首页 > 最新文献

International Journal of Air-conditioning and Refrigeration最新文献

英文 中文
A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle 一种提高氨吸收式制冷循环性能的新技术
IF 1 Q3 Chemical Engineering Pub Date : 2021-01-18 DOI: 10.1142/s2010132521500036
M. Shaker, M. Abd-Elhady, M. A. Halim
The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.
世界正处于能源危机之中。制冷和空调系统已经成为各个领域日常生活的基础,因此,它是不可分割的。制冷机和空调系统是最耗能的系统,无论其应用是家庭、商业、工业还是医疗。因此,使用以热能(如太阳能)为动力的冷却系统可以节省大量电能。吸收式制冷系统是一种以热能为动力的制冷系统。然而,这里的系统问题是它的性能系数(COP)很低。本研究的目的是提高氨吸收循环的COP。这是在吸收装置中通过提高制冷剂氨进入氨-水溶液的吸收来完成的。通过使用(1)搅拌泵来改善混合,(2)喷雾器来增加氨与氨水溶液的接触面积,以及(3)在吸收过程中通过外部热交换器对溶液进行连续冷却来提高吸收效率。氨吸收循环的COP由0.48提高到0.715,即提高了49%。这是由于氨水溶液对氨水的吸收得到了改善。
{"title":"A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle","authors":"M. Shaker, M. Abd-Elhady, M. A. Halim","doi":"10.1142/s2010132521500036","DOIUrl":"https://doi.org/10.1142/s2010132521500036","url":null,"abstract":"The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88591819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance of a Flat-Tube Louvered-Fin Automotive Condenser with R1234yf 采用R1234yf的平板管百叶式汽车冷凝器的性能
IF 1 Q3 Chemical Engineering Pub Date : 2020-12-08 DOI: 10.1142/s2010132521500024
H. M. Gurudatt, G. Narasimham, B. S. Gowda
Numerical simulation of a mini-channel, flat-tube, louvered fin, automotive condenser is performed to study the heat rejection rate, pressure drop and performance of the heat exchanger. The simulation study is carried out for the refrigerant R1234yf. The properties of R1234y are obtained from REFPROP software. The moist air properties are calculated from those of dry air and water vapor using suitable correlations. To select the input data, the cycle performance is carried out for a standard vapor compression refrigeration system working with R1234yf between the temperature limits of [Formula: see text]C on the low-pressure side and [Formula: see text]C on the high-pressure side. The condensation process is taken into account in three sections, namely, the superheated, two-phase and the subcooled regions. A custom code is prepared in MATLAB to solve the simultaneous equations of heat transfer from refrigerant to inside tube wall, inside tube wall to outside tube wall and outside tube wall to moist air. The simulation results show the sensible heat transfer during desuper heating to be very small compared to the condensing region. Results are reported for the pressure variation along the refrigerant flow passage in the desuper heating, two-phase and subcooling regions. The heat-transfer coefficient is found to be the highest in the two-phase region for higher dryness fractions. The effect of inlet air velocity is less compared to that of the inlet air temperature on the heat rejection rate.
