C. Hernández-Aguilar, A. Domínguez-Pacheco, Elisa Domínguez-Hernández, Rumen Ivanov Tsonchev, M. D. C. Valderrama-Bravo, M. L. Alvarado-Noguez
. The aim of this research was to evaluate the effects of UV-C light on lentil ( Lens culinaris ) and its conditioning by Spirulina . The main findings were: (i) Lentil brightness presented a significant slight variation (9%) when compared to the control (T 0 ) and UV-C (T 10 =10 min) irradiated lentil samples. (ii) The total flavonoids tended to increase by 17% at 10 min (49.18 μg mL -1 ) compared to T 0 (42.07 μg mL -1 ). (iii) The conditioning of lentils with UV-C (0, 5, and 10 min) and the imbibition in water with Spirulina (0, 0.5, 0.75, and 1.5%) generated significant statistical differences (p ≤ 0.05) in the seedlings. The priming cyanobacte - ria Spirulina improved the physiological quality against damage caused by UV-C radiation. (iv) Morphological changes occurred in the lentils due to radiation, damage in the testa (protective layer on the outside) area (row 1) due to the application of UV-C was found, which increases with higher exposure to radiation. Through the application of UV-C for 10 min the cell wall and protein body were damaged. However, no damage to the starch is visible. (v) FT-IR indicates that the UV-C radiation did not induce any change in the chemical structure of the starch but, decreases in intensity within the range of 3 000-3 600 cm -1 indicated differ - ences in their water content, while those between 1 600-1 700 cm -1 were attributed to the reorganization of the secondary structure of proteins.
{"title":"Effects of UV-C light and Spirulina maxima seed conditioning on the germination and the physical and nutraceutical properties of lentils (Lens culinaris)","authors":"C. Hernández-Aguilar, A. Domínguez-Pacheco, Elisa Domínguez-Hernández, Rumen Ivanov Tsonchev, M. D. C. Valderrama-Bravo, M. L. Alvarado-Noguez","doi":"10.31545/intagr/156025","DOIUrl":"https://doi.org/10.31545/intagr/156025","url":null,"abstract":". The aim of this research was to evaluate the effects of UV-C light on lentil ( Lens culinaris ) and its conditioning by Spirulina . The main findings were: (i) Lentil brightness presented a significant slight variation (9%) when compared to the control (T 0 ) and UV-C (T 10 =10 min) irradiated lentil samples. (ii) The total flavonoids tended to increase by 17% at 10 min (49.18 μg mL -1 ) compared to T 0 (42.07 μg mL -1 ). (iii) The conditioning of lentils with UV-C (0, 5, and 10 min) and the imbibition in water with Spirulina (0, 0.5, 0.75, and 1.5%) generated significant statistical differences (p ≤ 0.05) in the seedlings. The priming cyanobacte - ria Spirulina improved the physiological quality against damage caused by UV-C radiation. (iv) Morphological changes occurred in the lentils due to radiation, damage in the testa (protective layer on the outside) area (row 1) due to the application of UV-C was found, which increases with higher exposure to radiation. Through the application of UV-C for 10 min the cell wall and protein body were damaged. However, no damage to the starch is visible. (v) FT-IR indicates that the UV-C radiation did not induce any change in the chemical structure of the starch but, decreases in intensity within the range of 3 000-3 600 cm -1 indicated differ - ences in their water content, while those between 1 600-1 700 cm -1 were attributed to the reorganization of the secondary structure of proteins.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48862758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxue Guo, Zhijun Liu, D. Gao, Cheng-Tang Xu, Kexin Zhang, Xianzhao Liu
. The challenge of predicting soil organic carbon distribution accurately has received great attention in order to support urban green space soil management during climate change. This study compared four geostatistical methods: kriging combined with land use, ordinary kriging, inverse distance weighting and radial basis function, to predict the spatial distribution patterns of soil organic carbon content and soil organic carbon density in the Xiong'an New Area, estimate organic carbon stocks, and assess the role of land use types in the spatial prediction of soil organic carbon stocks. The results showed that the soil organic carbon content decreased with increasing soil depth, and was significantly affected by different land use types (p<0.05). The correlation coefficient values of kriging combined with land use were on average 0.229 higher than those of other methods. The root mean squared error and the mean absolute error of kriging combined with land use were on average 0.148 and 0.139 lower than those of the other methods. Kriging combined with land use has a greater advantage over other methods in predicting the spatial distribution of soil organic carbon content, and also the spatial distribution of soil organic carbon density and the spatial distribution of soil organic carbon, the prediction results of the four interpolation methods were similar. The average soil organic carbon density was 2085 Gg (0-30 cm) and 1363 Gg (30-60 cm). In conclusion, land use type clearly influences the spatial distribution of soil organic carbon in urban areas, and by using land use type as auxiliary data, we can obtain a more accurate spatial distribution of soil organic carbon and predict the total storage capacity of the soil. This study may result in significant advances in the spatial prediction of soil organic carbon for urban areas.
