首页 > 最新文献

International Journal of Phytoremediation最新文献

英文 中文
In-situ biosynthesis of metallic nanoparticles using Allium sativum and Chondrilla juncea extract: characterization and application in dye decolorization. 利用薤白和蛇床子提取物原位生物合成金属纳米颗粒:特性分析及在染料脱色中的应用。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-10-26 DOI: 10.1080/15226514.2024.2417845
Nouha Sebeia, Mahjoub Jabli

The synthesis of catalysts has gained specific concern due to their versatile applications in particular azo dye decolorization. In the current work, metallic nanoparticles (copper and silver) were In-situ biosynthesised using Allium sativum and Chondrilla juncea extract. The obtained Allium-copper oxide and Allium-silver oxide materials were analyzed using SEM, TEM, FT-IR, TGA-DTG, SEM, TEM, and XRD techniques. Allium peels had a rough surface, with nanoparticles equally distributed over it. The crystal structure of Allium peels was altered after the addition of CuO and AgO nanoparticles. The highest residual mass values in the prepared materials indicated that the metallic nanoparticles were, in situ, formed. The prepared materials had worse thermal stability than Allium peel powders. The azo dyes, Calmagite and Naphthol Blue Black B were tested in the catalytic power of the resulting materials. The decolorization process was affected by the dye structure, amount of H2O2, dye concentration, time of reaction, and temperature of the bath. The activation energy values for Allium-CuO were 18.44 kJ mol-1 for calmagite, and 23.28 kJ mol-1 for naphthol blue black, respectively. Nevertheless, the energy values for Allium-AgO were 50.01 kJ mol-1 for calmagite and 12.44 kJ mol-1 for Naphthol blue black. The calculated low energy values for the prepared materials suggested the high efficiency of the use of these catalysts in azo dye decolorization under the change of some main experimental conditions.

由于催化剂用途广泛,特别是在偶氮染料脱色方面,催化剂的合成受到了特别关注。在目前的工作中,使用薤白和琼崖提取物对金属纳米颗粒(铜和银)进行了原位生物合成。使用 SEM、TEM、FT-IR、TGA-DTG、SEM、TEM 和 XRD 技术对获得的薤白氧化铜和薤白氧化银材料进行了分析。薤白皮表面粗糙,纳米颗粒均匀分布。加入氧化铜和氧化银纳米粒子后,薤白皮的晶体结构发生了改变。制备材料的残余质量值最高,表明金属纳米粒子是在原位形成的。所制备材料的热稳定性比薤白皮粉差。测试了偶氮染料钙钛矿和萘酚蓝黑 B 对所制备材料的催化能力。脱色过程受染料结构、H2O2 的用量、染料浓度、反应时间和水浴温度的影响。Allium-CuO 对钙钛矿的活化能值为 18.44 kJ mol-1,对萘酚蓝黑的活化能值为 23.28 kJ mol-1。然而,钙钛矿和萘酚蓝黑的 Allium-AgO 的能量值分别为 50.01 kJ mol-1 和 12.44 kJ mol-1。计算得出的制备材料的低能值表明,在改变一些主要实验条件的情况下,这些催化剂在偶氮染料脱色中的使用效率很高。
{"title":"In-situ biosynthesis of metallic nanoparticles using <i>Allium sativum</i> and <i>Chondrilla juncea</i> extract: characterization and application in dye decolorization.","authors":"Nouha Sebeia, Mahjoub Jabli","doi":"10.1080/15226514.2024.2417845","DOIUrl":"10.1080/15226514.2024.2417845","url":null,"abstract":"<p><p>The synthesis of catalysts has gained specific concern due to their versatile applications in particular azo dye decolorization. In the current work, metallic nanoparticles (copper and silver) were In-situ biosynthesised using <i>Allium sativum</i> and <i>Chondrilla juncea</i> extract. The obtained <i>Allium</i>-copper oxide and <i>Allium</i>-silver oxide materials were analyzed using SEM, TEM, FT-IR, TGA-DTG, SEM, TEM, and XRD techniques. <i>Allium</i> peels had a rough surface, with nanoparticles equally distributed over it. The crystal structure of <i>Allium</i> peels was altered after the addition of CuO and AgO nanoparticles. The highest residual mass values in the prepared materials indicated that the metallic nanoparticles were, <i>in situ</i>, formed. The prepared materials had worse thermal stability than <i>Allium</i> peel powders. The azo dyes, Calmagite and Naphthol Blue Black B were tested in the catalytic power of the resulting materials. The decolorization process was affected by the dye structure, amount of H<sub>2</sub>O<sub>2</sub>, dye concentration, time of reaction, and temperature of the bath. The activation energy values for <i>Allium</i>-CuO were 18.44 kJ mol<sup>-1</sup> for calmagite, and 23.28 kJ mol<sup>-1</sup> for naphthol blue black, respectively. Nevertheless, the energy values for <i>Allium</i>-AgO were 50.01 kJ mol<sup>-1</sup> for calmagite and 12.44 kJ mol<sup>-1</sup> for Naphthol blue black. The calculated low energy values for the prepared materials suggested the high efficiency of the use of these catalysts in azo dye decolorization under the change of some main experimental conditions.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"341-352"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the impacts of a recirculation sedimentation application on microalgae biomass cultivation in wastewater treatment. 研究污水处理中循环沉淀应用对微藻类生物量培养的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-09-12 DOI: 10.1080/15226514.2024.2401967
Ismail S Bostanci, Ebru Koca Akkaya

