Xueying Feng, Min Zou, Jiong Liu, Liang Lv, Xiangfeng Meng, Yu Bai, Fei Zheng, Li Yu, Wen Ma, Yuanming Gao
High-temperature oxidation (1050°C) of Sr.9(Zr.9Yb.05Y.05)O2.85 (SZYY) thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) and growth behavior of thermally grown oxide (TGO) were investigated. When the TBCs were exposed to high temperature for a period of time (∼5 h), the BC oxidized and TGO inevitably formed between the bond coating (BC) and the ceramic top coating (TC). The high-temperature oxidation behavior of the BC is generally manifested as the growth of TGO, which has four specific stages as follows: (1) formative oxidation stage (0‒10 h), (2) rapid oxidation stage (10‒50 h), (3) stable oxidation stage (50‒100 h), and (4) complex oxidation stage (100‒200 h). The main component of early TGO is α-Al2O3. It has a very low oxygen ion diffusivity and provides an excellent diffusion barrier, which has a positive effect on preventing further BC oxidation. However, as the heat treatment time increased, the Al consumption and the formation of a CNS layer (NiO, Co3O4, and spinel) in the BC eventually led to coating failure. The working life of TBCs can be improved by improving the ceramic TC structure and the Al content of BC. SZYY-TBCs have certain potential application value.
{"title":"High-temperature oxidation and TGO growth behavior of Sr.9(Zr.9Yb.05Y.05)O2.85 thermal barrier coatings","authors":"Xueying Feng, Min Zou, Jiong Liu, Liang Lv, Xiangfeng Meng, Yu Bai, Fei Zheng, Li Yu, Wen Ma, Yuanming Gao","doi":"10.1111/ijac.14870","DOIUrl":"10.1111/ijac.14870","url":null,"abstract":"<p>High-temperature oxidation (1050°C) of Sr<sub>.9</sub>(Zr<sub>.9</sub>Yb<sub>.05</sub>Y<sub>.05</sub>)O<sub>2.85</sub> (SZYY) thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) and growth behavior of thermally grown oxide (TGO) were investigated. When the TBCs were exposed to high temperature for a period of time (∼5 h), the BC oxidized and TGO inevitably formed between the bond coating (BC) and the ceramic top coating (TC). The high-temperature oxidation behavior of the BC is generally manifested as the growth of TGO, which has four specific stages as follows: (1) formative oxidation stage (0‒10 h), (2) rapid oxidation stage (10‒50 h), (3) stable oxidation stage (50‒100 h), and (4) complex oxidation stage (100‒200 h). The main component of early TGO is α-Al<sub>2</sub>O<sub>3</sub>. It has a very low oxygen ion diffusivity and provides an excellent diffusion barrier, which has a positive effect on preventing further BC oxidation. However, as the heat treatment time increased, the Al consumption and the formation of a CNS layer (NiO, Co<sub>3</sub>O<sub>4</sub>, and spinel) in the BC eventually led to coating failure. The working life of TBCs can be improved by improving the ceramic TC structure and the Al content of BC. SZYY-TBCs have certain potential application value.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4100-4113"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, an Al2O3-based ceramic pastes with high solid content and low viscosity for photocuring was prepared. The effects of TiO2/Yb2O3 binary sintering aid on the rheological properties, curing behavior, and bending strength of the sintered parts were systematically investigated. Ceramic samples with an intact surface and no defects were prepared through debinding in various atmospheres followed by pressure-less sintering at 1600°C. The bending strength of the sintered material was 329 MPa, which represents a 231% increase compared to the bending strength of 99.4 MPa for pure Al2O3 ceramic material prepared using the same process, with the highest recorded bending strength reaching 478.47 MPa. Scanning electron microscopy and X-ray diffraction analyses revealed that the binary sintering aid acts as a bridge between grains by forming a solid solution with Al2O3 powder at high temperatures, which decreased the pore size and number between Al2O3 ceramic grains, thereby enhancing the bending strength of the ceramics. The prepared ceramic pastes is expected to meet the manufacturing requirements of high-performance ceramic substrates and accelerate the development of high-performance ceramic substrate processing technology.