{"title":"Application of land use modes in the spatial prediction of soil organic carbon in urban green spaces","authors":"Xiaoxue Guo, Zhijun Liu, D. Gao, Cheng-Tang Xu, Kexin Zhang, Xianzhao Liu","doi":"10.31545/intagr/156027","DOIUrl":"https://doi.org/10.31545/intagr/156027","url":null,"abstract":". The challenge of predicting soil organic carbon distribution accurately has received great attention in order to support urban green space soil management during climate change. This study compared four geostatistical methods: kriging combined with land use, ordinary kriging, inverse distance weighting and radial basis function, to predict the spatial distribution patterns of soil organic carbon content and soil organic carbon density in the Xiong'an New Area, estimate organic carbon stocks, and assess the role of land use types in the spatial prediction of soil organic carbon stocks. The results showed that the soil organic carbon content decreased with increasing soil depth, and was significantly affected by different land use types (p<0.05). The correlation coefficient values of kriging combined with land use were on average 0.229 higher than those of other methods. The root mean squared error and the mean absolute error of kriging combined with land use were on average 0.148 and 0.139 lower than those of the other methods. Kriging combined with land use has a greater advantage over other methods in predicting the spatial distribution of soil organic carbon content, and also the spatial distribution of soil organic carbon density and the spatial distribution of soil organic carbon, the prediction results of the four interpolation methods were similar. The average soil organic carbon density was 2085 Gg (0-30 cm) and 1363 Gg (30-60 cm). In conclusion, land use type clearly influences the spatial distribution of soil organic carbon in urban areas, and by using land use type as auxiliary data, we can obtain a more accurate spatial distribution of soil organic carbon and predict the total storage capacity of the soil. This study may result in significant advances in the spatial prediction of soil organic carbon for urban areas.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44094277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Findura, Ivana Šindelková, R. Rusinek, H. Karami, M. Gancarz, Petr Bartos
. There are increasing demands to increase the pro-ductivity of crops grown in unfavourable soil conditions. The ob-jective of this study was to evaluate the potential of biostimulants to improve soil properties and crop yields. A field experiment was conducted to assess the impact of Neosol (a soil activator), biostimulant Explorer (a rhizosphere activator) and AKEO (min - eral fertilizer activator, Olmix Group) on soil in terms of the yields of spring and winter wheat and winter rape. Numerous soil char - acteristics related to soil structure were evaluated at the 0-20 and 20-40 cm depth ranges e.g. bulk density, soil porosity, structural coefficient. The results show that the application of biostimulants has a positive effect on soil bulk density, porosity and the struc - tural coefficient. The biostimulants had a positive effect on the yields of crops.