对一种小型通道、平板管、百叶翅片的汽车冷凝器进行了数值模拟,研究了换热器的散热率、压降和性能。对制冷剂R1234yf进行了仿真研究。R1234y的性能是通过REFPROP软件获得的。湿空气的性质是由干空气和水蒸气的性质利用适当的相关性计算出来的。为了选择输入数据,在低压侧[公式:见文]C和高压侧[公式:见文]C的温度极限范围内,对使用R1234yf的标准蒸汽压缩制冷系统进行循环性能试验。冷凝过程分为过热区、两相区和过冷区三个部分。在MATLAB中编写了自定义代码,求解制冷剂到管内壁、管内壁到外壁、外壁到湿空气的传热联立方程。模拟结果表明,与冷凝区相比,减速加热区的显热传递很小。结果报告沿冷媒流动通道的压力变化在过热,两相和过冷区域。在高干燥分数的两相区,传热系数最高。与进口空气温度相比,进口空气速度对排热率的影响较小。
{"title":"Performance of a Flat-Tube Louvered-Fin Automotive Condenser with R1234yf","authors":"H. M. Gurudatt, G. Narasimham, B. S. Gowda","doi":"10.1142/s2010132521500024","DOIUrl":"https://doi.org/10.1142/s2010132521500024","url":null,"abstract":"Numerical simulation of a mini-channel, flat-tube, louvered fin, automotive condenser is performed to study the heat rejection rate, pressure drop and performance of the heat exchanger. The simulation study is carried out for the refrigerant R1234yf. The properties of R1234y are obtained from REFPROP software. The moist air properties are calculated from those of dry air and water vapor using suitable correlations. To select the input data, the cycle performance is carried out for a standard vapor compression refrigeration system working with R1234yf between the temperature limits of [Formula: see text]C on the low-pressure side and [Formula: see text]C on the high-pressure side. The condensation process is taken into account in three sections, namely, the superheated, two-phase and the subcooled regions. A custom code is prepared in MATLAB to solve the simultaneous equations of heat transfer from refrigerant to inside tube wall, inside tube wall to outside tube wall and outside tube wall to moist air. The simulation results show the sensible heat transfer during desuper heating to be very small compared to the condensing region. Results are reported for the pressure variation along the refrigerant flow passage in the desuper heating, two-phase and subcooling regions. The heat-transfer coefficient is found to be the highest in the two-phase region for higher dryness fractions. The effect of inlet air velocity is less compared to that of the inlet air temperature on the heat rejection rate.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90398849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design 扬声器驱动的小型化行波热声制冷机:数值设计
IF 1 Q3 Chemical Engineering Pub Date : 2020-12-05 DOI: 10.1142/s2010132520500352
Oday S. Mahmood, A. Karim, S. G. Yahya, Itimad D. J. Azzawi
Ordinary refrigeration systems such as vapor-compression refrigerators are the commonly used devices in industry, mostly for their high efficiencies. However, they make a significant contribution to the depletion of Ozone and global warming due to their operational refrigerants. Hence, thermoacoustic refrigeration can be a great alternative candidate which uses inert gases such as air, helium and nitrogen as the primary refrigerant. Thermoacoustic refrigerators convert the acoustic power (sound waves) into a thermal effect (cooling power). Thermoacoustics can be counted as a new technology that has a strong potential toward the development of the thermal applications. This study aims to design and fabricate miniaturized traveling wave thermoacoustic refrigerator which can be driven by an ordinary loudspeaker. The optimized numerical design of the refrigerator shows an overall efficiency (cooling power over input electricity) of nearly 66% at a temperature difference of 25[Formula: see text]K (between cold and ambient heat exchangers). The maximum estimated cooling power is 65[Formula: see text]W at coefficient of performance (COP) of 2.65.
普通的制冷系统,如蒸汽压缩冰箱,是工业上常用的设备,主要是因为它们的高效率。然而,由于它们的操作制冷剂,它们对臭氧的消耗和全球变暖做出了重大贡献。因此,热声制冷可以是一个很好的备选,它使用惰性气体,如空气,氦和氮作为主要制冷剂。热声制冷机将声功率(声波)转化为热效应(冷却功率)。热声学技术是一门在热应用领域具有巨大发展潜力的新技术。本研究旨在设计并制造一种可由普通扬声器驱动的小型化行波热声制冷机。制冷机的优化数值设计表明,在冷热交换器和环境热交换器之间的温差为25 K时,制冷机的总效率(冷却功率除以输入功率)接近66%。在性能系数(COP)为2.65时,最大估计冷却功率为65[公式:见文]。
{"title":"Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design","authors":"Oday S. Mahmood, A. Karim, S. G. Yahya, Itimad D. J. Azzawi","doi":"10.1142/s2010132520500352","DOIUrl":"https://doi.org/10.1142/s2010132520500352","url":null,"abstract":"Ordinary refrigeration systems such as vapor-compression refrigerators are the commonly used devices in industry, mostly for their high efficiencies. However, they make a significant contribution to the depletion of Ozone and global warming due to their operational refrigerants. Hence, thermoacoustic refrigeration can be a great alternative candidate which uses inert gases such as air, helium and nitrogen as the primary refrigerant. Thermoacoustic refrigerators convert the acoustic power (sound waves) into a thermal effect (cooling power). Thermoacoustics can be counted as a new technology that has a strong potential toward the development of the thermal applications. This study aims to design and fabricate miniaturized traveling wave thermoacoustic refrigerator which can be driven by an ordinary loudspeaker. The optimized numerical design of the refrigerator shows an overall efficiency (cooling power over input electricity) of nearly 66% at a temperature difference of 25[Formula: see text]K (between cold and ambient heat exchangers). The maximum estimated cooling power is 65[Formula: see text]W at coefficient of performance (COP) of 2.65.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89853768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Review of Models for Estimation of Moisture Evaporation Rate from Clothes Inside a Clothes Dryer 干衣机内衣物水分蒸发速率估算模型综述