Commercial microalgae production is often interrupted by contamination, leading to short production cycles, reinoculation needs, and culture collapses, significantly increasing costs. This study focuses on investigating Recirculated Sedimentation Application (RSA) to control contamination in microalgae culture systems used for wastewater treatment. Chlorella vulgaris culture was grown in an unsterilized mixture of tertiary treatment effluent and centrate of anaerobic digestion wastewater sludge over a 90-day experimental period. 60 L raceway reactor was operated under a light intensity of 275 μM m-2.s-1 with a 16:8 h light-dark photoperiod. To evaluate the effect of RSA on biological-based problems, the experiment was conducted in three phases. The benefits of utilizing RSA were established through the following observations: effective removal of contaminants at an acceptable level without releasing the culture; extension of the biofilm formation time on the inner walls; inhibition of heterotrophic bacteria and nitrification; enhancement of the suspended solids retention capacity of the raceway tank (up to 770 mg.L-1); and improvement in ammonium removal rate to approximately 30 mg.L-1d-1. The ideal salinity level for both ammonium removal and biomass concentration in RSA should be below 0.02%. These findings demonstrate the potential of phycoremediation for sustainable wastewater treatment and contribute to environmental bioremediation strategies.

商业微藻生产经常因污染而中断,导致生产周期缩短、需要重新接种和培养失败,从而大大增加了成本。本研究的重点是调查循环沉淀应用(RSA),以控制用于废水处理的微藻培养系统中的污染。在 90 天的实验期内,在未经消毒的三级处理废水和厌氧消化废水污泥中心液混合物中培养普通小球藻。在光照强度为 275 μM m-2.s-1 且光暗周期为 16:8 小时的条件下,60 升的赛道反应器开始运行。为了评估 RSA 对生物问题的影响,实验分三个阶段进行。通过以下观察结果,确定了使用 RSA 的益处:在不释放培养物的情况下,以可接受的水平有效去除污染物;延长内壁生物膜形成时间;抑制异养菌和硝化作用;提高径流槽的悬浮固体截留能力(高达 770 mg.L-1);以及将氨去除率提高到约 30 mg.L-1d-1。RSA 中去除氨和生物量浓度的理想盐度应低于 0.02%。这些发现证明了植物修复在可持续废水处理方面的潜力,并为环境生物修复战略做出了贡献。
{"title":"Investigating the impacts of a recirculation sedimentation application on microalgae biomass cultivation in wastewater treatment.","authors":"Ismail S Bostanci, Ebru Koca Akkaya","doi":"10.1080/15226514.2024.2401967","DOIUrl":"10.1080/15226514.2024.2401967","url":null,"abstract":"<p><p>Commercial microalgae production is often interrupted by contamination, leading to short production cycles, reinoculation needs, and culture collapses, significantly increasing costs. This study focuses on investigating Recirculated Sedimentation Application (RSA) to control contamination in microalgae culture systems used for wastewater treatment. <i>Chlorella vulgaris</i> culture was grown in an unsterilized mixture of tertiary treatment effluent and centrate of anaerobic digestion wastewater sludge over a 90-day experimental period. 60 L raceway reactor was operated under a light intensity of 275 μM m<sup>-2</sup>.s<sup>-1</sup> with a 16:8 h light-dark photoperiod. To evaluate the effect of RSA on biological-based problems, the experiment was conducted in three phases. The benefits of utilizing RSA were established through the following observations: effective removal of contaminants at an acceptable level without releasing the culture; extension of the biofilm formation time on the inner walls; inhibition of heterotrophic bacteria and nitrification; enhancement of the suspended solids retention capacity of the raceway tank (up to 770 mg.L<sup>-1</sup>); and improvement in ammonium removal rate to approximately 30 mg.L<sup>-1</sup>d<sup>-1</sup>. The ideal salinity level for both ammonium removal and biomass concentration in RSA should be below 0.02%. These findings demonstrate the potential of phycoremediation for sustainable wastewater treatment and contribute to environmental bioremediation strategies.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"96-107"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of ibuprofen, naproxen and 17-β-estradiol in water using L. octovalvis constructed wetlands. 利用八价酵母构建湿地去除水中的布洛芬、萘普生和 17-β-estradiol
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-09-10 DOI: 10.1080/15226514.2024.2400619
D L Cobarrubias-Escamilla, H A Saldarriaga-Noreña, J Vergara-Sánchez, M A Murillo-Tovar, G E Moeller-Chávez

