This paper proposes an improved discretization-based kinematic approach (DKA) with an efficient and robust algorithm to investigate slope stability in nonuniform soils. In an effort to ensure rigorous upper-bound solutions which may be not satisfied by the initial DKA based on a forward difference method (DKA-FD), a central and backward difference “point-to-point” method (DKA-CD and DKA-BD) is proposed to generate discretized points to form a velocity discontinuity surface. Varying (including constant) soil frictional angles along depth are discussed, which can be readily considered in the improved DKA-CD. Work rate calculations are performed to derive upper-bound formulations of slope stability number, and critical failure surface is correspondingly obtained at limit state. The comparison with forward and backward difference methods clearly reveals that the improved DKA-CD could significantly reduce the mesh-dependency issue and enhance efficacy of slope stability analyses in nonuniform soils.
{"title":"An improved discretization-based kinematic approach for stability analyses of nonuniform c-φ soil slopes","authors":"Hongyu Wang, Lingchao Meng, Changbing Qin","doi":"10.1002/nag.3807","DOIUrl":"10.1002/nag.3807","url":null,"abstract":"<p>This paper proposes an improved discretization-based kinematic approach (DKA) with an efficient and robust algorithm to investigate slope stability in nonuniform soils. In an effort to ensure rigorous upper-bound solutions which may be not satisfied by the initial DKA based on a forward difference method (DKA-FD), a central and backward difference “point-to-point” method (DKA-CD and DKA-BD) is proposed to generate discretized points to form a velocity discontinuity surface. Varying (including constant) soil frictional angles along depth are discussed, which can be readily considered in the improved DKA-CD. Work rate calculations are performed to derive upper-bound formulations of slope stability number, and critical failure surface is correspondingly obtained at limit state. The comparison with forward and backward difference methods clearly reveals that the improved DKA-CD could significantly reduce the mesh-dependency issue and enhance efficacy of slope stability analyses in nonuniform soils.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 15","pages":"3680-3698"},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laminar flow phenomena may occur when pore water flows at low velocities across the interfaces between soils of different properties, thus causing flow contact resistance. To explore the impacts of interfacial flow contact resistance and rheological characteristics on the thermal consolidation process of layered viscoelastic saturated soil foundation featuring semi-permeable boundaries. This paper established a new thermal consolidation model by introducing a fractional order derivative model, Hagen–Poiseuille law and time-dependent loadings. The semi-analytical solutions for the proposed thermal consolidation model are derived through the Laplace transform and its inverse transform. The reliability and correctness of the solutions are verified with the experimental data in literatures. The influence of constitutive parameters, flow contact resistance model parameters on thermal consolidation process and the interfacial flow contact resistance on foundation settlement, is further explored. The results indicate that the impact of the constitutive parameters and permeability coefficient on the thermal consolidation of viscoelastic saturated soil is related to the flow contact resistance. The enhanced flow contact resistance effect leads to a significant increase in pore water pressure and displacement during the consolidation process.
{"title":"Interfacial flow contact resistance effect for thermal consolidation of layered viscoelastic saturated soils with semi-permeable boundaries","authors":"Jiahao Xie, Minjie Wen, Pan Ding, Yuan Tu, Dazhi Wu, Kaifu Liu, Kejie Tang, Menghuan Chen","doi":"10.1002/nag.3805","DOIUrl":"10.1002/nag.3805","url":null,"abstract":"<p>Laminar flow phenomena may occur when pore water flows at low velocities across the interfaces between soils of different properties, thus causing flow contact resistance. To explore the impacts of interfacial flow contact resistance and rheological characteristics on the thermal consolidation process of layered viscoelastic saturated soil foundation featuring semi-permeable boundaries. This paper established a new thermal consolidation model by introducing a fractional order derivative model, Hagen–Poiseuille law and time-dependent loadings. The semi-analytical solutions for the proposed thermal consolidation model are derived through the Laplace transform and its inverse transform. The reliability and correctness of the solutions are verified with the experimental data in literatures. The influence of constitutive parameters, flow contact resistance model parameters on thermal consolidation process and the interfacial flow contact resistance on foundation settlement, is further explored. The results indicate that the impact of the constitutive parameters and permeability coefficient on the thermal consolidation of viscoelastic saturated soil is related to the flow contact resistance. The enhanced flow contact resistance effect leads to a significant increase in pore water pressure and displacement during the consolidation process.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 15","pages":"3640-3679"},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro Marveggio, Matteo Zerbi, Irene Redaelli, Claudio di Prisco
The dynamic interaction between granular flowing masses and rigid obstacles is a complex phenomenon characterised by both large displacements and high strain rates. In case the flowing mass is modelled as a continuum, its numerical simulation requires both advanced computational tools and constitutive relationships capable of predicting the mechanical behaviour of the same material under both fluid and solid regimes. In this paper, the authors employed the open-source ANURA3D code, based on the Material Point Method (MPM), and a multi-regime constitutive model. A series of impacts characterised by different velocities, initial void ratios, front inclinations and impacting mass lengths have been simulated. The MPM numerical results are critically compared with those obtained by using a Discrete Element Method (DEM) numerical code. The model capability of simulating material regime transitions, from fluid to solid and vice versa, is shown to be crucial for reproducing the mechanical response of the flowing mass put in evidence by DEM data.
颗粒流体与刚性障碍物之间的动态相互作用是一种复杂的现象,其特点是位移大、应变率高。如果将流动质量建模为连续体,则其数值模拟需要先进的计算工具和能够预测同一材料在流体和固体状态下机械行为的构成关系。在本文中,作者采用了基于材料点法(MPM)的开源 ANURA3D 代码和多态构成模型。模拟了一系列以不同速度、初始空隙率、前倾角和撞击质量长度为特征的撞击。将 MPM 数值结果与使用离散元素法 (DEM) 数值代码获得的结果进行了严格比较。结果表明,模型模拟从流体到固体以及从固体到流体的材料状态转换的能力,对于再现 DEM 数据所证明的流动质量的机械响应至关重要。
{"title":"Granular material regime transitions during high energy impacts of dry flowing masses: MPM simulations with a multi-regime constitutive model","authors":"Pietro Marveggio, Matteo Zerbi, Irene Redaelli, Claudio di Prisco","doi":"10.1002/nag.3808","DOIUrl":"10.1002/nag.3808","url":null,"abstract":"<p>The dynamic interaction between granular flowing masses and rigid obstacles is a complex phenomenon characterised by both large displacements and high strain rates. In case the flowing mass is modelled as a continuum, its numerical simulation requires both advanced computational tools and constitutive relationships capable of predicting the mechanical behaviour of the same material under both fluid and solid regimes. In this paper, the authors employed the open-source ANURA3D code, based on the Material Point Method (MPM), and a multi-regime constitutive model. A series of impacts characterised by different velocities, initial void ratios, front inclinations and impacting mass lengths have been simulated. The MPM numerical results are critically compared with those obtained by using a Discrete Element Method (DEM) numerical code. The model capability of simulating material regime transitions, from fluid to solid and vice versa, is shown to be crucial for reproducing the mechanical response of the flowing mass put in evidence by DEM data.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 15","pages":"3699-3724"},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3808","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}