{"title":"The effect of TiO2/Yb2O3 binary sintering aids on the properties of UV-cured Al2O3-based ceramics","authors":"Xinyu Miao, Shuangyu Liu, Ping Lu, Hongtao Chu, Fulong Zhang, Chuanjin Huang, Liyan Wang","doi":"10.1111/ijac.14861","DOIUrl":"10.1111/ijac.14861","url":null,"abstract":"<p>In this study, an Al<sub>2</sub>O<sub>3</sub>-based ceramic pastes with high solid content and low viscosity for photocuring was prepared. The effects of TiO<sub>2</sub>/Yb<sub>2</sub>O<sub>3</sub> binary sintering aid on the rheological properties, curing behavior, and bending strength of the sintered parts were systematically investigated. Ceramic samples with an intact surface and no defects were prepared through debinding in various atmospheres followed by pressure-less sintering at 1600°C. The bending strength of the sintered material was 329 MPa, which represents a 231% increase compared to the bending strength of 99.4 MPa for pure Al<sub>2</sub>O<sub>3</sub> ceramic material prepared using the same process, with the highest recorded bending strength reaching 478.47 MPa. Scanning electron microscopy and X-ray diffraction analyses revealed that the binary sintering aid acts as a bridge between grains by forming a solid solution with Al<sub>2</sub>O<sub>3</sub> powder at high temperatures, which decreased the pore size and number between Al<sub>2</sub>O<sub>3</sub> ceramic grains, thereby enhancing the bending strength of the ceramics. The prepared ceramic pastes is expected to meet the manufacturing requirements of high-performance ceramic substrates and accelerate the development of high-performance ceramic substrate processing technology.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renan Belli Berman, Renato Saint Martin Almeida, Mohamed Ariff Azmah Hanim, Edson Roberto de Pieri, Hazim Ali Al-Qureshi
A more generalized approach for predicting the steady-state creep rate of ceramic fibers under extensive stress ranges is proposed. Creep rate equations derived from dimensional analysis, such as Almeida's creep equation and Arrhenius’ creep equation, were evaluated using Buckingham's method, and the corresponding π groups were determined. Subsequently, a new equation is proposed using the usual semi-empirical constants for the diffusional and power law creep phenomena, along with an additional power law exponent to account for changes in creep mechanisms at higher stresses. The proposed equation was used to fit the creep rate data of the fiber Nextel 720 at various temperatures and constant stress, which demonstrated a good fit with an adjusted R-squared of .96. Subsequently, the equation was used to predict the creep rate at constant temperature and various stresses, exhibiting an adjusted R-squared of .77 and .85, depending on the scatter of the used data. The predictive results of the proposed equation were then compared to those obtained using the Arrhenius creep equation, which tends to higher rates at high stresses. In summary, the novel equation can be more efficiently applied in predicting the creep rate of ceramic fibers across a broader spectrum of stress.