This study was developed to evaluate the removal potential of ibuprofen, naproxen and 17-β-estradiol in artificial wetlands constructed on a laboratory scale, using eight experimental devices planted with L. octovalvis species, tested with gravel substrate and without gravel substrate, which were fortified with synthetic mixtures at concentrations of 1, 2 and 5 mg/L of the three compounds, during a batch exposure time of nine days. The removal efficiency for 17-β-estradiol was 94.5 ± 2.47%, followed by ibuprofen 94.03 ± 1.96% and naproxen 81.57 ± 8.74%, respectively. The treatment with the highest removal was the one performed without the presence of gravel substrate. The highest removal efficiency occurred from the third day of exposure for the three compounds, so it was established as the optimum residence time. The model that best explained the adsorption process of the three compounds studied, was the Langmuir isotherm. The observed results demonstrate that L. octovalvis can be used as a native species in artificial wetlands for the efficient removal of pharmaceutical compounds.

本研究旨在评估布洛芬、萘普生和 17-β-estradiol 在实验室规模的人工湿地中的去除潜力。本研究使用了八个实验装置,这些装置种植了八维藻类,并在有砾石基质和无砾石基质的情况下进行了测试,测试中添加了浓度为 1、2 和 5 mg/L 的合成混合物,批量暴露时间为九天。17-β-estradiol 的去除率为 94.5 ± 2.47%,其次分别是布洛芬 94.03 ± 1.96% 和萘普生 81.57 ± 8.74%。去除率最高的处理是在没有砾石基质的情况下进行的处理。三种化合物的最高去除率出现在接触的第三天,因此这一天被确定为最佳停留时间。最能解释所研究的三种化合物的吸附过程的模型是朗缪尔等温线。观察结果表明,八维藻可以作为人工湿地中的原生物种,用于有效去除药物化合物。
{"title":"Removal of ibuprofen, naproxen and 17-β-estradiol in water using <i>L. octovalvis</i> constructed wetlands.","authors":"D L Cobarrubias-Escamilla, H A Saldarriaga-Noreña, J Vergara-Sánchez, M A Murillo-Tovar, G E Moeller-Chávez","doi":"10.1080/15226514.2024.2400619","DOIUrl":"10.1080/15226514.2024.2400619","url":null,"abstract":"<p><p>This study was developed to evaluate the removal potential of ibuprofen, naproxen and 17-β-estradiol in artificial wetlands constructed on a laboratory scale, using eight experimental devices planted with <i>L. octovalvis</i> species, tested with gravel substrate and without gravel substrate, which were fortified with synthetic mixtures at concentrations of 1, 2 and 5 mg/L of the three compounds, during a batch exposure time of nine days. The removal efficiency for 17-β-estradiol was 94.5 ± 2.47%, followed by ibuprofen 94.03 ± 1.96% and naproxen 81.57 ± 8.74%, respectively. The treatment with the highest removal was the one performed without the presence of gravel substrate. The highest removal efficiency occurred from the third day of exposure for the three compounds, so it was established as the optimum residence time. The model that best explained the adsorption process of the three compounds studied, was the Langmuir isotherm. The observed results demonstrate that <i>L. octovalvis</i> can be used as a native species in artificial wetlands for the efficient removal of pharmaceutical compounds.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"74-83"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-10-11 DOI: 10.1080/15226514.2024.2415239
{"title":"Correction.","authors":"","doi":"10.1080/15226514.2024.2415239","DOIUrl":"10.1080/15226514.2024.2415239","url":null,"abstract":"","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"I-III"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant and pH-dependent cationic and anionic dye degradation activities of optimum synthesized organic@inorganic Cu hybrid nanoflowers. 最佳合成的有机@无机铜杂化纳米花的抗氧化性和随 pH 值变化的阳离子和阴离子染料降解活性。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-11-11 DOI: 10.1080/15226514.2024.2424308
Fatih Doğan Koca, Haydar Matz Muhy, Mehmet Gökhan Halıcı

