首页 > 最新文献

International Journal of Photoenergy最新文献

英文 中文
Optimization of Oil Yield from the Macro Algae Spirogyra by Solvent Extraction Process Using RSM and ANN 应用RSM和ANN优化溶剂萃取法从大型海藻Spirogyra中提取油脂
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-19 DOI: 10.1155/2022/3690635
S. Aravind, Debabrata Barik, Nagaraj Ashok
The present work was done to optimize the process parameters of the oil extraction from the algae species spirogyra by using n-hexane as the solvent using the Soxhlet apparatus. The response surface methodology (RSM) and artificial neural network (ANN) were employed to optimize the particle size of the algae powder, dryness level of the algae powder, solid to solvent ratio, reaction time, and extraction temperature of the oil extraction process. Also, the physiochemical properties of the extracted oil were investigated. The comparative evaluation was done between the RSM and ANN models to select the more precise and accurate model. The coefficient of determination, R 2 of 98.92%, and the mean absolute percentage deviation (MAPD) of 0.492% for ANN revealed that the current model created with a network topology of 3 : 11 : 1 with tansig (hyperbolic tangent sigmoid) transfer function in the input layer and purelin (pure linear) transfer function in the output layer trained with trainlm (Levenberg–Marquardt) algorithm found to provide the optimal solution with better accuracy in prediction of the output. The physicochemical properties investigated, such as heating value, flashpoint, density, viscosity, iodine number, acid value, saponification value, and cetane index, showed that the extracted oil from the algae spirogyra species can be used as an alternative fuel.
采用索氏实验装置,以正己烷为溶剂,对螺藻的油脂提取工艺参数进行了优化。采用响应面法(RSM)和人工神经网络(ANN)对油脂提取过程中的藻粉粒度、藻粉干燥度、固溶比、反应时间和提取温度进行了优化。并对提取油的理化性质进行了研究。在RSM和ANN模型之间进行了比较评估,以选择更精确和准确的模型。人工神经网络的决定系数R2为98.92%,平均绝对百分比偏差(MAPD)为0.492%,表明当前创建的网络拓扑为3 : 11 : 1,在输入层中使用tansig(双曲正切sigmoid)传递函数,在输出层中使用purelin(纯线性)传递函数用trainlm(Levenberg–Marquardt)算法训练,发现在输出预测中提供了具有更好精度的最优解。所研究的物理化学性质,如热值、闪点、密度、粘度、碘值、酸值、皂化值和十六烷指数,表明从螺藻中提取的油可以用作替代燃料。
{"title":"Optimization of Oil Yield from the Macro Algae Spirogyra by Solvent Extraction Process Using RSM and ANN","authors":"S. Aravind, Debabrata Barik, Nagaraj Ashok","doi":"10.1155/2022/3690635","DOIUrl":"https://doi.org/10.1155/2022/3690635","url":null,"abstract":"The present work was done to optimize the process parameters of the oil extraction from the algae species spirogyra by using n-hexane as the solvent using the Soxhlet apparatus. The response surface methodology (RSM) and artificial neural network (ANN) were employed to optimize the particle size of the algae powder, dryness level of the algae powder, solid to solvent ratio, reaction time, and extraction temperature of the oil extraction process. Also, the physiochemical properties of the extracted oil were investigated. The comparative evaluation was done between the RSM and ANN models to select the more precise and accurate model. The coefficient of determination, \u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 \u0000 2\u0000 \u0000 \u0000 \u0000 of 98.92%, and the mean absolute percentage deviation (MAPD) of 0.492% for ANN revealed that the current model created with a network topology of 3 : 11 : 1 with tansig (hyperbolic tangent sigmoid) transfer function in the input layer and purelin (pure linear) transfer function in the output layer trained with trainlm (Levenberg–Marquardt) algorithm found to provide the optimal solution with better accuracy in prediction of the output. The physicochemical properties investigated, such as heating value, flashpoint, density, viscosity, iodine number, acid value, saponification value, and cetane index, showed that the extracted oil from the algae spirogyra species can be used as an alternative fuel.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47541177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Demonstrating and Investigating the Mechanical Strength of Solar Cells 展示和研究太阳能电池的机械强度
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-19 DOI: 10.1155/2022/4713869
V. Raj, R. K. Priya, K. V. Bindu, N. Prabhu, S. Madhavarao, G. Ramkumar, A. Seikh, M. H. Siddique, Endalkachew Mergia Anbese
This study reports on the silicon photovoltaic cells with such an alumina metallization. The photovoltaic cell’s silicon component was subjected to an effective stress studied using a simulation model built with this information. In order to evaluate the efficiency of photovoltaic cells on both sides, as well as in two distinct orientations, a four-point bending experiment analysis was carried out using the model. The side and direction of loading have a significant impact on both strength and fracture. There is tensile stress going perpendicularly along the busbars; the back side of the test specimen had the lowest measured strength.