本文提出了一种更通用的方法,用于预测陶瓷纤维在广泛应力范围下的稳态蠕变速率。利用白金汉方法评估了从尺寸分析中得出的蠕变速率方程,如阿尔梅达蠕变方程和阿伦尼乌斯蠕变方程,并确定了相应的 π 组。随后,针对扩散蠕变和幂律蠕变现象提出了一个新方程,该方程使用了常用的半经验常数,并增加了一个幂律指数,以考虑较高应力下蠕变机制的变化。所提出的方程用于拟合纤维 Nextel 720 在不同温度和恒定应力下的蠕变速率数据,结果显示拟合效果良好,调整后的 R 方为 0.96。随后,该方程被用于预测恒温和各种应力下的蠕变率,根据所用数据的分散程度,调整后的 R 方为 0.77 和 0.85。然后将拟议方程的预测结果与使用阿伦尼乌斯蠕变方程得出的结果进行比较,后者在高应力下的蠕变率更高。总之,新方程可以更有效地用于预测陶瓷纤维在更宽应力范围内的蠕变速率。
{"title":"Novel approach for predicting the creep behavior of ceramic fibers using dimensional analysis","authors":"Renan Belli Berman, Renato Saint Martin Almeida, Mohamed Ariff Azmah Hanim, Edson Roberto de Pieri, Hazim Ali Al-Qureshi","doi":"10.1111/ijac.14876","DOIUrl":"10.1111/ijac.14876","url":null,"abstract":"<p>A more generalized approach for predicting the steady-state creep rate of ceramic fibers under extensive stress ranges is proposed. Creep rate equations derived from dimensional analysis, such as Almeida's creep equation and Arrhenius’ creep equation, were evaluated using Buckingham's method, and the corresponding π groups were determined. Subsequently, a new equation is proposed using the usual semi-empirical constants for the diffusional and power law creep phenomena, along with an additional power law exponent to account for changes in creep mechanisms at higher stresses. The proposed equation was used to fit the creep rate data of the fiber Nextel 720 at various temperatures and constant stress, which demonstrated a good fit with an adjusted R-squared of .96. Subsequently, the equation was used to predict the creep rate at constant temperature and various stresses, exhibiting an adjusted R-squared of .77 and .85, depending on the scatter of the used data. The predictive results of the proposed equation were then compared to those obtained using the Arrhenius creep equation, which tends to higher rates at high stresses. In summary, the novel equation can be more efficiently applied in predicting the creep rate of ceramic fibers across a broader spectrum of stress.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ti3SiC2/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as-formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti-oxidation of the composites at high temperatures were explored. The samples were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10−5 g/mm2). The anti-oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO2, CuO, and amorphous SiO2.
{"title":"The anti-oxidation behavior of the Ti3SiC2/Cu composites at high temperatures","authors":"Rui Zhang, Huiming Zhang, Fuyan Liu, Shuai Ma","doi":"10.1111/ijac.14869","DOIUrl":"10.1111/ijac.14869","url":null,"abstract":"<p>The Ti<sub>3</sub>SiC<sub>2</sub>/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as-formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti-oxidation of the composites at high temperatures were explored. The samples were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10<sup>−5</sup> g/mm<sup>2</sup>). The anti-oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO<sub>2</sub>, CuO, and amorphous SiO<sub>2</sub>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Zhu, Xiang Zhao, Mingxuan Hao, Daoyuan Yang, Huiyu Yuan
Direct ink writing (DIW) technology supersedes traditional mold-based forming methods, significantly enhancing the fabrication of personalized and customized products with complex structures. This technology particularly excels in achieving precise control over the porosity of porous constructs. This study employs inorganic Al2O3 as raw material, sodium hexametaphosphate as dispersing agent, and inorganic SiO2 micropowder as binding medium to fabricate lattice porous structures. One challenge encountered is the viscoelastic behavior of the extruded filament. When spanning the unsupported segments of the lower layer, the upper extruded filaments are susceptible to deflection or collapse, adversely affecting the porosity and dimensional fidelity of the final specimens. Experimental results revealed that a larger span and smaller modulus will cause the extruded filament to be more prone to deformation at the midpoint. The introduction of 2 wt% polyethylene glycol as a plasticizer mitigates this issue, ensuring nondeflection of the extruded filaments at a span of 6 mm. The deflection model for the extruded filament about span and modulus identifies the minimum modulus necessary to prevent or minimize deflection under given spans, which closely approximates our experimental findings, offering a valuable framework for guiding the production of high-precision, porosity-controlled porous structures.