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-25 DOI: 10.1142/s2010132521300019
M. Rasti, J. Jeong
Heat pump tumble dryers, air-vented dryers and condenser dryers are widely used as clothes dryers. Clothes dryers use hot air to absorb moisture from textiles to get them dry after a wash by passing drying air through the drum. To simulate the drying process of clothes in the drum and to obtain the moisture evaporation rate, it is necessary to use an accurate model to predict the moisture transfer coefficient from the textile to the air in the drum as well as the mass transfer area between the drying air and the textile. In this study, a comprehensive review of the literature on the prediction of the moisture evaporation rate inside the drum of a clothes dryers was conducted. It was found that researchers generally used constant values, fitting models, dimensionless correlations, and Chilton–Colburn analogy to predict the area–mass transfer coefficient. Moreover, few researchers used the effectiveness model for the prediction of moisture evaporation rate. The comprehensive review of the literature showed that all of the previous models for prediction of the moisture evaporation rate have some limitations in terms of generality or accuracy. Therefore, the development of a new accurate model for prediction of the moisture evaporation rate inside the drum of clothes dryers is crucial.
热泵滚筒式干衣机、通风式干衣机和冷凝器干衣机是目前广泛应用的干衣机。干衣机利用热风吸收纺织品中的水分,使衣物在洗涤后通过滚筒干燥。为了模拟衣物在滚筒内的干燥过程,获得水分蒸发速率,需要使用准确的模型来预测纺织品对滚筒内空气的水分传递系数以及干燥空气与纺织品之间的传质面积。在这项研究中,全面回顾了文献的预测在一个干衣机的滚筒内水分蒸发速率进行了。研究发现,研究人员一般采用定值、拟合模型、无因次相关性和Chilton-Colburn类比来预测面积-质量传递系数。此外,利用有效性模型预测水分蒸发速率的研究较少。综合文献分析表明,以往的水分蒸发速率预测模型在通用性和准确性上都存在一定的局限性。因此,建立一种新的准确的模型来预测干衣机滚筒内的水分蒸发速率是至关重要的。
{"title":"A Review of Models for Estimation of Moisture Evaporation Rate from Clothes Inside a Clothes Dryer","authors":"M. Rasti, J. Jeong","doi":"10.1142/s2010132521300019","DOIUrl":"https://doi.org/10.1142/s2010132521300019","url":null,"abstract":"Heat pump tumble dryers, air-vented dryers and condenser dryers are widely used as clothes dryers. Clothes dryers use hot air to absorb moisture from textiles to get them dry after a wash by passing drying air through the drum. To simulate the drying process of clothes in the drum and to obtain the moisture evaporation rate, it is necessary to use an accurate model to predict the moisture transfer coefficient from the textile to the air in the drum as well as the mass transfer area between the drying air and the textile. In this study, a comprehensive review of the literature on the prediction of the moisture evaporation rate inside the drum of a clothes dryers was conducted. It was found that researchers generally used constant values, fitting models, dimensionless correlations, and Chilton–Colburn analogy to predict the area–mass transfer coefficient. Moreover, few researchers used the effectiveness model for the prediction of moisture evaporation rate. The comprehensive review of the literature showed that all of the previous models for prediction of the moisture evaporation rate have some limitations in terms of generality or accuracy. Therefore, the development of a new accurate model for prediction of the moisture evaporation rate inside the drum of clothes dryers is crucial.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77524252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Numerical Analysis of the Dynamic and Thermal Behavior of an Indirect Solar Dryer: Effect of the Outlet 间接太阳能干燥机动力和热特性的数值分析:出口的影响
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-25 DOI: 10.1142/s2010132521500012
M. Salhi, Dounia Chaatouf, Benyounes Raillani, N. Dihmani, S. Amraqui, M. Moussaoui, A. Mezrhab, J. Fontaine
This work is a contribution to the improvement of the thermal and the dynamic fields of a natural convection indirect solar dryer, composed of a solar flat air heater and a drying chamber, intended for drying agricultural products and medicinal plants. We have studied the effects of size and position of the outlet on the distribution of air and temperature within the drying chamber, containing the figs as a product to be dried. To be more realistic, we have used a user defined function (UDF) subroutine written in [Formula: see text] to integrate the unsteady evolution of a day’s climate data in the Oujda region. This study was achieved by numerical simulations using the ANSYS FLUENT software, in order to optimize the distribution of air and temperature inside the drying chamber, and to choose the best outlet’s position and size for the best efficiency of the dryer. The results show that the optimal outlet position found is in the right corner with a size range of 0.07 to 0.15[Formula: see text]m. The effects of the position and size of the outlet on the air deflection along the trays were also presented and discussed.