本研究报告了具有这种氧化铝金属化的硅光伏电池。光伏电池的硅组件受到有效应力的影响,该应力是使用该信息建立的模拟模型进行研究的。为了评估光伏电池在两侧以及在两个不同方向上的效率,使用该模型进行了四点弯曲实验分析。加载的侧面和方向对强度和断裂都有显著影响。存在沿母线垂直延伸的拉伸应力;试样的背面具有最低的测量强度。
{"title":"Demonstrating and Investigating the Mechanical Strength of Solar Cells","authors":"V. Raj, R. K. Priya, K. V. Bindu, N. Prabhu, S. Madhavarao, G. Ramkumar, A. Seikh, M. H. Siddique, Endalkachew Mergia Anbese","doi":"10.1155/2022/4713869","DOIUrl":"https://doi.org/10.1155/2022/4713869","url":null,"abstract":"This study reports on the silicon photovoltaic cells with such an alumina metallization. The photovoltaic cell’s silicon component was subjected to an effective stress studied using a simulation model built with this information. In order to evaluate the efficiency of photovoltaic cells on both sides, as well as in two distinct orientations, a four-point bending experiment analysis was carried out using the model. The side and direction of loading have a significant impact on both strength and fracture. There is tensile stress going perpendicularly along the busbars; the back side of the test specimen had the lowest measured strength.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46883296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Artificial Intelligence-Based Deep Learning Model for the Performance Enhancement of Photovoltaic Panels in Solar Energy Systems 基于人工智能的太阳能系统光伏板性能增强深度学习模型
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-17 DOI: 10.1155/2022/3437364
R. Meena, Ashutosh Kumar Singh, Shilpa Urhekar, RohitBhakar, N. K. Garg, Mohammad Israr, D. Kothari, C. Chiranjeevi, Prasath Srinivasan
This study looks into artificial intelligence methods for scaling solar power systems, such as standalone, grid-connected, and hybrid systems, in order to lessen environmental effect. When all essential information is provided, conventional sizing methods may be a feasible alternative. It is impossible to apply typical procedures in instances where data is unavailable. The new suggested artificial intelligence model employing multilayered perceptrons is employed for sizing solar systems, and this model functions on current photovoltaic modules that incorporate hybrid-sizing models; so, they should not be rejected entirely. In this work, the convergence speed of the proposed model for single diode, two diodes, and three diodes are the comparison factors to estimate the performance of the proposed model.