First time in this study, hybrid Cu nanoflowers (Cu hNFs) were synthesized with Cystosphaera jacquinotii algae extract and the pH-dependent catalytic activities of hNFs synthesized under optimum conditions against brilliant blue and methylene blue dyes were determined. Ideal morphology of hNFs, were synthesized by using 1 ml extract in PBS (pH 7.4). The diameter and petal thickness of optimum synthesized hNF were 7-22 µm, and 35.5 nm, respectively. Main skeleton component (C, O, P, and Cu) of hNFs were determined by EDX. The presence of functional groups and primary phosphate crystals formed by Cu and phosphate reaction in the PBS buffer were confirmed by FT-IR analysis. The hNFs exhibited the antioxidant activity (IC50 = 1.27 mg/ml, R2 = 0.6971) against to DPPH (2,2-diphenyl-1- (2,4,6-trinitrophenyl) hydrazyl). hNFs degraded methylene blue and brilliant blue dyes at the highest at pH 9 (73.85%) and pH 5 (68.19%) media, respectively. Catalytic activities of hNFs against methylene blue and brilliant blue dyes were explained by Fenton mechanism. The findings are thought to be used in new type hNF synthesis and various environmental applications.

本研究首次利用囊藻藻提取物合成了杂化铜纳米花(Cu hNFs),并测定了在最佳条件下合成的 hNFs 对亮蓝和亚甲蓝染料的 pH 值催化活性。在 PBS(pH 7.4)中使用 1 毫升提取物合成了理想形态的 hNFs。合成的最佳 hNF 的直径和花瓣厚度分别为 7-22 µm 和 35.5 nm。通过 EDX 测定了 hNF 的主要骨架成分(C、O、P 和 Cu)。傅立叶变换红外光谱分析证实了功能基团的存在以及铜和磷酸盐在 PBS 缓冲液中反应形成的初级磷酸盐晶体。hNFs 对 DPPH(2,2-二苯基-1- (2,4,6-三硝基苯基) 肼)具有抗氧化活性(IC50 = 1.27 mg/ml,R2 = 0.6971),在 pH 值为 9(73.85%)和 pH 值为 5(68.19%)的介质中,hNFs 对亚甲蓝和亮蓝染料的降解率最高。hNFs 对亚甲基蓝和艳蓝染料的催化活性可以用 Fenton 机制来解释。这些发现可用于新型 hNF 合成和各种环境应用。
{"title":"Antioxidant and pH-dependent cationic and anionic dye degradation activities of optimum synthesized organic@inorganic Cu hybrid nanoflowers.","authors":"Fatih Doğan Koca, Haydar Matz Muhy, Mehmet Gökhan Halıcı","doi":"10.1080/15226514.2024.2424308","DOIUrl":"10.1080/15226514.2024.2424308","url":null,"abstract":"<p><p>First time in this study, hybrid Cu nanoflowers (Cu hNFs) were synthesized with <i>Cystosphaera jacquinotii</i> algae extract and the pH-dependent catalytic activities of hNFs synthesized under optimum conditions against brilliant blue and methylene blue dyes were determined. Ideal morphology of hNFs, were synthesized by using 1 ml extract in PBS (pH 7.4). The diameter and petal thickness of optimum synthesized hNF were 7-22 µm, and 35.5 nm, respectively. Main skeleton component (C, O, P, and Cu) of hNFs were determined by EDX. The presence of functional groups and primary phosphate crystals formed by Cu and phosphate reaction in the PBS buffer were confirmed by FT-IR analysis. The hNFs exhibited the antioxidant activity (IC<sub>50</sub> = 1.27 mg/ml, <i>R</i><sup>2</sup> = 0.6971) against to DPPH (2,2-diphenyl-1- (2,4,6-trinitrophenyl) hydrazyl). hNFs degraded methylene blue and brilliant blue dyes at the highest at pH 9 (73.85%) and pH 5 (68.19%) media, respectively. Catalytic activities of hNFs against methylene blue and brilliant blue dyes were explained by Fenton mechanism. The findings are thought to be used in new type hNF synthesis and various environmental applications.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"412-421"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil. 增强新型镉动员细菌对镉污染土壤的植物修复和微生态学的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-10-14 DOI: 10.1080/15226514.2024.2414911
Jiapeng Li, Xiaoqian Yang, Mengxin Chen, Lei Zhang