{"title":"Determination of the influence of biostimulants on soil properties and field crop yields","authors":"P. Findura, Ivana Šindelková, R. Rusinek, H. Karami, M. Gancarz, Petr Bartos","doi":"10.31545/intagr/155955","DOIUrl":"https://doi.org/10.31545/intagr/155955","url":null,"abstract":". There are increasing demands to increase the pro-ductivity of crops grown in unfavourable soil conditions. The ob-jective of this study was to evaluate the potential of biostimulants to improve soil properties and crop yields. A field experiment was conducted to assess the impact of Neosol (a soil activator), biostimulant Explorer (a rhizosphere activator) and AKEO (min - eral fertilizer activator, Olmix Group) on soil in terms of the yields of spring and winter wheat and winter rape. Numerous soil char - acteristics related to soil structure were evaluated at the 0-20 and 20-40 cm depth ranges e.g. bulk density, soil porosity, structural coefficient. The results show that the application of biostimulants has a positive effect on soil bulk density, porosity and the struc - tural coefficient. The biostimulants had a positive effect on the yields of crops.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46474879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Cropping systems are one of the most important living components affecting the surface soil spatial variability. Composite disturbed and undisturbed soils were collected (inter-sections of the grid system, 50 x 50 m) at 0-20 and 20-40 cm depths under maize ( Zea mays ), wheat ( Triticum aestivum ), and alfalfa ( Medicago sativa L.) cropping systems from the farmer’s field, in the Igdir Plain, eastern Turkey. Soil spatial variability was based on clay, silt, and sand, calcium carbonate (CaCO 3 ) and organic matter, the pH, electrical conductivity, bulk density, aggregate stability and penetration resistance of the soil were determined. The data was analysed using both statistical and geostatistical approaches and suggested that the spatial distribution model and spatial dependence level varied significantly within the farm soils. Exponential, Gaussian, and spherical semivariogram models were found to be the best models to explain the spatial structure of the soil properties. Clay and sand, electrical conductivity, soil organic matter, bulk density, aggregate stability, and penetration resistance were found to be significantly different between the soil depths. The soil property ranges of the variogram were between 58.5 and 305.9 m and showed a moderate to strong spatial dependence. The development of spatial distribution maps for the soil variables analysed provided for a comparison to be made between the various soil properties and raises the possibility of understanding heterogeneity within the farm in the form of a regional representation. It may be concluded that these maps will assist in determining site-specific soil use and identifying the impact of soil management.
种植系统是影响地表土壤空间变异性的最重要的生物组成部分之一。在土耳其东部伊格迪尔平原农民的田地里,在玉米(玉米)、小麦(小麦)和苜蓿(苜蓿)种植系统下,在0-20和20-40厘米的深度采集了扰动和未扰动的复合土壤(网格系统的横断面,50 x 50米)。土壤空间变异性基于粘土、淤泥和沙子、碳酸钙(CaCO3)和有机质,测定了土壤的pH值、电导率、堆积密度、团聚体稳定性和抗渗透性。使用统计学和地统计学方法对数据进行了分析,结果表明,农田土壤中的空间分布模型和空间相关性水平差异很大。指数、高斯和球形半变差函数模型被发现是解释土壤性质空间结构的最佳模型。粘土和沙子、电导率、土壤有机质、堆积密度、骨料稳定性和渗透阻力在土壤深度之间存在显著差异。变差函数的土壤性质范围在58.5至305.9 m之间,表现出中等至强烈的空间依赖性。所分析的土壤变量的空间分布图的开发提供了各种土壤特性之间的比较,并提高了以区域代表的形式理解农场内异质性的可能性。可以得出结论,这些地图将有助于确定特定地点的土壤使用,并确定土壤管理的影响。
{"title":"Management systems impact on soil spatial variability under semi-arid climates conditions","authors":"Serdar Sari","doi":"10.31545/intagr/155276","DOIUrl":"https://doi.org/10.31545/intagr/155276","url":null,"abstract":". Cropping systems are one of the most important living components affecting the surface soil spatial variability. Composite disturbed and undisturbed soils were collected (inter-sections of the grid system, 50 x 50 m) at 0-20 and 20-40 cm depths under maize ( Zea mays ), wheat ( Triticum aestivum ), and alfalfa ( Medicago sativa L.) cropping systems from the farmer’s field, in the Igdir Plain, eastern Turkey. Soil spatial variability was based on clay, silt, and sand, calcium carbonate (CaCO 3 ) and organic matter, the pH, electrical conductivity, bulk density, aggregate stability and penetration resistance of the soil were determined. The data was analysed using both statistical and geostatistical approaches and suggested that the spatial distribution model and spatial dependence level varied significantly within the farm soils. Exponential, Gaussian, and spherical semivariogram models were found to be the best models to explain the spatial structure of the soil properties. Clay and sand, electrical conductivity, soil organic matter, bulk density, aggregate stability, and penetration resistance were found to be significantly different between the soil depths. The soil property ranges of the variogram were between 58.5 and 305.9 m and showed a moderate to strong spatial dependence. The development of spatial distribution maps for the soil variables analysed provided for a comparison to be made between the various soil properties and raises the possibility of understanding heterogeneity within the farm in the form of a regional representation. It may be concluded that these maps will assist in determining site-specific soil use and identifying the impact of soil management.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49349422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Xu, Shuaijie Shen, F. Gao, Jian Wang, Xinming Ma, Shuping Xiong, Zehua Fan
