","DOIUrl":"https://doi.org/10.17816/0321-4443-66373","url":null,"abstract":"To date, the main method of combating the contamination of grain and seeds in agriculture is chemical etching. Its essence lies in applying to the surface of seeds chemically active substances that destroy the parasitic microflora. However, the chemical method of sterilization is not without serious shortcomings. It is known that the most effective disinfectants - systemic fungicides - are poisonous, including for humans. The use of such substances in addition to toxicological effects contributes to the development of resistance of parasitic microorganisms, their mutations in the direction of extremely dangerous and resistant species. To avoid this, alternative methods and equipment are needed. Electrophysical effects, in particular, microwave frequency energy. At the same time, the mechanism for suppressing the parasitic microflora is fundamentally different and consists in the influence of biological organisms on the internal natural environment of biological organisms. In this environment, all the cellular processes of living organisms occur, therefore, changing its parameters, accompanied by the formation of active ions, is critical for the vital activity of parasitic microorganisms. For the ionization process to produce a significant effect, certain characteristics of microwave radiation are needed: power, duration, uniformity of supply to the material, which depends on the equipment used. The article formulates the basic requirements for decontaminating microwave equipment that can be effectively used in agriculture. The most important parameters of existing microwave devices are considered. For comparative evaluation, an almost convenient criterion is proposed - the decontamination efficiency factor, which takes into account the most important characteristics of the equipment in question in one digit. The calculation of the newly introduced coefficient for a number of microwave devices has been performed and its graphical interpretation is given. It is shown that the innovative installation SIGMA-1, developed at the Agrarian Science Center Donskoy, surpasses the analogues in terms of the decontamination efficiency factor of 1,5...3 times. Its advantages also include the possibility of further improvement by increasing the number of waveguide sections, which multiplies the productivity.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127567675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-15DOI: 10.17816/0321-4443-66385
K. I. Gorodetskiy, V. Sharipov, E. M. Alendeev, A. M. Lavlinskiy
A feature of the layout of modern tracked tractors is that the center of mass of the tractor is usually located with a forward shift from the center of the caterpillar support surface. Such a layout solution, in combination with the use of ballast weights placed most often in front of the tractor, makes it possible to provide its required traction and coupling properties when assembling with guns. However, since the tractor operates with a wide range of loads, when changing the gun with high traction resistance, for example, to a low-resistance trailer, it becomes necessary to adjust the weight of the ballast. In practice, this adjustment is often not carried out, i.e. Once installed, the front ballast is used throughout the operating life of the machine, worsening its fuel economy and not providing optimum traction and coupling properties. In this regard, the important task is to find solutions that would eliminate the need to adjust the mass of the ballast depending on the hook load. For this purpose, the article deals with the scheme of ballasting of a caterpillar tractor with the application of traction force at a positive angle. Also, for the Challenger MT865B tractor, with a number of assumptions about its geometric parameters, the calculated dependence of the ballasting coefficient on the coupling weight and the thrust angle was constructed. Dependence analysis allowed to come to the conclusion that it is possible to ensure the coincidence of the pressure center with the middle of the tractor's support surface over the entire range of its loads, with constant values of the ballasting factor and the angle of application of the traction force. To calculate the optimal values of these parameters, the paper presents the corresponding formulas.
