首页 > 最新文献

Insight最新文献

英文 中文
Model-Based Framework for Data and Knowledge-Driven Systems Architecting Demonstrated on a Hydrogen-Powered Concept Aircraft 在氢动力概念飞机上展示基于模型的数据和知识驱动系统架构框架
IF 1.1 4区 工程技术 Q3 Materials Science Pub Date : 2024-03-05 DOI: 10.1002/inst.12475
Nils Kuelper, Thimo Bielsky, Jasmin Broehan, Frank Thielecke

Aircraft development is a protracted process over many years. Novel concept aircraft with new energy sources and disruptive systems technologies are investigated during the aircraft conceptual design phase with the goal to achieve sustainable aviation. Current development cycles need to be accelerated to reduce time to market and development costs of novel aircraft, while still handling complexity and uncertainty of systems technologies. Therefore, a holistic framework for knowledgebased systems architecting using a model-based systems engineering approach is presented. This framework has the purpose to conserve and provide knowledge, that is, information, data, and experiences about existing systems architectures, to the engineer. The developed framework consists of a database concept, a method for model-based systems architecting, and an interface to the overall systems design software tool GeneSys. Based on evaluating different modeling languages and tools, MathWorks System Composer is selected as most suitable tool for knowledge-based systems architecting. The developed framework is then demonstrated by conserving and reusing formalized knowledge for the design of a novel hydrogen-powered concept aircraft. On-board systems architecture models are saved in a database and automatically recreated reducing development time. The complete graphical representation could not yet be stored in a formalized manner partly reducing the advantage of a clear representation of model-based systems architecting. However, this did not reduce automatic recreation and evaluation capabilities.

飞机研发是一个旷日持久的多年过程。在飞机的概念设计阶段,就需要对采用新能源和颠覆性系统技术的新型概念飞机进行研究,以实现航空业的可持续发展。当前的开发周期需要加快,以缩短新型飞机的上市时间并降低开发成本,同时还要处理系统技术的复杂性和不确定性。因此,本文提出了一个采用基于模型的系统工程方法进行基于知识的系统架构设计的整体框架。该框架旨在为工程师保存和提供知识,即有关现有系统架构的信息、数据和经验。所开发的框架包括一个数据库概念、一种基于模型的系统架构方法和一个与整体系统设计软件工具 GeneSys 的接口。根据对不同建模语言和工具的评估,MathWorks System Composer 被选为最适合基于知识的系统架构设计的工具。然后,在设计新型氢动力概念飞机时,通过保存和重用形式化知识来演示所开发的框架。机载系统架构模型保存在数据库中,并可自动重新创建,从而缩短了开发时间。完整的图形表示法还不能以形式化的方式存储,这在一定程度上削弱了基于模型的系统架构的清晰表示法的优势。不过,这并没有降低自动再现和评估能力。
{"title":"Model-Based Framework for Data and Knowledge-Driven Systems Architecting Demonstrated on a Hydrogen-Powered Concept Aircraft","authors":"Nils Kuelper,&nbsp;Thimo Bielsky,&nbsp;Jasmin Broehan,&nbsp;Frank Thielecke","doi":"10.1002/inst.12475","DOIUrl":"https://doi.org/10.1002/inst.12475","url":null,"abstract":"<div>\u0000 \u0000 <p>Aircraft development is a protracted process over many years. Novel concept aircraft with new energy sources and disruptive systems technologies are investigated during the aircraft conceptual design phase with the goal to achieve sustainable aviation. Current development cycles need to be accelerated to reduce time to market and development costs of novel aircraft, while still handling complexity and uncertainty of systems technologies. Therefore, a holistic framework for knowledgebased systems architecting using a model-based systems engineering approach is presented. This framework has the purpose to conserve and provide knowledge, that is, information, data, and experiences about existing systems architectures, to the engineer. The developed framework consists of a database concept, a method for model-based systems architecting, and an interface to the overall systems design software tool <i>GeneSys</i>. Based on evaluating different modeling languages and tools, <i>MathWorks System Composer</i> is selected as most suitable tool for knowledge-based systems architecting. The developed framework is then demonstrated by conserving and reusing formalized knowledge for the design of a novel hydrogen-powered concept aircraft. On-board systems architecture models are saved in a database and automatically recreated reducing development time. The complete graphical representation could not yet be stored in a formalized manner partly reducing the advantage of a clear representation of model-based systems architecting. However, this did not reduce automatic recreation and evaluation capabilities.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Think Like an Ecosystem: Transitioning Waste Streams to Value Streams 像生态系统一样思考:将废物流转化为价值流