. The study was carried out in order to clarify the effects of different water and irrigation conditions on crop models and remote sensing assimilation results. It involved taking winter wheat from 17 test sites in Henan Province as the research object and calibrating the World Food Studies model. The ensemble Kalman filter algorithm was used to calibrate the two modes and Moderate-resolution Imaging Spectroradiometer-Leaf Area Index of the calibrated world food studies model. The study found that the average error of the world food studies model for simulating flowering and maturity periods is within 2 days, the R 2 of the leaf area index calibration results is between 0.87-0.98, and the R 2 and root mean square error of the verification results are 0.77 and 1.06 respectively. Under the latent model, the R 2 of the world food studies model taking account of the water supply situation and the assimilation results without taking account of the water supply situation are 0.50 and 0.48, respectively. In the water restriction mode, the R 2 increased from 0.79 to 0.86 compared with the assimilation results where the water supply was not considered. The results show that: depending on the water supply of different regions, selecting the corresponding assimilation parameters can effectively improve the prediction accuracy of crop models and remote sensing assimilation for wheat yields under different water and irrigation conditions.
{"title":"Considering different water supplies can improve the accuracyof the WOFOST crop model and remote sensing assimilation in predicting wheat yield","authors":"Xin Xu, Shuaijie Shen, F. Gao, Jian Wang, Xinming Ma, Shuping Xiong, Zehua Fan","doi":"10.31545/intagr/154892","DOIUrl":"https://doi.org/10.31545/intagr/154892","url":null,"abstract":". The study was carried out in order to clarify the effects of different water and irrigation conditions on crop models and remote sensing assimilation results. It involved taking winter wheat from 17 test sites in Henan Province as the research object and calibrating the World Food Studies model. The ensemble Kalman filter algorithm was used to calibrate the two modes and Moderate-resolution Imaging Spectroradiometer-Leaf Area Index of the calibrated world food studies model. The study found that the average error of the world food studies model for simulating flowering and maturity periods is within 2 days, the R 2 of the leaf area index calibration results is between 0.87-0.98, and the R 2 and root mean square error of the verification results are 0.77 and 1.06 respectively. Under the latent model, the R 2 of the world food studies model taking account of the water supply situation and the assimilation results without taking account of the water supply situation are 0.50 and 0.48, respectively. In the water restriction mode, the R 2 increased from 0.79 to 0.86 compared with the assimilation results where the water supply was not considered. The results show that: depending on the water supply of different regions, selecting the corresponding assimilation parameters can effectively improve the prediction accuracy of crop models and remote sensing assimilation for wheat yields under different water and irrigation conditions.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47749550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ravi Gangwar, M. Makádi, B. Bresilla, Mohammed Zain, T. Weldmichael, I. Demeter, A. Táncsics, M. Cserhati, T. Szegi
. This study was conducted in order to understand the effects of land use and soil types on microbial activity and community structure. Soil samples were collected from four different soil types (Solonetz, Solonchak, Chernozem and Gleysol) being used under different land use practices (arable, pasture and meadow). The soil chemical properties, moisture content, microbiological activity and community size were investigated. The principal component analysis results showed that differ - ent land uses and soil types are clearly separated based on the chemical properties of the soil. The canonical correspondence analysis results revealed that more than 78% of variation in the microbiological properties of the samples could be explained by environmental factors. Significant biological differences were observed among the different land use practices and soil types, and also soil cultivation affected the different groups of soil microbes. Sampling sites were separated into two main clusters (Bray-Curtis) based on certain microbiological properties, salt-affected and non-salt-affected soils. The soil types were the main driving factor, with high soil taxonomic distances, however, low taxonomic distances indicated that land use had more pronounced effects on soil microbiological properties.