{"title":"The choice of a rational ballasting scheme and the angle of application of the traction force for a caterpillar tractor","authors":"K. I. Gorodetskiy, V. Sharipov, E. M. Alendeev, A. M. Lavlinskiy","doi":"10.17816/0321-4443-66385","DOIUrl":"https://doi.org/10.17816/0321-4443-66385","url":null,"abstract":"A feature of the layout of modern tracked tractors is that the center of mass of the tractor is usually located with a forward shift from the center of the caterpillar support surface. Such a layout solution, in combination with the use of ballast weights placed most often in front of the tractor, makes it possible to provide its required traction and coupling properties when assembling with guns. However, since the tractor operates with a wide range of loads, when changing the gun with high traction resistance, for example, to a low-resistance trailer, it becomes necessary to adjust the weight of the ballast. In practice, this adjustment is often not carried out, i.e. Once installed, the front ballast is used throughout the operating life of the machine, worsening its fuel economy and not providing optimum traction and coupling properties. In this regard, the important task is to find solutions that would eliminate the need to adjust the mass of the ballast depending on the hook load. For this purpose, the article deals with the scheme of ballasting of a caterpillar tractor with the application of traction force at a positive angle. Also, for the Challenger MT865B tractor, with a number of assumptions about its geometric parameters, the calculated dependence of the ballasting coefficient on the coupling weight and the thrust angle was constructed. Dependence analysis allowed to come to the conclusion that it is possible to ensure the coincidence of the pressure center with the middle of the tractor's support surface over the entire range of its loads, with constant values of the ballasting factor and the angle of application of the traction force. To calculate the optimal values of these parameters, the paper presents the corresponding formulas.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"105 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134166296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-15DOI: 10.17816/0321-4443-66395
G. Parkhomenko, S. Parkhomenko
During the soil tillage in the rows of perennial plantations, the working elements have to move in the transverse direction while traversing of the bole. The specified path of the working elements movement is determined by the required protective zone. The specified path of the working elements movement at minimum energy costs for the technological process of soil tillage implementation should be observed. The working elements movement is carried out by a four-bar linkage, controlled by a hydraulic drive. Energy costs depend on forced effort, applied to the driving link of mechanism and soil resistance forces, acting on the working elements in the form of distributed load. The forced effort is proportional to the created pressure in the hydraulic drive. The energy costs can be reduced by using soil resistance forces acting on the working elements. Under a certain ratio of the movement mechanism parameters, the working elements under the action of soil resistance forces, tend to a row of perennial plantations and are retained in it without the usage of the hydraulic drive. The aim of the investigation is to justify a method of reducing the energy costs for the implementation of the technological process of soil tillage by analyzing the mechanisms of the working elements movement. The crane mechanisms, trapezoidal, parallelogram, cultivator H-7 of «Holder» company, movements of the left-handed, right-handed and symmetrical working elements were subjected to the research. A reduction in energy consumption is possible when moving the trapezoidal mechanism of the left-handed or right-handed, as well as the symmetrical working elements. Other mechanisms are characterized by additional energy costs as well. The main part of the energy is spent for retraction by means of hydraulic drive of working elements from a number of plantations. The retraction of the left-handed or right-handed, as well as of the symmetrical working elements in a row is carried out under the action of soil resistance forces by a trapezoidal mechanism with the ratio of the links 1:0,448:0,325:0,896:1,563.
{"title":"Force analysis of the mechanisms of tillage machines working elements following a specified path","authors":"G. Parkhomenko, S. Parkhomenko","doi":"10.17816/0321-4443-66395","DOIUrl":"https://doi.org/10.17816/0321-4443-66395","url":null,"abstract":"During the soil tillage in the rows of perennial plantations, the working elements have to move in the transverse direction while traversing of the bole. The specified path of the working elements movement is determined by the required protective zone. The specified path of the working elements movement at minimum energy costs for the technological process of soil tillage implementation should be observed. The working elements movement is carried out by a four-bar linkage, controlled by a hydraulic drive. Energy costs depend on forced effort, applied to the driving link of mechanism and soil resistance forces, acting on the working elements in the form of distributed load. The forced effort is proportional to the created pressure in the hydraulic drive. The energy costs can be reduced by using soil resistance forces acting on the working elements. Under a certain ratio of the movement mechanism parameters, the working elements under the action of soil resistance forces, tend to a row of perennial plantations and are retained in it without the usage of the hydraulic drive. The aim of the