IF 1.1 4区 工程技术 Q3 Materials Science Pub Date : 2024-03-05 DOI: 10.1002/inst.12477
Rae Lewark, Allison Lyle, Kristina Carroll, Casey Medina

To meet the material demands of the future, transitioning waste streams to value streams is a vital step in ecological and economic sustainability. Linear production design disposes of resources before their optimal value have been realized and loses recyclable resources to waste streams. The economic infrastructure of the planet needs to be reimagined to meet human and ecological needs. The development and implementation of circular systems is key to the creation of sustainable global production. Through the analysis of the copper used in medical devices, we illustrate considerations systems engineers can take to close the waste-resource gap. Developing wasteless design mimics the resiliency seen in ecosystems and accelerates the evolution of the global economy to meet the needs of companies, the environment, and humankind.

为了满足未来的材料需求,将废物流转化为价值流是生态和经济可持续发展的重要一步。线性生产设计会在资源实现其最佳价值之前就将其废弃,并将可回收资源流失到废物流中。地球上的经济基础设施需要重新规划,以满足人类和生态需求。循环系统的开发和实施是实现全球可持续生产的关键。通过分析医疗设备中使用的铜,我们说明了系统工程师可以采取哪些措施来缩小废物与资源之间的差距。开发无废料设计可以模仿生态系统的恢复能力,加快全球经济的发展,满足企业、环境和人类的需求。
{"title":"Think Like an Ecosystem: Transitioning Waste Streams to Value Streams","authors":"Rae Lewark,&nbsp;Allison Lyle,&nbsp;Kristina Carroll,&nbsp;Casey Medina","doi":"10.1002/inst.12477","DOIUrl":"https://doi.org/10.1002/inst.12477","url":null,"abstract":"<div>\u0000 \u0000 <p>To meet the material demands of the future, transitioning waste streams to value streams is a vital step in ecological and economic sustainability. Linear production design disposes of resources before their optimal value have been realized and loses recyclable resources to waste streams. The economic infrastructure of the planet needs to be reimagined to meet human and ecological needs. The development and implementation of circular systems is key to the creation of sustainable global production. Through the analysis of the copper used in medical devices, we illustrate considerations systems engineers can take to close the waste-resource gap. Developing wasteless design mimics the resiliency seen in ecosystems and accelerates the evolution of the global economy to meet the needs of companies, the environment, and humankind.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Geo-Spatial Method for Calculating BEV Charging Inconvenience using Publicly Available Data 利用公开数据计算电动汽车充电不便程度的地理空间方法
IF 1.1 4区 工程技术 Q3 Materials Science Pub Date : 2024-03-05 DOI: 10.1002/inst.12473
Aaron I. Rabinowitz, John G. Smart, Timothy C. Coburn, Thomas H. Bradley

As governments and the automotive industry push towards electrification, it becomes increasingly critical to address the factors which influence individual car buying decisions. Evidence suggests that operational inconvenience or the perception thereof plays a large role in consumer decisions concerning battery electric vehicles (BEVs). BEV ownership inconvenience and its causal factors have been relatively understudied, rendering efforts to mitigate the issues insufficiently informed. This paper presents a method of producing an empirical equation which relates operational inconvenience to a small number of housing and local electric vehicle supply equipment (EVSE) infrastructure factors. The paper then further provides a method of applying the equation in a geo-spatial context allowing for the evaluation of the effects of policies in a geographical manner. this method enables future quantitative analyses concerning investment in EVSE infrastructure to be directly sensitive to BEV operational inconvenience due to charging.