{"title":"Effects of land uses and soil types on microbial activity and community structure","authors":"Ravi Gangwar, M. Makádi, B. Bresilla, Mohammed Zain, T. Weldmichael, I. Demeter, A. Táncsics, M. Cserhati, T. Szegi","doi":"10.31545/intagr/155096","DOIUrl":"https://doi.org/10.31545/intagr/155096","url":null,"abstract":". This study was conducted in order to understand the effects of land use and soil types on microbial activity and community structure. Soil samples were collected from four different soil types (Solonetz, Solonchak, Chernozem and Gleysol) being used under different land use practices (arable, pasture and meadow). The soil chemical properties, moisture content, microbiological activity and community size were investigated. The principal component analysis results showed that differ - ent land uses and soil types are clearly separated based on the chemical properties of the soil. The canonical correspondence analysis results revealed that more than 78% of variation in the microbiological properties of the samples could be explained by environmental factors. Significant biological differences were observed among the different land use practices and soil types, and also soil cultivation affected the different groups of soil microbes. Sampling sites were separated into two main clusters (Bray-Curtis) based on certain microbiological properties, salt-affected and non-salt-affected soils. The soil types were the main driving factor, with high soil taxonomic distances, however, low taxonomic distances indicated that land use had more pronounced effects on soil microbiological properties.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44835898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Li, Ying Luo, Changchun Guo, Yonggang Yang, Xiaojuan Yuan, Mengwen Xing, P. Fan, Chuanhai Shu, Feijie Li, Haojun Fu, Zhiyuan Yang, Zongkui Chen, Jun Ma, Yuanyuan Sun, Yongjian Sun
. This study aimed to evaluate the relationship between the physicochemical properties and lodging index of different stem internodes and the yield of direct-seeded rice. Two treatments of wheat straw returning (returning and non-returning) and five potassium application rates of 0, 62.5, 125, 187.5, and 250 kg ha -1 were applied. Wheat straw returning combined with a potassium application rate of 125 kg ha -1 significantly promoted potassium accumulation, increased total soluble sugar and lignin contents, improved breaking moment, reduced the flattening rate and lodging resistance index of different internode stems, and increased the yield. Correlation analysis revealed that compared with those of the 4th and 5th internodes, potassium content and accumulation and total soluble sugar and lignin contents of the 3rd internode were significantly positively correlated with yield (r = 0.85**-0.93**) and negatively correlated with the stem flat rate and lodging index (r = -0.67*– -0.79**), which improved lodging resistance in collaboration with the 4th and 5th internodes (r = 0.82**-0.95**). Increasing potassium accumulation, total soluble sugar and lignin content, and reducing stem flatness of the 3rd stem internodes are important factors for improving lodging resistance of direct-seeded rice and may provide a basis for improving the 4th and 5th stem internodes.
本研究旨在评价不同茎节的理化性质和倒伏指数与直播水稻产量之间的关系。采用秸秆还田和不还田两种处理,施钾量分别为0、62.5、125、187.5和250 kg ha-1。秸秆还田与125 kg ha-1的施钾量相结合,显著促进了钾的积累,增加了总可溶性糖和木质素含量,改善了破碎时刻,降低了不同节间茎的压扁率和抗倒伏指数,提高了产量。相关分析表明,与第4和第5节间相比,第3节间的钾含量、积累量、总可溶性糖和木质素含量与产量呈显著正相关(r=0.85**-0.93**),与茎扁平率和倒伏指数呈负相关(r=-0.67*-0.79**),与第4和第5茎节协同提高了倒伏抗性(r=0.82**-0.95**)。增加钾积累、总可溶性糖和木质素含量以及降低第3茎节的茎平坦度是提高直播水稻倒伏抗性的重要因素,可为提高第4和5茎节提供依据。
{"title":"Effects of wheat straw returning and potassium application rates on the physicochemical properties and lodging resistance of different stem internodes in direct-seeded rice","authors":"Bo Li, Ying Luo, Changchun Guo, Yonggang Yang, Xiaojuan Yuan, Mengwen Xing, P. Fan, Chuanhai Shu, Feijie Li, Haojun Fu, Zhiyuan Yang, Zongkui Chen, Jun Ma, Yuanyuan Sun, Yongjian Sun","doi":"10.31545/intagr/155271","DOIUrl":"https://doi.org/10.31545/intagr/155271","url":null,"abstract":". This study aimed to evaluate the relationship between the physicochemical properties and lodging index of different stem internodes and the yield of direct-seeded rice. Two treatments of wheat straw returning (returning and non-returning) and five potassium application rates of 0, 62.5, 125, 187.5, and 250 kg ha -1 were applied. Wheat straw returning combined with a potassium application rate of 125 kg ha -1 significantly promoted potassium accumulation, increased total soluble sugar and lignin contents, improved breaking moment, reduced the flattening rate and lodging resistance index of different internode stems, and increased the yield. Correlation analysis revealed that compared with those of the 4th and 5th internodes, potassium content and accumulation and total soluble sugar and lignin contents of the 3rd internode were significantly positively correlated with yield (r = 0.85**-0.93**) and negatively correlated with the stem flat rate and lodging index (r = -0.67*– -0.79**), which improved lodging resistance in collaboration with the 4th and 5th internodes (r = 0.82**-0.95**). Increasing potassium accumulation, total soluble sugar and lignin content, and reducing stem flatness of the 3rd stem internodes are important factors for improving lodging resistance of direct-seeded rice and may provide a basis for improving the 4th and 5th stem internodes.