这项研究探讨了扩大太阳能系统规模的人工智能方法,如独立系统、并网系统和混合系统,以减轻环境影响。当提供了所有基本信息时,传统的尺寸确定方法可能是可行的替代方法。在数据不可用的情况下,不可能应用典型的程序。新提出的采用多层感知器的人工智能模型被用于确定太阳能系统的尺寸,并且该模型在包含混合尺寸模型的当前光伏模块上起作用;因此,它们不应该被完全拒绝。在这项工作中,所提出的单二极管、两个二极管和三个二极管模型的收敛速度是估计所提出模型性能的比较因素。
{"title":"Artificial Intelligence-Based Deep Learning Model for the Performance Enhancement of Photovoltaic Panels in Solar Energy Systems","authors":"R. Meena, Ashutosh Kumar Singh, Shilpa Urhekar, RohitBhakar, N. K. Garg, Mohammad Israr, D. Kothari, C. Chiranjeevi, Prasath Srinivasan","doi":"10.1155/2022/3437364","DOIUrl":"https://doi.org/10.1155/2022/3437364","url":null,"abstract":"This study looks into artificial intelligence methods for scaling solar power systems, such as standalone, grid-connected, and hybrid systems, in order to lessen environmental effect. When all essential information is provided, conventional sizing methods may be a feasible alternative. It is impossible to apply typical procedures in instances where data is unavailable. The new suggested artificial intelligence model employing multilayered perceptrons is employed for sizing solar systems, and this model functions on current photovoltaic modules that incorporate hybrid-sizing models; so, they should not be rejected entirely. In this work, the convergence speed of the proposed model for single diode, two diodes, and three diodes are the comparison factors to estimate the performance of the proposed model.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45706644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels 内波纹通道光伏/热(PV/T)集热器优化设计的数值研究
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-17 DOI: 10.1155/2022/8632826
Xiangrui Kong, Yuhan Zhang, Jinshun Wu, S. Pan
This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from 4 mm to 3 mm, the outlet temperature attained is between 298 and 302 K, and the heat collection is in the range of 16.2–51.4 MJ/h. This led to an increase in the amount of heat collected by 18.6%.
本研究在以往现场实验的基础上,对具有内置波纹通道的超薄导电吸热器进行了理论研究。对波纹通道的流动和传热特性进行了模拟,以确定影响光伏/热(PV/T)系统效率的因素。讨论了波纹数、波纹面积和流道宽度等结构参数对出水温度和集热性能的影响,为混合光伏发电系统的结构优化设计提供支持。仿真结果与实验结果基本一致。结果表明,进水速度的增加导致出水温度的降低。研究发现,波纹面积和流道宽度对PV/T混合集电板的出口温度有影响。当吸收器板的流道宽度从4减小时 mm至3 mm,获得的出口温度在298和302之间 K、 热量收集范围为16.2-51.4 兆焦耳/小时。这导致收集的热量增加了18.6%。
{"title":"Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels","authors":"Xiangrui Kong, Yuhan Zhang, Jinshun Wu, S. Pan","doi":"10.1155/2022/8632826","DOIUrl":"https://doi.org/10.1155/2022/8632826","url":null,"abstract":"This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from 4 mm to 3 mm, the outlet temperature attained is between 298 and 302 K, and the heat collection is in the range of 16.2–51.4 MJ/h. This led to an increase in the amount of heat collected by 18.6%.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44671367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the Enhancement Mechanisms of Molten Salt Nanofluids 熔盐纳米流体增强机理的研究
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-13 DOI: 10.1155/2022/4912922
Xiong Yaxuan, W. Huixiang, Wang Zhenyu, W. Yuting, X. Qian, Wang Gang, Li Chuan, Ding Yulong, Ma Chongfang
The addition of nanomaterials to molten salts can significantly improve their thermal performance. To explore the enhancement mechanisms, this work prepared carbonate salt nanofluids with binary carbonate as base salt and 20 nm SiO2 and 20 nm MgO nanoparticles as additives by the commonly used aqueous solution method. Then, the key performance and micromorphology of the carbonate salt nanofluids are characterized by differential scanning calorimetry, thermal gravimetric analysis, laser flash analysis, and micromorphology analysis. Results showed that the 20 nm SiO2 nanomaterials instead of the 20 nm MgO nanomaterials exerted higher effects on latent heat while the 20 nm MgO nanomaterials instead of the 20 nm SiO2 nanomaterials exerted higher effects on the sensible heat, thermal conductivity, and high-temperature stability of carbonated salt. In addition, different nanostructures were observed in SiO2-based and MgO-based molten salt nanofluids, respectively. Innovatively, formation mechanisms of molten salt nanofluids were proposed based on cloud nuclei to explain the different enhancements in this work.