随着各国政府和汽车行业大力推进电气化,解决影响个人购车决策的因素变得越来越重要。有证据表明,操作不便或对操作不便的感知在消费者决定购买电池电动汽车(BEV)时起着重要作用。对 BEV 使用不便及其成因的研究相对较少,这使得缓解这些问题的努力缺乏足够的信息。本文介绍了一种建立经验方程的方法,该方程将操作不便与少数住房和当地电动汽车供应设备(EVSE)基础设施因素联系起来。然后,本文进一步提供了一种在地理空间背景下应用该方程的方法,从而能够以地理方式评估政策的影响。这种方法使未来有关电动汽车供电设备(EVSE)基础设施投资的定量分析能够直接反映充电导致的 BEV 操作不便。
{"title":"A Geo-Spatial Method for Calculating BEV Charging Inconvenience using Publicly Available Data","authors":"Aaron I. Rabinowitz,&nbsp;John G. Smart,&nbsp;Timothy C. Coburn,&nbsp;Thomas H. Bradley","doi":"10.1002/inst.12473","DOIUrl":"https://doi.org/10.1002/inst.12473","url":null,"abstract":"<div>\u0000 \u0000 <p>As governments and the automotive industry push towards electrification, it becomes increasingly critical to address the factors which influence individual car buying decisions. Evidence suggests that operational inconvenience or the perception thereof plays a large role in consumer decisions concerning battery electric vehicles (BEVs). BEV ownership inconvenience and its causal factors have been relatively understudied, rendering efforts to mitigate the issues insufficiently informed. This paper presents a method of producing an empirical equation which relates operational inconvenience to a small number of housing and local electric vehicle supply equipment (EVSE) infrastructure factors. The paper then further provides a method of applying the equation in a geo-spatial context allowing for the evaluation of the effects of policies in a geographical manner. this method enables future quantitative analyses concerning investment in EVSE infrastructure to be directly sensitive to BEV operational inconvenience due to charging.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability: A Complex System Governance Perspective 可持续性:复杂系统治理视角
IF 1.1 4区 工程技术 Q3 Materials Science Pub Date : 2024-03-05 DOI: 10.1002/inst.12471
Charles B. Keating, Polinpapilinho F. Katina, Joseph M. Bradley, Richard Hodge, James C. Pyne

This paper explores the sustainability field from a complex system governance (CSG) perspective. In general, sustainability suggests maintenance at a specific rate or level. It is also frequently held as maintaining ecological balance to negate the depletion of natural resources. CSG offers sustainability a theoretically grounded, model based, and methodologically sound approach to better inform sustainability design, execution, and development for complex systems. CSG examines sustainability as an outcome-based product resulting from effective governance of an underlying system which produces sustainability. Thus, sustainability is proposed as a ‘systems engineered product’, whose design, execution, and development will be favored by CSG systems engineering. Following an introduction, two primary objectives are pursued. First, systems theory is used to provide an alternative view of sustainability. Second, a perspective of sustainability is developed through the paradigm of the emerging CSG field. The paper closes with the contributions, opportunities, and challenges for deployment of CSG for enhanced development, transition, and maintenance of sustainable systems.