本工作对自然对流间接太阳能干燥机的热场和动力场的改进做出了贡献,该干燥机由太阳能平板空气加热器和干燥室组成,用于干燥农产品和药用植物。我们研究了出口的大小和位置对干燥室内空气和温度分布的影响,其中包含无花果作为待干燥的产品。为了更实际,我们使用了用户定义函数(UDF)子程序来整合Oujda地区一天气候数据的不稳定演变。为了优化干燥室内的空气分布和温度分布,选择最佳的出口位置和尺寸,以达到干燥机的最佳效率,本研究利用ANSYS FLUENT软件进行了数值模拟。结果表明,找到的最佳出口位置为右下角,尺寸范围为0.07 ~ 0.15 m[公式:见文]m。此外,还讨论了出口的位置和尺寸对空气沿塔板偏转的影响。
{"title":"Numerical Analysis of the Dynamic and Thermal Behavior of an Indirect Solar Dryer: Effect of the Outlet","authors":"M. Salhi, Dounia Chaatouf, Benyounes Raillani, N. Dihmani, S. Amraqui, M. Moussaoui, A. Mezrhab, J. Fontaine","doi":"10.1142/s2010132521500012","DOIUrl":"https://doi.org/10.1142/s2010132521500012","url":null,"abstract":"This work is a contribution to the improvement of the thermal and the dynamic fields of a natural convection indirect solar dryer, composed of a solar flat air heater and a drying chamber, intended for drying agricultural products and medicinal plants. We have studied the effects of size and position of the outlet on the distribution of air and temperature within the drying chamber, containing the figs as a product to be dried. To be more realistic, we have used a user defined function (UDF) subroutine written in [Formula: see text] to integrate the unsteady evolution of a day’s climate data in the Oujda region. This study was achieved by numerical simulations using the ANSYS FLUENT software, in order to optimize the distribution of air and temperature inside the drying chamber, and to choose the best outlet’s position and size for the best efficiency of the dryer. The results show that the optimal outlet position found is in the right corner with a size range of 0.07 to 0.15[Formula: see text]m. The effects of the position and size of the outlet on the air deflection along the trays were also presented and discussed.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87193178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Assessment of a Simpler Friction Factor in an Algebraic Solution for Adiabatic Coiled Capillary Tubes 绝热毛细管的一个更简单的摩擦系数的代数解的评估
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-25 DOI: 10.1142/s2010132520500339
Thiago Torres Martins Rocha, S. I. D. M. Resende, Hélio Augusto Goulart Diniz, F. A. R. Filho, Raphael Nunes de Oliveira
In this work, the performance of an existing algebraic solution for adiabatic coiled capillary tubes, in subcritical cycles, is investigated. However, the C-M&N friction factor, commonly used, was replaced by Schmidt friction factor, which is less complex. Two existing dimensionless correlations were also evaluated for comparison. To assess the effect of altering the friction factor, experimental data collected in the literature were used as reference. Analyzing the present results and that with C-M&N friction factor, it was observed that adopting the Schmidt friction factor does not cause a relevant impact on the solution. The deviations of the predicted versus experimental mass flow rates were comprised in a range between –8% and 12%, with average deviation (AD), absolute average deviation (AAD) and root mean square (RMS) error of –0.1%, 2.7% and 3.4%, respectively. The empirical correlations presented unsatisfactory results, with maximum deviation around 40%. Therefore, it was concluded that using the Schmidt friction factor is adequate to reduce the complexity of the algebraic solution and to maintain the accuracy.