在熔盐中加入纳米材料可以显著改善熔盐的热性能。为了探究其增强机理,本研究采用常用的水溶液法,以二元碳酸盐为基盐,以20 nm SiO2和20 nm MgO纳米颗粒为添加剂制备碳酸盐岩纳米流体。然后,通过差示扫描量热法、热重法、激光闪蒸法和微形貌分析对碳酸盐纳米流体的关键性能和微观形貌进行了表征。结果表明:20 nm SiO2纳米材料比20 nm MgO纳米材料对碳酸盐的潜热有更高的影响,20 nm MgO纳米材料比20 nm SiO2纳米材料对碳酸盐的感热、导热性和高温稳定性有更高的影响。此外,在sio2基和mgo基熔盐纳米流体中分别观察到不同的纳米结构。创新性地提出了基于云核的熔盐纳米流体的形成机制,以解释本工作中不同的增强。
{"title":"Insights into the Enhancement Mechanisms of Molten Salt Nanofluids","authors":"Xiong Yaxuan, W. Huixiang, Wang Zhenyu, W. Yuting, X. Qian, Wang Gang, Li Chuan, Ding Yulong, Ma Chongfang","doi":"10.1155/2022/4912922","DOIUrl":"https://doi.org/10.1155/2022/4912922","url":null,"abstract":"The addition of nanomaterials to molten salts can significantly improve their thermal performance. To explore the enhancement mechanisms, this work prepared carbonate salt nanofluids with binary carbonate as base salt and 20 nm SiO2 and 20 nm MgO nanoparticles as additives by the commonly used aqueous solution method. Then, the key performance and micromorphology of the carbonate salt nanofluids are characterized by differential scanning calorimetry, thermal gravimetric analysis, laser flash analysis, and micromorphology analysis. Results showed that the 20 nm SiO2 nanomaterials instead of the 20 nm MgO nanomaterials exerted higher effects on latent heat while the 20 nm MgO nanomaterials instead of the 20 nm SiO2 nanomaterials exerted higher effects on the sensible heat, thermal conductivity, and high-temperature stability of carbonated salt. In addition, different nanostructures were observed in SiO2-based and MgO-based molten salt nanofluids, respectively. Innovatively, formation mechanisms of molten salt nanofluids were proposed based on cloud nuclei to explain the different enhancements in this work.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49011301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current-Sensorless Control Strategy for the MPPT of a PV Cell: An Energy-Based Approach 光伏电池MPPT无电流传感器控制策略:基于能量的方法
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-09-10 DOI: 10.1155/2022/1747533
Hayden Phillips-Brenes, Roberto Pereira-Arroyo, R. Rímolo-Donadío, M. Muñoz-Arias
A novel energy-based modelling and control strategy is developed and implemented to solve the maximum power point tracking problem when a photovoltaic cell array is connected to consumption loads. A mathematical model that contains key characteristic parameters of an energy converter stage connected to a photovoltaic cell array is proposed and recast using the port-Hamiltonian framework. The system consists of input-output power port pairs and storage and dissipating elements. Then, a current-sensorless control loop for a maximum power point tracking is designed, acting over the energy converter stage and following an interconnection and damping assignment passivity-based strategy. The performance of the proposed strategy is compared to a (classical) sliding mode control law. Our energy-based strategy is implemented in a hardware platform with a sampling rate of 122 Hz, resulting in lower dynamic power consumption compared to other maximum power point tracking control strategies. Numerical simulations and experimental results validate the performance of the proposed energy-based modelling and the novel control law approach.