本文从复杂系统治理(CSG)的角度探讨可持续性领域。一般来说,可持续发展是指保持特定的速度或水平。它也经常被认为是维持生态平衡,以抵消自然资源的耗竭。CSG 为可持续发展提供了一种以理论为基础、以模型为依据、方法合理的方法,为复杂系统的可持续发展设计、执行和发展提供更好的信息。CSG 将可持续性视为一种基于结果的产品,它产生于对产生可持续性的基础系统的有效管理。因此,可持续性被认为是一种 "系统工程产品",其设计、执行和开发将受到柯尔希斯系统工程的青睐。在引言之后,我们提出了两个主要目标。首先,利用系统理论提出了另一种可持续性观点。其次,通过新兴的南玻领域的范例来发展可持续性观点。最后,本文总结了部署南玻集团在加强可持续系统的开发、过渡和维护方面的贡献、机遇和挑战。
{"title":"Sustainability: A Complex System Governance Perspective","authors":"Charles B. Keating,&nbsp;Polinpapilinho F. Katina,&nbsp;Joseph M. Bradley,&nbsp;Richard Hodge,&nbsp;James C. Pyne","doi":"10.1002/inst.12471","DOIUrl":"https://doi.org/10.1002/inst.12471","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper explores the sustainability field from a complex system governance (CSG) perspective. In general, sustainability suggests maintenance at a specific rate or level. It is also frequently held as maintaining ecological balance to negate the depletion of natural resources. CSG offers sustainability a theoretically grounded, model based, and methodologically sound approach to better inform sustainability design, execution, and development for complex systems. CSG examines sustainability as an outcome-based product resulting from effective governance of an underlying system which produces sustainability. Thus, sustainability is proposed as a ‘systems engineered product’, whose design, execution, and development will be favored by CSG systems engineering. Following an introduction, two primary objectives are pursued. First, systems theory is used to provide an alternative view of sustainability. Second, a perspective of sustainability is developed through the paradigm of the emerging CSG field. The paper closes with the contributions, opportunities, and challenges for deployment of CSG for enhanced development, transition, and maintenance of sustainable systems.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying a System of Systems Perspective to Hyundai-Kia's Virtual Tire Development 在现代-起亚的虚拟轮胎开发中应用系统的系统观点
IF 1.1 4区 工程技术 Q3 Materials Science Pub Date : 2024-03-05 DOI: 10.1002/inst.12476
Sunkil Yun, Shashank Alai, Yongdae Kim, Tae Kook Kim, Jaehun Jo, Dahyeon Lee, Lokesh Gorantla, Michael Baloh

Systems engineering has become important in almost every complex product manufacturing industry, especially automotive. Emerging trends like vehicle electrification and autonomous driving now pose a system of systems (SoS) engineering challenge to automotive OEMs. This paper presents a proof-of-concept (PoC) that applies a top-down SoS perspective to Hyundai-Kia Motor Corporation's (HKMC) virtual product development process to develop a performance-critical component of the vehicle, the tire. The PoC demonstrates using the Arcadia MBSE method to develop a consistent, layered, vehicle architecture model starting from the SoS operational context down to the lowest level of system decomposition in the physical architecture thereby capturing top-down knowledge traceability Using the concept of functional chains, several vehicle performance views are captured that serve as the basis for architecture verification orchestration across engineering domains using a cross-domain orchestration platform thereby validating key vehicle/tire performance metrics that influence the tire design parameters. Preliminary results of the study show that applying a method-based modeling approach could provide several benefits to HKMC's current product development approach such as reduced time to model, SoS knowledge capture and reusability, parameter/requirement traceability, early performance verification, and effective systems engineering collaboration between the OEM, tire design supplier, and tire manufacturers.