The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, Serratia sp. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as Sphingomonas, Nocardioides, and Bacillus likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.

植物萃取法修复重金属污染土壤的效果取决于重金属的生物利用率和植物生长情况。在本研究中,我们采用了一种由水溶性壳聚糖和新型镉动员细菌 Serratia sp. K6(以下简称 K6)组成的协同系统,以提高黑麦草对镉(Cd)的提取率。与对照组相比,应用壳聚糖和 K6 使黑麦草的生物量增加了 11.81%,镉积累增加了 73.99%,有效态镉增加了 43.69%,pH 值降低了 4.67%。微生物组和代谢组学分析表明,根际微生物群落发生了显著变化,根瘤菌如鞘氨单胞菌、Nocardioides 和芽孢杆菌可能是壳聚糖和 K6 添加后植物生长和镉积累增强的原因。此外,在不同的添加剂处理下,各种有机酸、氨基酸、脂类和其他代谢物的含量也发生了显著变化,这表明黑麦草可通过调节自身代谢物来抵抗镉胁迫。这项研究为了解添加剂对植物萃取效率和土壤细菌群落的影响提供了宝贵的见解,为镉污染土壤的植物修复提供了一种可行的方法。
{"title":"Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil.","authors":"Jiapeng Li, Xiaoqian Yang, Mengxin Chen, Lei Zhang","doi":"10.1080/15226514.2024.2414911","DOIUrl":"10.1080/15226514.2024.2414911","url":null,"abstract":"<p><p>The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, <i>Serratia sp</i>. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as <i>Sphingomonas</i>, <i>Nocardioides</i>, and <i>Bacillus</i> likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"287-297"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of dairy wastewater as substrate for bioremediation of coal mine drainage in planted horizontal flow constructed wetland. 将乳制品废水作为基质,用于水平流人工湿地中煤矿排水的生物修复。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI: 10.1080/15226514.2024.2417375
Prakhar Tripathi, Saswati Chakraborty

Coal mine drainage (CMD) is an environmental threat due to its high volume, low pH, presence of toxic metals, and absence of biodegradable organics. The present study aims to treat CMD in a horizontal sub-surface flow constructed wetland (CW) using dairy wastewater as an organic source. CW was planted with Typha angustifolia. Characteristics of synthetic CMD were (except pH, all unit mg/L) pH 1.9; Fe: 100, SO42-: 1,000, Mn: 6, Zn: 5, Co: 1, Ni: 1, and Cr: 1. CMD was mixed with synthetic dairy wastewater (pH: 5.05, COD: 2,700 mg/L, BOD: 1,600 mg/L) in the ratio of 3:1. Alkalinity of 120-190 mg/L CaCO3 was generated and effluent pH improved from 2.2 to 6.6. Metals precipitated as metal sulfide or hydroxide. Sulfate removal was hindered due to the synergistic toxicity of several metals. Except for Mn, all other effluent parameters were within the discharge limit for disposal in inland surface water.