提出并实现了一种新的基于能量的建模和控制策略,以解决光伏电池阵列与用电负荷连接时的最大功率点跟踪问题。提出了一个包含光伏电池阵列的能量转换级关键特性参数的数学模型,并使用端口-哈密顿框架进行了重新建模。该系统由输入输出电源端口对、存储和耗散元件组成。然后,设计了用于最大功率点跟踪的无电流传感器控制回路,该回路在能量转换器阶段起作用,并遵循基于互连和阻尼分配的无源策略。将该策略的性能与(经典)滑模控制律进行了比较。我们的基于能量的策略在采样率为122 Hz的硬件平台上实现,与其他最大功率点跟踪控制策略相比,动态功耗更低。数值仿真和实验结果验证了基于能量的建模方法和控制律方法的有效性。
{"title":"Current-Sensorless Control Strategy for the MPPT of a PV Cell: An Energy-Based Approach","authors":"Hayden Phillips-Brenes, Roberto Pereira-Arroyo, R. Rímolo-Donadío, M. Muñoz-Arias","doi":"10.1155/2022/1747533","DOIUrl":"https://doi.org/10.1155/2022/1747533","url":null,"abstract":"A novel energy-based modelling and control strategy is developed and implemented to solve the maximum power point tracking problem when a photovoltaic cell array is connected to consumption loads. A mathematical model that contains key characteristic parameters of an energy converter stage connected to a photovoltaic cell array is proposed and recast using the port-Hamiltonian framework. The system consists of input-output power port pairs and storage and dissipating elements. Then, a current-sensorless control loop for a maximum power point tracking is designed, acting over the energy converter stage and following an interconnection and damping assignment passivity-based strategy. The performance of the proposed strategy is compared to a (classical) sliding mode control law. Our energy-based strategy is implemented in a hardware platform with a sampling rate of 122 Hz, resulting in lower dynamic power consumption compared to other maximum power point tracking control strategies. Numerical simulations and experimental results validate the performance of the proposed energy-based modelling and the novel control law approach.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42237685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Performance of a Dimpled Tube Parabolic Trough Solar Collector (PTSC) with SiO2 Nanofluid 含SiO2纳米流体的波纹管抛物槽太阳能集热器(PTSC)的热性能
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-08-28 DOI: 10.1155/2022/8595591
M. Arun, Debabrata Barik, K. P. Sridhar, M. Dennison
In this research work, dimple texture tubes and silicon dioxide (SiO2) nanofluid were used to analyze the performance parameters of a solar water heater. For this purpose, SiO2 was mixed with deionized (DI) water using an ultrasonic dispersion device to prepare the nanofluids (SiO2/DI-H2O). The size of the nanoparticle was in the range of 10-15 nm. Different volume concentrations of the nanoparticles in the range of 0.1% to 0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Apart from this, computational fluid dynamics (CFD) tool was used to numerically analyze the parameters affecting the performance of the solar water heater, as well as the fluid flow pattern in the dimple texture tube. During the experiment, the mass flow rate of the base fluid (water) varied in the range of 0.5 kg/min to 3.0 kg/min in steps of 0.5 kg/min. The added advantage of the dimple texture tube design led to an increase in turbulence in the flow pattern, resulting 34.2% increase in the convective heat transfer efficiency compared with the plain tube. Among all experimental modules, SiO2/DI-H2O with a mass flow rate of 2.5 kg/min and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The efficiency metrics of the experimental results were compared with the simulation results, and it was in the acceptable range with an overall deviation of ±7.42%.