{"title":"Study on filament deflection in lattice porous structures fabricated through direct ink writing","authors":"Kai Zhu, Xiang Zhao, Mingxuan Hao, Daoyuan Yang, Huiyu Yuan","doi":"10.1111/ijac.14868","DOIUrl":"10.1111/ijac.14868","url":null,"abstract":"<p>Direct ink writing (DIW) technology supersedes traditional mold-based forming methods, significantly enhancing the fabrication of personalized and customized products with complex structures. This technology particularly excels in achieving precise control over the porosity of porous constructs. This study employs inorganic Al<sub>2</sub>O<sub>3</sub> as raw material, sodium hexametaphosphate as dispersing agent, and inorganic SiO<sub>2</sub> micropowder as binding medium to fabricate lattice porous structures. One challenge encountered is the viscoelastic behavior of the extruded filament. When spanning the unsupported segments of the lower layer, the upper extruded filaments are susceptible to deflection or collapse, adversely affecting the porosity and dimensional fidelity of the final specimens. Experimental results revealed that a larger span and smaller modulus will cause the extruded filament to be more prone to deformation at the midpoint. The introduction of 2 wt% polyethylene glycol as a plasticizer mitigates this issue, ensuring nondeflection of the extruded filaments at a span of 6 mm. The deflection model for the extruded filament about span and modulus identifies the minimum modulus necessary to prevent or minimize deflection under given spans, which closely approximates our experimental findings, offering a valuable framework for guiding the production of high-precision, porosity-controlled porous structures.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3876-3885"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingde Tong, Xinhao Shi, Tao Feng, Ying Dai, Pengfei He
To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta2O5 and Ta2O5 being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta2O5 from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta2O5 covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.
{"title":"Self-defending mechanism of C/TaC‒SiC composites under 2100°C cyclic ablation environment","authors":"Mingde Tong, Xinhao Shi, Tao Feng, Ying Dai, Pengfei He","doi":"10.1111/ijac.14867","DOIUrl":"10.1111/ijac.14867","url":null,"abstract":"<p>To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta<sub>2</sub>O<sub>5</sub> and Ta<sub>2</sub>O<sub>5</sub> being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta<sub>2</sub>O<sub>5</sub> from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta<sub>2</sub>O<sub>5</sub> covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4127-4145"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Liu, Yu Sun, Lilin Xiang, TuLai Sun, Zilong Yu, Bing Cui, Chuangui Jin
In the present study, SrTiO3 was selected to enhance the multiferroic characteristics of Bi0.88Sm0.12FeO3 (BSF) ceramics. With increasing SrTiO3 content, the principal phase of BSF ceramic transitions from rhombohedral R3c to Pna21. Through DSC and dielectric analysis, it was observed that both the Curie temperature and Néel temperature decreased proportionally with the augmentation of SrTiO3 content. When x = .1, the optimal ferroelectric performance is achieved, and the highest remanent polarization value is 55.47 µC/cm2, significantly surpassing that of BSF ceramics. Moreover, the PFM test results showed that as the substitution content increased, the domains in the BSF ceramic gradually transformed from normal ferroelectric domains to polar nanomicro-domains. Magnetic and magnetoelectric results show that when x = .1, the best magnetic properties are obtained, Mr = 59.7 emu/mol. The magnetoelectric coefficient αME initially increased and then decreased with the increasing SrTiO3 content, reaching its optimum magnetoelectric properties at x = .1, where αME = .47 mV cm–1 Oe–1. In summary, when the substitution amount of SrTiO3 reaches 10%, the ferroelectric, magnetic, and magnetoelectric properties of BSF ceramics are significantly improved.