煤矿排水(CMD)因其体积大、pH 值低、含有毒金属和缺乏可生物降解的有机物而对环境构成威胁。本研究旨在利用乳制品废水作为有机源,在水平次表层流建造的湿地(CW)中处理煤矿排水。CW 中种植了香蒲(Typha angustifolia)。合成 CMD 的特征为(除 pH 值外,所有单位均为 mg/L):pH 值 1.9;铁:100;SO42-:1,000, Mn: 6, Zn:5、Co:1、Ni:1 和 Cr:1:1.CMD 与合成乳制品废水(pH:5.05,COD:2,700 mg/L,BOD:1,600 mg/L)按 3:1 的比例混合。产生的 CaCO3 碱度为 120-190 毫克/升,出水 pH 值从 2.2 提高到 6.6。金属以金属硫化物或氢氧化物的形式沉淀。由于几种金属的协同毒性,硫酸盐的去除受到阻碍。除锰之外,所有其他出水参数都在内陆地表水排放限值之内。
{"title":"Application of dairy wastewater as substrate for bioremediation of coal mine drainage in planted horizontal flow constructed wetland.","authors":"Prakhar Tripathi, Saswati Chakraborty","doi":"10.1080/15226514.2024.2417375","DOIUrl":"10.1080/15226514.2024.2417375","url":null,"abstract":"<p><p>Coal mine drainage (CMD) is an environmental threat due to its high volume, low pH, presence of toxic metals, and absence of biodegradable organics. The present study aims to treat CMD in a horizontal sub-surface flow constructed wetland (CW) using dairy wastewater as an organic source. CW was planted with <i>Typha angustifolia.</i> Characteristics of synthetic CMD were (except pH, all unit mg/L) pH 1.9; Fe: 100, <math><mrow><msubsup><mrow><mtext>SO</mtext></mrow><mrow><mn>4</mn></mrow><mrow><mn>2</mn><mo>-</mo></mrow></msubsup></mrow></math>: 1,000, Mn: 6, Zn: 5, Co: 1, Ni: 1, and Cr: 1. CMD was mixed with synthetic dairy wastewater (pH: 5.05, COD: 2,700 mg/L, BOD: 1,600 mg/L) in the ratio of 3:1. Alkalinity of 120-190 mg/L CaCO<sub>3</sub> was generated and effluent pH improved from 2.2 to 6.6. Metals precipitated as metal sulfide or hydroxide. Sulfate removal was hindered due to the synergistic toxicity of several metals. Except for Mn, all other effluent parameters were within the discharge limit for disposal in inland surface water.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"330-340"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elicitors fortifies the plant resilience against metal and metalloid stress. 诱导剂可增强植物抵御金属和类金属胁迫的能力。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-11-03 DOI: 10.1080/15226514.2024.2420328
Parammal Faseela, Mathew Veena, Akhila Sen, K S Anjitha, K P Raj Aswathi, Palliyath Sruthi, Jos T Puthur

This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.

本综述探讨植物与 HMs 的相互作用,强调防御机制以及螯合剂、抗氧化剂和各种激发分子在减轻植物体内金属毒性方面的作用。为了应对土壤中的 HMs 污染,使用天然或合成氨基多羧酸进行螯合剂辅助植物萃取是一种有效的策略。植物还利用多种信号通路,包括激素、钙、活性氧、一氧化氮和影响基因表达和防御机制的丝裂原活化蛋白激酶来对抗 HM 压力。当植物受到 HM 胁迫时,植物激素会增强植物的酶和非酶抗氧化防御机制,并提高次生代谢物的水平。它还能激活负责 DNA 修复机制的基因。此外,植物激素还能调节几种 HMs 转运体的活性,从而阻止它们进入细胞。诱导剂分子可调节植物对金属和类金属的吸收、螯合和运输。茉莉酸、钙、水杨酸等不同诱导剂的组合能有效缓解植物的金属和类金属胁迫。此外,包括细菌和真菌在内的微生物为 HM 修复提供了生态友好和高效的解决方案。了解这些诱导剂、微生物和各种信号通路,对于制定提高植物对金属和类金属胁迫的抗逆性的策略至关重要。
{"title":"Elicitors fortifies the plant resilience against metal and metalloid stress.","authors":"Parammal Faseela, Mathew Veena, Akhila Sen, K S Anjitha, K P Raj Aswathi, Palliyath Sruthi, Jos T Puthur","doi":"10.1080/15226514.2024.2420328","DOIUrl":"10.1080/15226514.2024.2420328","url":null,"abstract":"<p><p>This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"372-389"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ bioaugmented phytoremediation of cadmium and crude oil co-contaminated soil by Ocimum gratissimum in association with PGPR Micrococcus luteus WN01. 欧芹与 PGPR 微球菌黄体 WN01 共同对镉和原油共污染土壤进行原位生物增强植物修复。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-11-06 DOI: 10.1080/15226514.2024.2415535
Pem Choden, Toemthip Poolpak, Prayad Pokethitiyook, Kwang Mo Yang, Maleeya Kruatrachue