在这项研究工作中,使用凹坑纹理管和二氧化硅(SiO2)纳米流体来分析太阳能热水器的性能参数。为此,使用超声分散装置将SiO2与去离子(DI)水混合以制备纳米流体(SiO2/DI-H2O)。纳米颗粒的尺寸在10-15的范围内 nm。选择0.1%至0.5%范围内的不同体积浓度的纳米颗粒,以0.1%的步骤制备纳米流体以进行实验。除此之外,还使用计算流体动力学(CFD)工具对影响太阳能热水器性能的参数以及凹坑纹理管中的流体流动模式进行了数值分析。在实验过程中,基础流体(水)的质量流速在0.5的范围内变化 kg/min至3.0 kg/min,步长为0.5 千克/分钟。凹坑纹理管设计的额外优势导致流型中的湍流增加,与普通管相比,对流传热效率提高了34.2%。在所有实验模块中,质量流量为2.5的SiO2/DI-H2O kg/min和0.3%的体积浓度在太阳能热水器的绝对能量吸收、梯度温度和效率方面给出了总体优化结果。将实验结果的效率指标与模拟结果进行了比较,结果在可接受的范围内,总体偏差为±7.42%。
{"title":"Thermal Performance of a Dimpled Tube Parabolic Trough Solar Collector (PTSC) with SiO2 Nanofluid","authors":"M. Arun, Debabrata Barik, K. P. Sridhar, M. Dennison","doi":"10.1155/2022/8595591","DOIUrl":"https://doi.org/10.1155/2022/8595591","url":null,"abstract":"In this research work, dimple texture tubes and silicon dioxide (SiO2) nanofluid were used to analyze the performance parameters of a solar water heater. For this purpose, SiO2 was mixed with deionized (DI) water using an ultrasonic dispersion device to prepare the nanofluids (SiO2/DI-H2O). The size of the nanoparticle was in the range of 10-15 nm. Different volume concentrations of the nanoparticles in the range of 0.1% to 0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Apart from this, computational fluid dynamics (CFD) tool was used to numerically analyze the parameters affecting the performance of the solar water heater, as well as the fluid flow pattern in the dimple texture tube. During the experiment, the mass flow rate of the base fluid (water) varied in the range of 0.5 kg/min to 3.0 kg/min in steps of 0.5 kg/min. The added advantage of the dimple texture tube design led to an increase in turbulence in the flow pattern, resulting 34.2% increase in the convective heat transfer efficiency compared with the plain tube. Among all experimental modules, SiO2/DI-H2O with a mass flow rate of 2.5 kg/min and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The efficiency metrics of the experimental results were compared with the simulation results, and it was in the acceptable range with an overall deviation of ±7.42%.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43459595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Spectral Factor of Colored Solar Cells: A Case Study on the Main Urban Areas in Romania 彩色太阳能电池的光谱因子:罗马尼亚主要城市地区的案例研究
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-08-27 DOI: 10.1155/2022/8494818
Sergiu Hațegan, M. Paulescu
PV modules for Building-Integrated Photovoltaic (BIPV) applications are made of different colors aimed at raising the visual aesthetic of the building. But a colored coating applied to the surface of a basic PV module is inherently associated to a decrease in conversion efficiency. From a different perspective, the efficiency of a PV module is evaluated under the industry standard test conditions (STC). Due to spectral mismatch, the efficiency of a PV module operating in outdoor conditions may substantially differ from the standard value evaluated at STC. In this study, the influence of spectral solar irradiance distribution on the colored PV module efficiency is evaluated in terms of spectral factor (SF). SF quantifies the relative power gain or loss caused by the spectral difference from STC. The theory is illustrated with a case study on the main four urban areas in Romania. The actual solar radiation spectrum is estimated with the simple Leckner spectral solar irradiance model, based on atmospheric parameters retrieved from the Aerosol Robotic Network (AERONET). The results emphasize that the aesthetic of BIPV comes at a high energy cost: depending on the color, a coating applied on the surface of a crystalline silicon PV module may reduce its conversion efficiency even by half.