在这项工作中,研究了现有的绝热螺旋毛细管在亚临界循环中的代数解的性能。然而,常用的C-M&N摩擦因数被施密特摩擦因数所取代,其复杂性较低。还评估了两个现有的无量纲相关性以进行比较。为了评估改变摩擦系数的影响,我们参考了文献中收集的实验数据。分析目前的结果和C-M&N摩擦因数,可以看出,采用施密特摩擦因数不会对溶液产生相关影响。预测质量流量与实验质量流量的偏差在-8% ~ 12%之间,平均偏差(AD)、绝对平均偏差(AAD)和均方根误差(RMS)分别为-0.1%、2.7%和3.4%。经验相关性的结果不令人满意,最大偏差约为40%。因此,使用施密特摩擦因子足以降低代数解的复杂性并保持精度。
{"title":"Assessment of a Simpler Friction Factor in an Algebraic Solution for Adiabatic Coiled Capillary Tubes","authors":"Thiago Torres Martins Rocha, S. I. D. M. Resende, Hélio Augusto Goulart Diniz, F. A. R. Filho, Raphael Nunes de Oliveira","doi":"10.1142/s2010132520500339","DOIUrl":"https://doi.org/10.1142/s2010132520500339","url":null,"abstract":"In this work, the performance of an existing algebraic solution for adiabatic coiled capillary tubes, in subcritical cycles, is investigated. However, the C-M&N friction factor, commonly used, was replaced by Schmidt friction factor, which is less complex. Two existing dimensionless correlations were also evaluated for comparison. To assess the effect of altering the friction factor, experimental data collected in the literature were used as reference. Analyzing the present results and that with C-M&N friction factor, it was observed that adopting the Schmidt friction factor does not cause a relevant impact on the solution. The deviations of the predicted versus experimental mass flow rates were comprised in a range between –8% and 12%, with average deviation (AD), absolute average deviation (AAD) and root mean square (RMS) error of –0.1%, 2.7% and 3.4%, respectively. The empirical correlations presented unsatisfactory results, with maximum deviation around 40%. Therefore, it was concluded that using the Schmidt friction factor is adequate to reduce the complexity of the algebraic solution and to maintain the accuracy.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87685807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Effects of Hydrophobicity and Drainage Velocity on Water Retention Behaviour in Porous Media: A Computational Study 疏水性和排水速度对多孔介质保水行为影响的计算研究
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-23 DOI: 10.1142/s2010132520500340
K. W. Yong, P. Ganesan, E. Hamidi, S. Kazi, S. Ramesh
The present study investigates the water retention behavior in two different types of porous media, i.e., porous metal — a type of metallic foam and ideal geometry. The present study uses computational fluid dynamics (CFD) to model a decreasing water level in a reservoir consisting of a stationary porous medium beneath the water surface at initial stage. It mimics the setup of dynamics dip-testing which measures the amount of retained water for different types of fins-tubes heat exchangers. The study varies parameters like static contact angle ([Formula: see text]) and drainage velocity ([Formula: see text]). The literature review summarizes the unique water retention behaviors for different types of heat exchangers and the findings of the present study. Furthermore, the present study proposed new parameters for evaluating the structural variations in porous metal that explains the water saturation distribution in detail. The evaluation method could provide an insightful idea for performing the quality control check on metallic foam.