系统工程在几乎所有复杂产品制造行业都变得非常重要,汽车行业尤其如此。汽车电气化和自动驾驶等新兴趋势给汽车原始设备制造商带来了系统工程(SoS)挑战。本文提出了一个概念验证 (PoC),将自上而下的 SoS 观点应用于现代-起亚汽车公司 (HKMC) 的虚拟产品开发流程,以开发汽车的关键性能部件--轮胎。PoC 演示了使用 Arcadia MBSE 方法开发一致的、分层的车辆架构模型,从 SoS 操作环境开始,直到物理架构中最底层的系统分解,从而捕获自上而下的知识可追溯性。使用功能链概念,捕获多个车辆性能视图,作为使用跨领域协调平台进行跨工程领域架构验证协调的基础,从而验证影响轮胎设计参数的关键车辆/轮胎性能指标。研究的初步结果表明,应用基于方法的建模方法可为香港汽车零部件有限公司当前的产品开发方法带来多种益处,如缩短建模时间、SoS 知识捕获和可重用性、参数/需求可追溯性、早期性能验证,以及原始设备制造商、轮胎设计供应商和轮胎制造商之间有效的系统工程协作。
{"title":"Applying a System of Systems Perspective to Hyundai-Kia's Virtual Tire Development","authors":"Sunkil Yun,&nbsp;Shashank Alai,&nbsp;Yongdae Kim,&nbsp;Tae Kook Kim,&nbsp;Jaehun Jo,&nbsp;Dahyeon Lee,&nbsp;Lokesh Gorantla,&nbsp;Michael Baloh","doi":"10.1002/inst.12476","DOIUrl":"https://doi.org/10.1002/inst.12476","url":null,"abstract":"<div>\u0000 \u0000 <p>Systems engineering has become important in almost every complex product manufacturing industry, especially automotive. Emerging trends like vehicle electrification and autonomous driving now pose a system of systems (SoS) engineering challenge to automotive OEMs. This paper presents a proof-of-concept (PoC) that applies a top-down SoS perspective to Hyundai-Kia Motor Corporation's (HKMC) virtual product development process to develop a performance-critical component of the vehicle, the tire. The PoC demonstrates using the Arcadia MBSE method to develop a consistent, layered, vehicle architecture model starting from the SoS operational context down to the lowest level of system decomposition in the physical architecture thereby capturing top-down knowledge traceability Using the concept of functional chains, several vehicle performance views are captured that serve as the basis for architecture verification orchestration across engineering domains using a cross-domain orchestration platform thereby validating key vehicle/tire performance metrics that influence the tire design parameters. Preliminary results of the study show that applying a method-based modeling approach could provide several benefits to HKMC's current product development approach such as reduced time to model, SoS knowledge capture and reusability, parameter/requirement traceability, early performance verification, and effective systems engineering collaboration between the OEM, tire design supplier, and tire manufacturers.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approaches to assess reliability in visual inspection 目视检查可靠性评估方法
4区 工程技术 Q3 Materials Science Pub Date : 2023-10-01 DOI: 10.1784/insi.2023.65.10.541
M Blankschän, D Kanzler, R Liebich
Non-destructive testing (NDT) plays an important role in quality assurance and ensuring reliable ongoing operations in many industries. Thus, the importance of reliability assessment of inspection results is increasing. Current standards and regulations provide several approaches for this purpose. For example, DIN EN ISO/IEC 17025:2018-03 provides general requirements to determine measurement uncertainty. In contrast, method-related standards such as DIN ISO 19828:2021-03 specify detailed requirements for visual inspection (VT), considering environmental conditions and other factors (for example experience of the inspection personnel). In contrast, VDA Volume 5 defines visual inspection as an attributive method, making measurement uncertainty determinations unnecessary. Instead, the reliability of the inspection process is evaluated by proficiency tests. This paper examines approaches of regulations, based on previous experiments, for their applicability and suitability for considering the reliability of visual inspections. It is shown that individual measurement values (for example illuminance) are not suitable for this purpose. Furthermore, it is shown that human factors (HFs) (for example training or experience of the inspector), considered in isolation, are also not sufficiently suitable. Hence, the combination of the qualification of inspection methods, by means of proficiency tests on reference objects, and the application of Cohen's kappa for evaluating human factors appeared to be more suitable for the investigated issue.