用于建筑集成光伏(BIPV)应用的光伏组件由不同颜色制成,旨在提高建筑的视觉美感。但是,施加到基本PV模块的表面上的彩色涂层本质上与转换效率的降低有关。从不同的角度来看,光伏组件的效率是在行业标准测试条件(STC)下评估的。由于光谱失配,在室外条件下运行的PV模块的效率可能与STC评估的标准值显著不同。在本研究中,利用光谱因子(SF)评估了光谱太阳辐照度分布对彩色光伏组件效率的影响。SF量化了由STC的频谱差异引起的相对功率增益或损耗。通过对罗马尼亚四个主要城市地区的案例研究,说明了这一理论。根据气溶胶机器人网络(AERONET)检索的大气参数,使用简单的勒克纳光谱太阳辐照度模型估计实际的太阳辐射光谱。研究结果强调,BIPV的美观性需要高能源成本:根据颜色的不同,在结晶硅光伏组件表面涂覆涂层可能会使其转换效率降低一半。
{"title":"Spectral Factor of Colored Solar Cells: A Case Study on the Main Urban Areas in Romania","authors":"Sergiu Hațegan, M. Paulescu","doi":"10.1155/2022/8494818","DOIUrl":"https://doi.org/10.1155/2022/8494818","url":null,"abstract":"PV modules for Building-Integrated Photovoltaic (BIPV) applications are made of different colors aimed at raising the visual aesthetic of the building. But a colored coating applied to the surface of a basic PV module is inherently associated to a decrease in conversion efficiency. From a different perspective, the efficiency of a PV module is evaluated under the industry standard test conditions (STC). Due to spectral mismatch, the efficiency of a PV module operating in outdoor conditions may substantially differ from the standard value evaluated at STC. In this study, the influence of spectral solar irradiance distribution on the colored PV module efficiency is evaluated in terms of spectral factor (SF). SF quantifies the relative power gain or loss caused by the spectral difference from STC. The theory is illustrated with a case study on the main four urban areas in Romania. The actual solar radiation spectrum is estimated with the simple Leckner spectral solar irradiance model, based on atmospheric parameters retrieved from the Aerosol Robotic Network (AERONET). The results emphasize that the aesthetic of BIPV comes at a high energy cost: depending on the color, a coating applied on the surface of a crystalline silicon PV module may reduce its conversion efficiency even by half.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49272056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimal Algorithm for Renewable Energy Generation Based on Neural Network 基于神经网络的可再生能源发电优化算法
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-08-27 DOI: 10.1155/2022/8072269
Weihua Zhao, Imran Khan, Shelily F. Akhtar, Mujahed Al-Dhaifallah
Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.
太阳能是一种成本低廉且易于获得的能源,已被证明是最清洁、最丰富的可再生能源之一。世界上许多国家都在利用各种大型太阳能光伏设施来最大限度地减少化石能源产生的污染和碳排放。光伏发电的功率序列受到各种不同变量的影响,并且非常不可预测和波动。与分布式PV不同,集中式PV具有相同的强度和位置。云层的阻挡导致光伏输出功率的微小变化,使功率预测更加困难。为了解决上述困难,本文提出了一种新的基于神经网络的光伏功率优化和预测技术。第一阶段是基于从地面拍摄的云照片创建云轨迹跟踪系统。其次,建立了基于云轨迹跟踪的辐照度系数预测模型。然后,为了提高预测精度,建立了误差修正模型。为了验证,使用了一个集中式太阳能发电站的数据。结果表明,该算法具有一定的技术应用价值,可以大大提高预测精度。
{"title":"An Optimal Algorithm for Renewable Energy Generation Based on Neural Network","authors":"Weihua Zhao, Imran Khan, Shelily F. Akhtar, Mujahed Al-Dhaifallah","doi":"10.1155/2022/8072269","DOIUrl":"https://doi.org/10.1155/2022/8072269","url":null,"abstract":"Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47690549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Integrated Decentralization Strategies of Solar Power System in Buildings 建筑太阳能系统的智能集成分散策略
IF 3.2 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-08-25 DOI: 10.1155/2022/9311686
Syed Muhammad Kashif Shah, Tanzeel Ur Rasheed, H. M. Ali