{"title":"Simultaneously enhanced ferroelectric and magnetic properties of SrTiO3-modified Bi0.88Sm0.12FeO3 ceramics","authors":"Juan Liu, Yu Sun, Lilin Xiang, TuLai Sun, Zilong Yu, Bing Cui, Chuangui Jin","doi":"10.1111/ijac.14856","DOIUrl":"10.1111/ijac.14856","url":null,"abstract":"<p>In the present study, SrTiO<sub>3</sub> was selected to enhance the multiferroic characteristics of Bi<sub>0.88</sub>Sm<sub>0.12</sub>FeO<sub>3</sub> (BSF) ceramics. With increasing SrTiO<sub>3</sub> content, the principal phase of BSF ceramic transitions from rhombohedral <i>R3c</i> to <i>Pna2<sub>1</sub></i>. Through DSC and dielectric analysis, it was observed that both the Curie temperature and Néel temperature decreased proportionally with the augmentation of SrTiO<sub>3</sub> content. When <i>x</i> = .1, the optimal ferroelectric performance is achieved, and the highest remanent polarization value is 55.47 µC/cm<sup>2</sup>, significantly surpassing that of BSF ceramics. Moreover, the PFM test results showed that as the substitution content increased, the domains in the BSF ceramic gradually transformed from normal ferroelectric domains to polar nanomicro-domains. Magnetic and magnetoelectric results show that when <i>x </i>= .1, the best magnetic properties are obtained, <i>M</i><sub>r</sub> = 59.7 emu/mol. The magnetoelectric coefficient α<sub>ME</sub> initially increased and then decreased with the increasing SrTiO<sub>3</sub> content, reaching its optimum magnetoelectric properties at <i>x</i> = .1, where <i>α</i><sub>ME</sub> = .47 mV cm<sup>–1</sup> Oe<sup>–1</sup>. In summary, when the substitution amount of SrTiO<sub>3</sub> reaches 10%, the ferroelectric, magnetic, and magnetoelectric properties of BSF ceramics are significantly improved.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4352-4365"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixuan Wang, Fenghao Zhang, Song Chen, Akiyoshi Osaka, Weiyi Chen
Titania nanotube (NT) arrays have been widely used as cell-supporting matrices. However, cells are always seeded on the porous surface of the NT array and have very limited interactions with each individual NT in the array. In this study, titania hollow microtubes (HMTs) were synthesized via a gelatin-template sol-gel route and then utilized as free-standing cell-supporting matrices for the first time. The resultant titania HMTs were studied by field emission scanning electron microscopy, energy-dispersed spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Each HMT was composed of rutile-type titania nanoparticles with diameters of 50–100 nm and a diameter of 50–100 µm. The results from a leaching liquor assay demonstrated good biocompatibility of titania HMTs. Each HMT has been demonstrated to independently support the adhesion and proliferation of osteoblast MC3T3-E1 cells. For comparison, titania NT arrays, not independent titania NT, only supported the adhesion of cells on their porous surface. Thus, the resultant titania HMTs are applicable to free-standing and biocompatible cell-supporting matrices.
{"title":"Facile synthesis, characterization, and in vitro biocompatibility of free-standing titania hollow microtubes","authors":"Yixuan Wang, Fenghao Zhang, Song Chen, Akiyoshi Osaka, Weiyi Chen","doi":"10.1111/ijac.14858","DOIUrl":"10.1111/ijac.14858","url":null,"abstract":"<p>Titania nanotube (NT) arrays have been widely used as cell-supporting matrices. However, cells are always seeded on the porous surface of the NT array and have very limited interactions with each individual NT in the array. In this study, titania hollow microtubes (HMTs) were synthesized via a gelatin-template sol-gel route and then utilized as free-standing cell-supporting matrices for the first time. The resultant titania HMTs were studied by field emission scanning electron microscopy, energy-dispersed spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Each HMT was composed of rutile-type titania nanoparticles with diameters of 50–100 nm and a diameter of 50–100 µm. The results from a leaching liquor assay demonstrated good biocompatibility of titania HMTs. Each HMT has been demonstrated to independently support the adhesion and proliferation of osteoblast MC3T3-E1 cells. For comparison, titania NT arrays, not independent titania NT, only supported the adhesion of cells on their porous surface. Thus, the resultant titania HMTs are applicable to free-standing and biocompatible cell-supporting matrices.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3897-3905"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan
TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO2 hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV.05. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10−7 mm3/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS2.