在许多行业中,无损检测(NDT)在质量保证和确保可靠的持续运行方面发挥着重要作用。因此,对检测结果进行可靠性评估的重要性与日俱增。目前的标准和法规为此提供了几种方法。例如,DIN EN ISO/IEC 17025:2018-03提供了确定测量不确定度的一般要求。相比之下,与方法相关的标准,如DIN ISO 19828:2021-03,在考虑环境条件和其他因素(例如检验人员的经验)的情况下,规定了目视检验(VT)的详细要求。相比之下,VDA第5卷将目视检查定义为一种属性方法,使得测量不确定度的确定变得不必要。相反,检验过程的可靠性是通过能力测试来评估的。本文在以往实验的基础上,考察了法规方法在考虑目视检测可靠性时的适用性和适用性。结果表明,单个测量值(例如照度)不适用于此目的。此外,还表明,孤立地考虑人为因素(例如检查员的培训或经验)也不够合适。因此,通过对参考对象的熟练程度测试来确定检验方法的资格,并应用Cohen’s kappa来评价人为因素似乎更适合于所调查的问题。
{"title":"Approaches to assess reliability in visual inspection","authors":"M Blankschän, D Kanzler, R Liebich","doi":"10.1784/insi.2023.65.10.541","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.541","url":null,"abstract":"Non-destructive testing (NDT) plays an important role in quality assurance and ensuring reliable ongoing operations in many industries. Thus, the importance of reliability assessment of inspection results is increasing. Current standards and regulations provide several approaches for this purpose. For example, DIN EN ISO/IEC 17025:2018-03 provides general requirements to determine measurement uncertainty. In contrast, method-related standards such as DIN ISO 19828:2021-03 specify detailed requirements for visual inspection (VT), considering environmental conditions and other factors (for example experience of the inspection personnel). In contrast, VDA Volume 5 defines visual inspection as an attributive method, making measurement uncertainty determinations unnecessary. Instead, the reliability of the inspection process is evaluated by proficiency tests. This paper examines approaches of regulations, based on previous experiments, for their applicability and suitability for considering the reliability of visual inspections. It is shown that individual measurement values (for example illuminance) are not suitable for this purpose. Furthermore, it is shown that human factors (HFs) (for example training or experience of the inspector), considered in isolation, are also not sufficiently suitable. Hence, the combination of the qualification of inspection methods, by means of proficiency tests on reference objects, and the application of Cohen's kappa for evaluating human factors appeared to be more suitable for the investigated issue.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of acoustic emission testing on the adherent layer thickness of lap joints under tensile loading 拉伸荷载作用下搭接粘结层厚度的声发射测试分析
4区 工程技术 Q3 Materials Science Pub Date : 2023-10-01 DOI: 10.1784/insi.2023.65.10.545
K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar
This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.
通过改变粘接层的厚度,研究了在拉伸载荷作用下搭接接头的粘接强度。结果表明:增加搭接接头的黏附层厚度,可以减小搭接接头的应力集中,表明搭接接头重叠区域之间的应力传递增强;通过对声发射信号进行参数化分析、快速傅立叶变换(FFT)分析、连续小波变换(CWT)分析和离散小波变换(DWT)分析,利用声发射信号识别不同的失效模式及其频率范围。FFT分析确定了粘结破坏、纤维撕裂破坏和混合破坏的频率范围。同时,DWT能更有效地识别搭接中随黏附层厚度变化的破坏模式的频率范围。胶粘剂失效的特征是低振幅、低频率范围和低能级。相反,分层表现为中等幅度、中等频率范围和中等能级。高振幅,高频率范围,高能量水平和强信号强度表明混合故障。
{"title":"Analysis of acoustic emission testing on the adherent layer thickness of lap joints under tensile loading","authors":"K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar","doi":"10.1784/insi.2023.65.10.545","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.545","url":null,"abstract":"This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network 基于改进时间卷积网络的多视图特征融合故障诊断方法
4区 工程技术 Q3 Materials Science Pub Date : 2023-10-01 DOI: 10.1784/insi.2023.65.10.559
Zhiwu Shang, Hu Liu, Baoren Zhang, Zehua Feng, Wanxiang Li
This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.