本研究研究了两种不同类型的多孔介质,即多孔金属-一种金属泡沫和理想几何介质中的保水行为。本研究采用计算流体力学(CFD)方法模拟了在初始阶段由水面下固定多孔介质组成的油藏中水位下降的过程。它模拟了动态浸渍测试的设置,该测试测量了不同类型的翅片-管换热器的保留水量。研究改变了静接触角([公式:见文])和排水速度([公式:见文])等参数。文献综述总结了不同类型换热器独特的保水行为以及本研究的发现。此外,本研究提出了评价多孔金属结构变化的新参数,详细解释了含水饱和度分布。该评价方法可为金属泡沫的质量控制提供有见地的思路。
{"title":"The Effects of Hydrophobicity and Drainage Velocity on Water Retention Behaviour in Porous Media: A Computational Study","authors":"K. W. Yong, P. Ganesan, E. Hamidi, S. Kazi, S. Ramesh","doi":"10.1142/s2010132520500340","DOIUrl":"https://doi.org/10.1142/s2010132520500340","url":null,"abstract":"The present study investigates the water retention behavior in two different types of porous media, i.e., porous metal — a type of metallic foam and ideal geometry. The present study uses computational fluid dynamics (CFD) to model a decreasing water level in a reservoir consisting of a stationary porous medium beneath the water surface at initial stage. It mimics the setup of dynamics dip-testing which measures the amount of retained water for different types of fins-tubes heat exchangers. The study varies parameters like static contact angle ([Formula: see text]) and drainage velocity ([Formula: see text]). The literature review summarizes the unique water retention behaviors for different types of heat exchangers and the findings of the present study. Furthermore, the present study proposed new parameters for evaluating the structural variations in porous metal that explains the water saturation distribution in detail. The evaluation method could provide an insightful idea for performing the quality control check on metallic foam.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84745206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Refrigerant Flow Rate and Dimensions of the Ejector Employed in a Modified Ejector Vapor Compression System 改进的喷射器蒸汽压缩系统中喷射器的优化制冷剂流量和尺寸
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-20 DOI: 10.1142/s2010132520500388
Dishant Sharma, G. Sachdeva, D. K. Saini
This paper presents the analysis of a modified vapor compression cooling system which uses an ejector as an expansion device. Expanding refrigerant in an ejector enhances the refrigeration effect and reduces compressor work. Therefore, it yields a better coefficient of performance. Thermodynamic analysis of a constant area ejector model has been done to obtain primary dimensions of the ejector for given condenser and evaporator temperature and cooling capacity. The proposed model has been used to design the ejector for three refrigerants; R134a, R152a and R1234yf. The refrigerant flow rate and the diameters at various sections of the ejector have been obtained by doing numerical modeling in Engineering Equation Solver (EES). Refrigerant R1234yf demanded the highest diameter requirements at a fixed 5∘C evaporator temperature and 40∘C condenser temperature for a given range of cooling load. Both primary and secondary refrigerants flow rates are higher for R1234yf followed by R134a and then R152a.
本文分析了一种采用喷射器作为膨胀装置的改进蒸汽压缩冷却系统。在喷射器中膨胀制冷剂可以提高制冷效果,减少压缩机的工作量。因此,它产生了更好的性能系数。对定面积喷射器模型进行了热力学分析,得到了给定冷凝器和蒸发器温度和制冷量时喷射器的基本尺寸。应用该模型对三种制冷剂的喷射器进行了设计;R134a, R152a和R1234yf。在工程方程求解器(EES)中进行了数值模拟,得到了喷射器各截面上制冷剂的流量和直径。制冷剂R1234yf要求在给定的冷负荷范围内,在固定的5°C蒸发器温度和40°C冷凝器温度下,最大直径要求。R1234yf、R134a、R152a的一次、二次制冷剂流量均较大。
{"title":"Optimized Refrigerant Flow Rate and Dimensions of the Ejector Employed in a Modified Ejector Vapor Compression System","authors":"Dishant Sharma, G. Sachdeva, D. K. Saini","doi":"10.1142/s2010132520500388","DOIUrl":"https://doi.org/10.1142/s2010132520500388","url":null,"abstract":"This paper presents the analysis of a modified vapor compression cooling system which uses an ejector as an expansion device. Expanding refrigerant in an ejector enhances the refrigeration effect and reduces compressor work. Therefore, it yields a better coefficient of performance. Thermodynamic analysis of a constant area ejector model has been done to obtain primary dimensions of the ejector for given condenser and evaporator temperature and cooling capacity. The proposed model has been used to design the ejector for three refrigerants; R134a, R152a and R1234yf. The refrigerant flow rate and the diameters at various sections of the ejector have been obtained by doing numerical modeling in Engineering Equation Solver (EES). Refrigerant R1234yf demanded the highest diameter requirements at a fixed 5∘C evaporator temperature and 40∘C condenser temperature for a given range of cooling load. Both primary and secondary refrigerants flow rates are higher for R1234yf followed by R134a and then R152a.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88080796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Rotary Compressor Performance at Low Ambient Temperatures 旋转压缩机在低温环境下的性能
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-18 DOI: 10.1142/s2010132520500376
S. Lowrey, G. Reboux
Small rotary compressors are used in domestic heat pump appliances, for example, in domestic dehumidifiers and heat pump clothes dryers. Compressor performance curves provided by the manufacturer can be based on testing at relatively high ambient temperatures, in some cases as high as 35∘C. This can be much higher compared with the ambient temperature in which the compressor operates when, for example, it is installed in a domestic dehumidifier which can operate in ambient temperatures as low as 10∘C. We have developed a compressor calorimeter to test a small R134a rotary compressor extracted from a commercial domestic dehumidifier and use this to measure compressor performance parameters including the isentropic and volumetric efficiencies and the compressor heat loss fraction. The performance testing has been carried out at ambient temperatures 10∘C, 15∘C, 20∘C and 25∘C for a fixed relative humidity of 70% to compare how the compressor performance varies with the ambient temperature, and to determine how well the compressor performs outside of the performance envelope provided by the manufacturer. The results show that isentropic and volumetric efficiency of these small compressors is relatively insensitive to variation in ambient temperature, even outside of the performance envelope provided by the manufacturer. However, the compressor heat loss fraction can, on average, double from 15% to 30%, between operation at ambient 25∘C and ambient 10∘C. The data obtained in this work is used to construct compressor sub-models for certain ambient temperatures. We show how these sub-models can be used to improve a domestic dehumidifier model for operation at low ambient conditions within the evaporator frosting regime and good agreement is obtained between experimental and simulated data. The authors are not aware of a domestic dehumidifier model designed to work at ambient temperatures within the frosting regime.