investigation is to justify a method of reducing the energy costs for the implementation of the technological process of soil tillage by analyzing the mechanisms of the working elements movement. The crane mechanisms, trapezoidal, parallelogram, cultivator H-7 of «Holder» company, movements of the left-handed, right-handed and symmetrical working elements were subjected to the research. A reduction in energy consumption is possible when moving the trapezoidal mechanism of the left-handed or right-handed, as well as the symmetrical working elements. Other mechanisms are characterized by additional energy costs as well. The main part of the energy is spent for retraction by means of hydraulic drive of working elements from a number of plantations. The retraction of the left-handed or right-handed, as well as of the symmetrical working elements in a row is carried out under the action of soil resistance forces by a trapezoidal mechanism with the ratio of the links 1:0,448:0,325:0,896:1,563.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"204 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115719089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-15DOI: 10.17816/0321-4443-66411
T. V. Mel'kumova
The purpose of the research is to determine the efficiency of various modifiers for increasing the re-sistance of rubber products to the effects of ozone contained in the air, under a long-term storage of agri-cultural machinery in open areas during the off-season. The task of the research is to determine the pro-tective properties of rubber modifiers under the conditions of the destructive effect of ozone. Experimental investigations were carried out in the ozone chamber OMS-1 using standard techniques. Ozone aging was carried out consistently in three stages respectively with stretching samples at 20, 30, 50 %, the duration of each stage of the experiment - 6 hours. After each stage of the tests, visual inspection of the samples was carried out. The ability of a deformed sample to resist the destructive effect of ozone was determined by the time of appearance of the first cracks visible to the naked eye on the surface of the sample. The results of the data obtained during the experiment showed that the introduction of the modifiers «Stillage bottoms of telomeric alcohols» and «Fluorine paraffins» into the rubber of the brand NO-68-1B-1 (from BNKS-18A rubber) already at the first stage of testing leads to the appearance of a continuous mesh small cracks on the samples surface. On samples from this rubber, subjected to surface fluoridation at the last stage of the test, a number of edge cracks up to 11 mm in length and up to 1 mm deep are appeared. On samples from the rubber of grade 26-82-4 (from SKEPT-50 rubber), the pointed cracks appear on rubber samples, and the modification of this rubber with the composition «Stillage bottoms of telomeric alcohols» accelerates this process. The experimental samples of rubber IR-5-1, as modified and as subjected to surface fluorination, have withstood the ozone aging test without traces of destruction. The results of the conducted studies allow us to conclude that it is necessary to develop new protective compositions that exclude the destruction of rubber technical products of agricultural machinery during long-term storage in open areas.
{"title":"The influence of modifiers on the conservation of rubber products of agricultural machinery","authors":"T. V. Mel'kumova","doi":"10.17816/0321-4443-66411","DOIUrl":"https://doi.org/10.17816/0321-4443-66411","url":null,"abstract":"The purpose of the research is to determine the efficiency of various modifiers for increasing the re-sistance of rubber products to the effects of ozone contained in the air, under a long-term storage of agri-cultural machinery in open areas during the off-season. The task of the research is to determine the pro-tective properties of rubber modifiers under the conditions of the destructive effect of ozone. Experimental investigations were carried out in the ozone chamber OMS-1 using standard techniques. Ozone aging was carried out consistently in three stages respectively with stretching samples at 20, 30, 50 %, the duration of each stage of the experiment - 6 hours. After each stage of the tests, visual inspection of the samples was carried out. The ability of a deformed sample to resist the destructive effect of ozone was determined by the time of appearance of the first cracks visible to the naked eye on the surface of the sample. The results of the data obtained during the experiment showed that the introduction of the modifiers «Stillage bottoms of telomeric alcohols» and «Fluorine paraffins» into the rubber of the brand NO-68-1B-1 (from BNKS-18A rubber) already at the first stage of testing leads to the appearance of a continuous mesh small cracks on the samples surface. On samples from this rubber, subjected to surface fluoridation at the last stage of the test, a number of edge cracks up to 11 mm in length and up to 1 mm deep are appeared. On samples from the rubber of grade 26-82-4 (from SKEPT-50 rubber), the pointed cracks appear on rubber samples, and the modification of this rubber with the composition «Stillage bottoms of telomeric alcohols» accelerates this process. The experimental samples of rubber IR-5-1, as modified and as subjected to surface fluorination, have withstood the ozone aging test without traces of destruction. The results of the conducted studies allow us to conclude that it is necessary to develop new protective compositions that exclude the destruction of rubber technical products of agricultural machinery during long-term storage in open areas.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127932303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}