本文采用神经网络方法对旋转机械的振动数据进行分析,解决了故障识别问题。时间卷积网络(tcn)在故障识别领域引起了广泛的关注。然而,TCN卷积核很小,容易受到高频噪声干扰。此外,内部残余连接的默认权重系数为1。当残差块较少时,残差块特征提取能力受到抑制,仅利用单个位置采集到的振动信号进行故障诊断,其包含的故障信息不全面。针对上述问题,本文提出了一种基于自适应残差系数分配的宽第一层核TCN (WD-ARCATCN)多视图特征融合故障诊断算法。首先,设计WD- arcatcn特征提取网络,从不同角度提取深度状态特征,并将TCN的第一层设置为宽核(WD)卷积层,抑制高频噪声;残差连接中设计了自适应残差系数分配(ARCA)单元,提高残差块的特征学习能力,并对带有ARCA单元的残差块进行叠加,进一步提取多视图深断层特征。本文首次采用不同位置采集的加速度信号作为多视图特征源,所包含的故障信息更加全面。然后,基于自关注机制,改进多视图特征融合方法,自适应分配视图权重,有效融合不同视图特征,增强故障特征的识别能力;最后,使用softmax分类器实现多视图融合特征与标签之间的映射。该算法已经使用凯斯西储大学(CWRU)轴承振动数据库的实验数据进行了测试,与其他诊断算法相比,它的性能要好得多。
{"title":"Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network","authors":"Zhiwu Shang, Hu Liu, Baoren Zhang, Zehua Feng, Wanxiang Li","doi":"10.1784/insi.2023.65.10.559","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.559","url":null,"abstract":"This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Binocular vision vibration measurement based on pixel coordinate matching of inner corner points in a chequerboard 基于方格内角点像素坐标匹配的双目视觉振动测量
4区 工程技术 Q3 Materials Science Pub Date : 2023-10-01 DOI: 10.1784/insi.2023.65.10.551
Xianghong Wang, Zezhong He, Jun Liu, Xiaoqiang Xu, Hongwei Hu
A binocular vision measurement system provides a simple method for obtaining three-dimensional vibration data from moving objects, which is suitable for vibration monitoring of large structures such as bridges. Aiming to address the problem that the feature selection process for binocular visual inspection affects the measurement accuracy, chequerboard feature points are selected in this paper for carrying out a visual displacement measurement method. Firstly, pixel coordinate matching of the inner corner points in the chequerboard is completed and then a binocular vision measurement system is established. The measurement results are compared with using circular feature points. Secondly, the binocular vision measurement model is applied to the vibration measurement of a cantilever beam. Using comparisons with a three-axis acceleration sensor, the effectiveness and accuracy of this method are evaluated. Finally, the method is applied to measure the vibration of the cantilever beam under different load conditions and its vibration characteristics are analysed. The results show that the accuracy of the binocular vision measurement method based on pixel coordinate matching of the inner corner points in the chequerboard is higher than that using circular feature points. From comparisons with the acceleration sensor, the measurement error of this method is found to be small. In addition, the method can effectively analyse the vibration performance of a cantilever beam under different load conditions. Therefore, this measurement method is effective and provides a theoretical basis for the identification of vibration characteristics in large engineering structures.
双目视觉测量系统为获取运动物体的三维振动数据提供了一种简单的方法,适用于桥梁等大型结构的振动监测。针对双目视觉检测中特征选择过程影响测量精度的问题,本文选择棋盘状特征点进行视觉位移测量方法。首先完成棋盘内角点的像素坐标匹配,然后建立双目视觉测量系统。并与使用圆形特征点的测量结果进行了比较。其次,将双目视觉测量模型应用于悬臂梁的振动测量。通过与三轴加速度传感器的比较,评价了该方法的有效性和准确性。最后,将该方法应用于悬臂梁在不同载荷条件下的振动测量,分析了其振动特性。结果表明,基于方格内角点像素坐标匹配的双目视觉测量方法的精度高于圆形特征点。通过与加速度传感器的比较,发现该方法的测量误差较小。此外,该方法可以有效地分析悬臂梁在不同载荷条件下的振动特性。因此,该测量方法是有效的,为大型工程结构的振动特性识别提供了理论依据。
{"title":"Binocular vision vibration measurement based on pixel coordinate matching of inner corner points in a chequerboard","authors":"Xianghong Wang, Zezhong He, Jun Liu, Xiaoqiang Xu, Hongwei Hu","doi":"10.1784/insi.2023.65.10.551","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.551","url":null,"abstract":"A binocular vision measurement system provides a simple method for obtaining three-dimensional vibration data from moving objects, which is suitable for vibration monitoring of large structures such as bridges. Aiming to address the problem that the feature selection process for binocular visual inspection affects the measurement accuracy, chequerboard feature points are selected in this paper for carrying out a visual displacement measurement method. Firstly, pixel coordinate matching of the inner corner points in the chequerboard is completed and then a binocular vision measurement system is established. The