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43367506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. No tillage was introduced to Northeast China to prevent the soil degradation caused by conventional tillage systems. However, there are concerns that no tillage will result in soil mechanical impedance. In this study, we investigated the effects of conventional tillage and no tillage on soil strength properties using a long-term field study initiated in 2011 on a silt clay loam soil. In 2018 and 2019, soil bulk density, water content, the degree of compactness, and penetrometer resistance were measured before tillage and after planting, and also, the changes in soil profile water content and penetrometer resistance were monitored during drying periods. Results showed that conventional tillage led to the formation of a compacted zone beneath the cultivated layer, with higher bulk density, degree of compactness, and penetrometer resistance values. After converting from conventional tillage to no tillage for 8 to 9 years, the bulk density, penetrometer resistance, and degree of compactness were increased to a moderate extent in the topsoil but were lowered in the subsurface soil. During drying periods, as compared to conventional tillage plots, the no tillage plots maintained higher water contents, which resulted in lower penetrometer resistances below a 15 cm depth and the later arrival of the threshold penetrometer resistance of 2 MPa. Long-term no tillage alleviated subsoil compaction and retarded drought-induced soil strength development.
{"title":"Long-term no tillage alleviates subsoil compaction and drought-induced mechanical impedance","authors":"Hengfei Wang, Li Wang, T. Ren","doi":"10.31545/intagr/154596","DOIUrl":"https://doi.org/10.31545/intagr/154596","url":null,"abstract":". No tillage was introduced to Northeast China to prevent the soil degradation caused by conventional tillage systems. However, there are concerns that no tillage will result in soil mechanical impedance. In this study, we investigated the effects of conventional tillage and no tillage on soil strength properties using a long-term field study initiated in 2011 on a silt clay loam soil. In 2018 and 2019, soil bulk density, water content, the degree of compactness, and penetrometer resistance were measured before tillage and after planting, and also, the changes in soil profile water content and penetrometer resistance were monitored during drying periods. Results showed that conventional tillage led to the formation of a compacted zone beneath the cultivated layer, with higher bulk density, degree of compactness, and penetrometer resistance values. After converting from conventional tillage to no tillage for 8 to 9 years, the bulk density, penetrometer resistance, and degree of compactness were increased to a moderate extent in the topsoil but were lowered in the subsurface soil. During drying periods, as compared to conventional tillage plots, the no tillage plots maintained higher water contents, which resulted in lower penetrometer resistances below a 15 cm depth and the later arrival of the threshold penetrometer resistance of 2 MPa. Long-term no tillage alleviated subsoil compaction and retarded drought-induced soil strength development.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46921595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Hoppers are frequently used in steel silos, especially in farm facilities and food industries. These structures occasionally have an oblique hopper with an eccentric outlet to improve the flow of material during discharge. The 2006 version of the European standard EN 1991-4 uses classical Walker theory to predict wall pressures on concentric hoppers, but oblique hoppers are not considered. The authors have developed a Finite Element Model to predict the wall pressures on oblique hoppers and several sensitivity analyses have been made to study the possible influence of different parameters including outlet eccentricity, the outlet cir cumferential position, the aspect ratio of the silo and hopper, and different stored materials. The results show that the circumferential location and eccentricity of the outlet are the main factors affect ing the pressures on oblique hoppers. A semi-empirical equation is proposed to estimate the expected pressures on oblique hoppers which is designed to match with the maximum normal pressure obtained from the simulation, and to provide a good representation for the circumferential distribution of normal pressures. The results of this research may be of interest with regard to the upcoming revised version of the European standard EN 1991-4.