小型旋转压缩机用于家用热泵电器,例如家用除湿机和热泵干衣机。制造商提供的压缩机性能曲线是基于在较高环境温度下的测试,有些情况下可高达35°C。这比压缩机工作的环境温度要高得多,例如,当压缩机安装在家用除湿机上时,它可以在低至10°C的环境温度下工作。我们开发了一种压缩机量热计,用于测试从商用家用除湿机中提取的小型R134a旋转压缩机,并使用它来测量压缩机性能参数,包括等熵和容积效率以及压缩机热损失分数。在10°C、15°C、20°C和25°C的固定相对湿度为70%的环境温度下进行了性能测试,以比较压缩机性能随环境温度的变化情况,并确定压缩机在制造商提供的性能范围之外的性能表现。结果表明,这些小型压缩机的等熵和容积效率对环境温度的变化相对不敏感,即使超出了制造商提供的性能范围。然而,在25°C环境和10°C环境下运行时,压缩机的热损失分数平均可从15%增加到30%。利用所得数据建立了一定环境温度下的压缩机子模型。我们展示了如何使用这些子模型来改进家用除湿机模型,使其在蒸发器结霜状态下在低环境条件下运行,并且在实验和模拟数据之间获得了良好的一致性。作者不知道国内除湿机模型设计在环境温度下工作在结霜制度。
{"title":"Rotary Compressor Performance at Low Ambient Temperatures","authors":"S. Lowrey, G. Reboux","doi":"10.1142/s2010132520500376","DOIUrl":"https://doi.org/10.1142/s2010132520500376","url":null,"abstract":"Small rotary compressors are used in domestic heat pump appliances, for example, in domestic dehumidifiers and heat pump clothes dryers. Compressor performance curves provided by the manufacturer can be based on testing at relatively high ambient temperatures, in some cases as high as 35∘C. This can be much higher compared with the ambient temperature in which the compressor operates when, for example, it is installed in a domestic dehumidifier which can operate in ambient temperatures as low as 10∘C. We have developed a compressor calorimeter to test a small R134a rotary compressor extracted from a commercial domestic dehumidifier and use this to measure compressor performance parameters including the isentropic and volumetric efficiencies and the compressor heat loss fraction. The performance testing has been carried out at ambient temperatures 10∘C, 15∘C, 20∘C and 25∘C for a fixed relative humidity of 70% to compare how the compressor performance varies with the ambient temperature, and to determine how well the compressor performs outside of the performance envelope provided by the manufacturer. The results show that isentropic and volumetric efficiency of these small compressors is relatively insensitive to variation in ambient temperature, even outside of the performance envelope provided by the manufacturer. However, the compressor heat loss fraction can, on average, double from 15% to 30%, between operation at ambient 25∘C and ambient 10∘C. The data obtained in this work is used to construct compressor sub-models for certain ambient temperatures. We show how these sub-models can be used to improve a domestic dehumidifier model for operation at low ambient conditions within the evaporator frosting regime and good agreement is obtained between experimental and simulated data. The authors are not aware of a domestic dehumidifier model designed to work at ambient temperatures within the frosting regime.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81924580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-Objective Optimization of Cascade Refrigeration System Using the Concept of Modified and Advanced Exergy, Risk Level and Thermal Inventory 基于改进和先进火用、风险水平和热库存概念的梯级制冷系统多目标优化
IF 1 Q3 Chemical Engineering Pub Date : 2020-11-11 DOI: 10.1142/s2010132520500364
V. Jain, Rajiv Rawat, G. Sachdeva, V. Kumar