TC4 钛合金因其优异的性能而被广泛应用于汽车领域。然而,TC4 合金硬度低、耐磨性差等固有缺陷限制了它的广泛应用。本文采用微弧氧化(MAO)技术制备了 TC4 钛合金的 MAO 涂层。系统地评估了涂层的微观结构、相结构、机械性能和摩擦学性能。结果表明,经 MAO 处理后的涂层含有大量金红石型 TiO2 硬相,可显著提高基体的机械性能。MAO 涂层的硬度可达 581 HV.05。此外,在 MAO 处理过的 TC4 中还观察到了 PAO 油中洋葱状碳(OLC)纳米粒子和有机二硫代氨基甲酸钼(MoDTC)的协同润滑效果。特别是当 0.01 wt.% OLC 与 1 wt.% MoDTC 油一起使用时,摩擦系数 (COF) 降至 0.062,磨损率降至 4.3 × 10-7 mm3/Nm。拉曼光谱和 X 射线光电子能谱(XPS)分析表明,OLC 沉积在涂层区域,形成一层润滑碳膜。此外,OLC 还能促进 MoDTC 在滑动过程中分解,生成含有 MoS2 的三膜。
{"title":"Synergistic lubrication effect of OLC and MoDTC for reducing friction and wear of MAO ceramic coating on TC4 alloy","authors":"Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan","doi":"10.1111/ijac.14859","DOIUrl":"10.1111/ijac.14859","url":null,"abstract":"<p>TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO<sub>2</sub> hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV<sub>.05</sub>. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10<sup>−7</sup> mm<sup>3</sup>/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS<sub>2</sub>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4293-4303"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, Ti2O3 thin films were successfully produced using magnetron sputtering. Through orthogonal gradient experiments, the impact of substrate temperature, sputtering vacuum, RF power, and sputtering duration on surface morphology, roughness, physical structure, and resistivity was investigated. Various analytical techniques were employed, including AFM and SEM for surface morphology observation, XRD and Raman for qualitative physical structure analysis, XPS for elemental valence examination, and the four-probe method for resistivity measurements. The study identified optimal growth conditions for Ti2O3 films, demonstrating a low resistivity of 2.66 × 10−3 Ω cm under the following conditions: RF power of 200 W, sputtering vacuum of .6 Pa, substrate temperature of 600°C, and sputtering duration of 60 min. Additionally, the sensor arrays were efficiently fabricated using the Lift-off method to evaluate the photoelectric performance of the films. A light responsiveness of approximately 6 µA/W was observed in the device when illuminated with 950 nm light for 10 s. This finding carries important implications for the use of Ti2O3 thin films in future photoelectric devices.
{"title":"Optimization of Ti2O3 thin films by magnetron sputtering and study of their photoelectric performance","authors":"Wenwei Wang, Jialiang He, Yingbang Yao","doi":"10.1111/ijac.14857","DOIUrl":"10.1111/ijac.14857","url":null,"abstract":"<p>In this study, Ti<sub>2</sub>O<sub>3</sub> thin films were successfully produced using magnetron sputtering. Through orthogonal gradient experiments, the impact of substrate temperature, sputtering vacuum, RF power, and sputtering duration on surface morphology, roughness, physical structure, and resistivity was investigated. Various analytical techniques were employed, including AFM and SEM for surface morphology observation, XRD and Raman for qualitative physical structure analysis, XPS for elemental valence examination, and the four-probe method for resistivity measurements. The study identified optimal growth conditions for Ti<sub>2</sub>O<sub>3</sub> films, demonstrating a low resistivity of 2.66 × 10<sup>−3</sup> Ω cm under the following conditions: RF power of 200 W, sputtering vacuum of .6 Pa, substrate temperature of 600°C, and sputtering duration of 60 min. Additionally, the sensor arrays were efficiently fabricated using the Lift-off method to evaluate the photoelectric performance of the films. A light responsiveness of approximately 6 µA/W was observed in the device when illuminated with 950 nm light for 10 s. This finding carries important implications for the use of Ti<sub>2</sub>O<sub>3</sub> thin films in future photoelectric devices.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}