This study signifies the need for a smart integrated decentralized solar energy system in Pakistan. Since the outlook of energy is highly dominated by its power sector, policy measures must be adopted to ensure its penetration in the system of any country. After the industrial, the housing sector is the major energy-consuming sector. The goal of this study is to assess energy generation through a smart integrated decentralized solar energy system in the power hub of a commercial area in Taxila, Pakistan. Model development involves a hypothetical model built on LabVIEW which allows the user interface a way to intermingle with the source code. It permits the user to the transformation of the values sent to the source code and sees the information that the source code calculates. The proposed system is a collaborative sharing integrated decentralized solar system that credits sunlight-based energy framework proprietors for the power they add to different buildings due to the collaborative sharing mechanism at Rs.10 per kWh. This low-cost electricity is available at your doorstep that you can share according to the collaborative sharing basis that will not range any certain variable. Results from the literature describe that 30% of the cost associated with the commercial price of electricity amounts to distribution cost. This system of the utilization of energy would be applied at a local level to achieve the maximum power generation from solar panels through blockchain use of solar systems, especially in regions that have no entrance to traditional power with little odds of getting associated in the next 5-10 years.
这项研究表明,巴基斯坦需要一个智能集成的分散式太阳能系统。由于能源的前景在很大程度上取决于其电力部门,因此必须采取政策措施以确保其渗透到任何国家的系统中。继工业部门之后,住房部门是主要的能源消耗部门。本研究的目标是评估巴基斯坦塔克西拉商业区电力中心的智能集成分散式太阳能系统的发电量。模型开发涉及建立在LabVIEW上的假设模型,该模型允许用户界面与源代码混合。它允许用户对发送到源代码的值进行转换,并查看源代码计算的信息。拟议的系统是一个协作共享集成分散式太阳能系统,由于协作共享机制,以每千瓦时10卢比的价格将基于太阳能的能源框架所有者的电力归功于他们为不同建筑物增加的电力。这种低成本的电力就在你家门口,你可以根据协作共享的基础来共享,而不涉及任何特定的变量。文献结果表明,与电力商业价格相关的成本中有30%为配电成本。这种能源利用系统将在地方一级应用,通过大量使用太阳能系统实现太阳能电池板的最大发电量,特别是在没有传统电力入口的地区,在未来5-10年内几乎没有机会与之联系。
{"title":"Smart Integrated Decentralization Strategies of Solar Power System in Buildings","authors":"Syed Muhammad Kashif Shah, Tanzeel Ur Rasheed, H. M. Ali","doi":"10.1155/2022/9311686","DOIUrl":"https://doi.org/10.1155/2022/9311686","url":null,"abstract":"This study signifies the need for a smart integrated decentralized solar energy system in Pakistan. Since the outlook of energy is highly dominated by its power sector, policy measures must be adopted to ensure its penetration in the system of any country. After the industrial, the housing sector is the major energy-consuming sector. The goal of this study is to assess energy generation through a smart integrated decentralized solar energy system in the power hub of a commercial area in Taxila, Pakistan. Model development involves a hypothetical model built on LabVIEW which allows the user interface a way to intermingle with the source code. It permits the user to the transformation of the values sent to the source code and sees the information that the source code calculates. The proposed system is a collaborative sharing integrated decentralized solar system that credits sunlight-based energy framework proprietors for the power they add to different buildings due to the collaborative sharing mechanism at Rs.10 per kWh. This low-cost electricity is available at your doorstep that you can share according to the collaborative sharing basis that will not range any certain variable. Results from the literature describe that 30% of the cost associated with the commercial price of electricity amounts to distribution cost. This system of the utilization of energy would be applied at a local level to achieve the maximum power generation from solar panels through blockchain use of solar systems, especially in regions that have no entrance to traditional power with little odds of getting associated in the next 5-10 years.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42121794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
International Journal of Photoenergy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1