This work conceives the performance of vapor compression cascaded refrigeration system (CRS) from the exergy, safety and thermal inventory points of view employing the theory of effective temperature ([Formula: see text] than environment temperature ([Formula: see text] in Gouy–Stodola equation. Comparative results show that the actual irreversible loss in CRS is 8.1% higher. Further, advanced exergy analysis results showed that 17.985[Formula: see text]kW irreversible loss (out of 33.737[Formula: see text]kW irreversible loss) in the system is evadable with improvement in the system design. Besides, the vulnerability of toxic fluid R717 is reported in terms of the total risk level. Moreover, the economy matter is expressed in terms of its total thermal inventory. At the base case, total risk level and total thermal inventory are determined to be 454.3 US$ and 48.86[Formula: see text]kW/K, respectively. First, sensitivity analysis is carried out to evaluate the variation in irreversible loss, total risk level and thermal inventory at different evaporator and condenser temperatures with different degrees of overlap (decision variables). A total of nine simulations are designed using the Taguchi technique. Later, multi-objective optimization is employed. The optimization process reduced the total irreversibility and annual risk level of CRS by 10.2% and 8.9%, respectively, with 6.8% increase in thermal inventory.
本文采用Gouy-Stodola方程中的有效温度([公式:见文])比环境温度([公式:见文])理论,从火用、安全和热库存的角度对蒸汽压缩级联制冷系统(CRS)的性能进行了设想。对比结果表明,CRS的实际不可逆损失高出8.1%。进一步,先进的火用分析结果表明,随着系统设计的改进,系统中17.985[公式:见文]kW不可逆损失(其中33.737[公式:见文]kW不可逆损失)是可以避免的。此外,报告了R717有毒流体的总风险等级脆弱性。此外,经济问题是用其总热库存来表示的。在基本情况下,确定总风险水平和总热库存分别为454.3美元和48.86千瓦/千瓦。首先,进行敏感性分析,评价不同重叠程度蒸发器和冷凝器温度下的不可逆损失、总风险水平和热库存(决策变量)的变化。采用田口法设计了9个仿真。然后采用多目标优化。优化后的CRS总不可逆性和年风险水平分别降低了10.2%和8.9%,热库存增加了6.8%。
{"title":"Multi-Objective Optimization of Cascade Refrigeration System Using the Concept of Modified and Advanced Exergy, Risk Level and Thermal Inventory","authors":"V. Jain, Rajiv Rawat, G. Sachdeva, V. Kumar","doi":"10.1142/s2010132520500364","DOIUrl":"https://doi.org/10.1142/s2010132520500364","url":null,"abstract":"This work conceives the performance of vapor compression cascaded refrigeration system (CRS) from the exergy, safety and thermal inventory points of view employing the theory of effective temperature ([Formula: see text] than environment temperature ([Formula: see text] in Gouy–Stodola equation. Comparative results show that the actual irreversible loss in CRS is 8.1% higher. Further, advanced exergy analysis results showed that 17.985[Formula: see text]kW irreversible loss (out of 33.737[Formula: see text]kW irreversible loss) in the system is evadable with improvement in the system design. Besides, the vulnerability of toxic fluid R717 is reported in terms of the total risk level. Moreover, the economy matter is expressed in terms of its total thermal inventory. At the base case, total risk level and total thermal inventory are determined to be 454.3 US$ and 48.86[Formula: see text]kW/K, respectively. First, sensitivity analysis is carried out to evaluate the variation in irreversible loss, total risk level and thermal inventory at different evaporator and condenser temperatures with different degrees of overlap (decision variables). A total of nine simulations are designed using the Taguchi technique. Later, multi-objective optimization is employed. The optimization process reduced the total irreversibility and annual risk level of CRS by 10.2% and 8.9%, respectively, with 6.8% increase in thermal inventory.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84373514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
International Journal of Air-conditioning and Refrigeration
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1