measurement results are compared with using circular feature points. Secondly, the binocular vision measurement model is applied to the vibration measurement of a cantilever beam. Using comparisons with a three-axis acceleration sensor, the effectiveness and accuracy of this method are evaluated. Finally, the method is applied to measure the vibration of the cantilever beam under different load conditions and its vibration characteristics are analysed. The results show that the accuracy of the binocular vision measurement method based on pixel coordinate matching of the inner corner points in the chequerboard is higher than that using circular feature points. From comparisons with the acceleration sensor, the measurement error of this method is found to be small. In addition, the method can effectively analyse the vibration performance of a cantilever beam under different load conditions. Therefore, this measurement method is effective and provides a theoretical basis for the identification of vibration characteristics in large engineering structures.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid adaptive control of CNC drilling for enhancement of tool life and surface quality 数控钻孔混合自适应控制提高刀具寿命和表面质量
4区 工程技术 Q3 Materials Science Pub Date : 2023-10-01 DOI: 10.1784/insi.2023.65.10.570
J Susai Mary, M A Sai Balaji, D Dinakaran
Intelligent machining requires the online adaptation of the machining parameters to improve tool life and product quality and to reduce machining costs. This article presents a novel hybrid adaptive control (HAC) system for a drilling process. The HAC system is a combination of two adaptive controls: geometric adaptive control (GAC) and adaptive control by optimisation (ACO). It keeps the roughness of the holes within tolerance without compromising tool life. A response surface model (RSM) is used for modelling the drill wear and surface roughness with speed, feed, acceleration and force signals as inputs. The model predicts the wear and roughness with prediction accuracies of 97.1% and 93.6%, respectively. The roughness control is achieved through a Massachusetts Institute of Technology rule and tool wear is minimised by genetic algorithm optimisation. The adaptive algorithms are simulated and validated for the machining conditions given by the adaptive algorithms. The results show an improved tool life of 7% and surface roughness of 11%.
智能加工要求对加工参数进行在线自适应,以提高刀具寿命和产品质量,降低加工成本。提出了一种新型的钻井过程混合自适应控制系统。HAC系统是两种自适应控制的组合:几何自适应控制(GAC)和优化自适应控制(ACO)。它使孔的粗糙度保持在公差范围内,而不影响工具寿命。响应面模型(RSM)用于以速度、进给、加速度和力信号作为输入,对钻头磨损和表面粗糙度进行建模。该模型对磨损和粗糙度的预测精度分别为97.1%和93.6%。通过麻省理工学院的规则实现粗糙度控制,并通过遗传算法优化最小化刀具磨损。对自适应算法给出的加工条件进行了仿真和验证。结果表明,刀具寿命提高了7%,表面粗糙度提高了11%。
{"title":"Hybrid adaptive control of CNC drilling for enhancement of tool life and surface quality","authors":"J Susai Mary, M A Sai Balaji, D Dinakaran","doi":"10.1784/insi.2023.65.10.570","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.570","url":null,"abstract":"Intelligent machining requires the online adaptation of the machining parameters to improve tool life and product quality and to reduce machining costs. This article presents a novel hybrid adaptive control (HAC) system for a drilling process. The HAC system is a combination of two adaptive controls: geometric adaptive control (GAC) and adaptive control by optimisation (ACO). It keeps the roughness of the holes within tolerance without compromising tool life. A response surface model (RSM) is used for modelling the drill wear and surface roughness with speed, feed, acceleration and force signals as inputs. The model predicts the wear and roughness with prediction accuracies of 97.1% and 93.6%, respectively. The roughness control is achieved through a Massachusetts Institute of Technology rule and tool wear is minimised by genetic algorithm optimisation. The adaptive algorithms are simulated and validated for the machining conditions given by the adaptive algorithms. The results show an improved tool life of 7% and surface roughness of 11%.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Insight
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1