{"title":"A semi-empirical equation to predict filling wall pressures on oblique conical hoppers","authors":"E. Gallego, J. Fuentes, F. Ayuga","doi":"10.31545/intagr/152675","DOIUrl":"https://doi.org/10.31545/intagr/152675","url":null,"abstract":". Hoppers are frequently used in steel silos, especially in farm facilities and food industries. These structures occasionally have an oblique hopper with an eccentric outlet to improve the flow of material during discharge. The 2006 version of the European standard EN 1991-4 uses classical Walker theory to predict wall pressures on concentric hoppers, but oblique hoppers are not considered. The authors have developed a Finite Element Model to predict the wall pressures on oblique hoppers and several sensitivity analyses have been made to study the possible influence of different parameters including outlet eccentricity, the outlet cir cumferential position, the aspect ratio of the silo and hopper, and different stored materials. The results show that the circumferential location and eccentricity of the outlet are the main factors affect ing the pressures on oblique hoppers. A semi-empirical equation is proposed to estimate the expected pressures on oblique hoppers which is designed to match with the maximum normal pressure obtained from the simulation, and to provide a good representation for the circumferential distribution of normal pressures. The results of this research may be of interest with regard to the upcoming revised version of the European standard EN 1991-4.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43441207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. The study aimed to determine the effect of randomly applied soil-improving cropping systems on the variability of soil thermal conductivity, heat capacity, and thermal diffusivity over the course of a 3-year (2016-2018) study. The field experiment included the control and the following soil-improving cropping systems: liming, leguminous catch crops for green manure, farm yard manure, and liming+leguminous catch crops+farmyard manure together with spring oats (2017) and spring wheat (2018). The parameters such as bulk density, water content, and values of soil thermal conductivity, heat capacity, and thermal diffusivity have been determined. The thermal properties were measured at the current water content in situ and in water-saturated and dry soil states in the laboratory. The thermal properties in the wet year of 2017 increased in the subareas with a predominance of leguminous catch crops for green manure, farmyard manure, and liming+leguminous catch crops+farmyard manure, whereas the soil-improving cropping systems effect was not consistent after stubble tilling in the dry year of 2018. Cross-semivariograms which used the sand content as an auxiliary variable and cokriging produced a better prediction than the semivariograms and kriging. The fractal analysis indicated that the number of subareas differing in thermal properties was mainly modified by water content and bulk density. The spatial spread of the soil thermal properties during the water-saturated and dry states increased in subareas with a higher bulk density.
{"title":"Spatial variability of thermal properties in relation to the application of selected soil-improving cropping systems (SICS) on sandy soil","authors":"B. Usowicz, J. Lipiec","doi":"10.31545/intagr/152122","DOIUrl":"https://doi.org/10.31545/intagr/152122","url":null,"abstract":". The study aimed to determine the effect of randomly applied soil-improving cropping systems on the variability of soil thermal conductivity, heat capacity, and thermal diffusivity over the course of a 3-year (2016-2018) study. The field experiment included the control and the following soil-improving cropping systems: liming, leguminous catch crops for green manure, farm yard manure, and liming+leguminous catch crops+farmyard manure together with spring oats (2017) and spring wheat (2018). The parameters such as bulk density, water content, and values of soil thermal conductivity, heat capacity, and thermal diffusivity have been determined. The thermal properties were measured at the current water content in situ and in water-saturated and dry soil states in the laboratory. The thermal properties in the wet year of 2017 increased in the subareas with a predominance of leguminous catch crops for green manure, farmyard manure, and liming+leguminous catch crops+farmyard manure, whereas the soil-improving cropping systems effect was not consistent after stubble tilling in the dry year of 2018. Cross-semivariograms which used the sand content as an auxiliary variable and cokriging produced a better prediction than the semivariograms and kriging. The fractal analysis indicated that the number of subareas differing in thermal properties was mainly modified by water content and bulk density. The spatial spread of the soil thermal properties during the water-saturated and dry states increased in subareas with a higher bulk density.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46270181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}