Heavy metals and petroleum oil are the two most important contaminants in the environment. Currently, phytoremediation is regarded as an effective and affordable solution that allows the attenuation of toxic pollutants through the use of plants. Not many studies are carried out regarding the use of aromatic plants capable of remediating soil that is co-contaminated by heavy metal and petroleum hydrocarbons. A pot experiment was conducted to investigate the influence of cadmium-resistant PGPR Micrococcus luteus on the phytoremediation efficiency of Ocimum gratissimum in Cd and petroleum co-contaminated soil. The plants were harvested after 60 days of treatment and their growth and biomass were determined. The accumulation of Cd in plant shoots and roots was determined. The residual petroleum hydrocarbon concentration during the 60 days of the phytoremediation experiment was determined using GC-FID. O. gratissimum with M. luteus showed the highest Cd accumulation (14.05 mg kg-1) and the highest reduction of TPH (46.64%). M. luteus ameliorated contaminant toxicity and promoted biomass production of O. gratissimum. These results demonstrated that O. gratissimum in combination with M. luteus can be efficiently used to remediate Cd and petroleum-co-contaminated soils.

重金属和石油是环境中最重要的两种污染物。目前,植物修复被认为是一种有效且经济实惠的解决方案,可以通过利用植物来衰减有毒污染物。关于利用芳香植物修复受重金属和石油碳氢化合物共同污染的土壤的研究并不多。我们进行了一项盆栽实验,研究抗镉的 PGPR 微球菌(Micrococcus luteus)对受镉和石油共同污染的土壤中的欧柯玛(Ocimum gratissimum)的植物修复效率的影响。处理 60 天后收获植物,测定其生长和生物量。测定了镉在植物芽和根中的积累。在 60 天的植物修复实验中,使用 GC-FID 测定了石油烃的残留浓度。含黄体菌的 O. gratissimum 的镉积累量最高(14.05 mg kg-1),TPH 的减少量最高(46.64%)。黄体霉菌可改善污染物的毒性,并促进 O. gratissimum 的生物量生产。这些结果表明,O. gratissimum 与黄体霉菌结合使用可有效修复镉和石油共污染土壤。
{"title":"<i>In situ</i> bioaugmented phytoremediation of cadmium and crude oil co-contaminated soil by <i>Ocimum gratissimum</i> in association with PGPR <i>Micrococcus luteus</i> WN01.","authors":"Pem Choden, Toemthip Poolpak, Prayad Pokethitiyook, Kwang Mo Yang, Maleeya Kruatrachue","doi":"10.1080/15226514.2024.2415535","DOIUrl":"10.1080/15226514.2024.2415535","url":null,"abstract":"<p><p>Heavy metals and petroleum oil are the two most important contaminants in the environment. Currently, phytoremediation is regarded as an effective and affordable solution that allows the attenuation of toxic pollutants through the use of plants. Not many studies are carried out regarding the use of aromatic plants capable of remediating soil that is co-contaminated by heavy metal and petroleum hydrocarbons. A pot experiment was conducted to investigate the influence of cadmium-resistant PGPR <i>Micrococcus luteus</i> on the phytoremediation efficiency of <i>Ocimum gratissimum</i> in Cd and petroleum co-contaminated soil. The plants were harvested after 60 days of treatment and their growth and biomass were determined. The accumulation of Cd in plant shoots and roots was determined. The residual petroleum hydrocarbon concentration during the 60 days of the phytoremediation experiment was determined using GC-FID. <i>O. gratissimum</i> with <i>M. luteus</i> showed the highest Cd accumulation (14.05 mg kg<sup>-1</sup>) and the highest reduction of TPH (46.64%). <i>M. luteus</i> ameliorated contaminant toxicity and promoted biomass production of <i>O. gratissimum</i>. These results demonstrated that <i>O. gratissimum</i> in combination with <i>M. luteus</i> can be efficiently used to remediate Cd and petroleum-co-contaminated soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"298-306"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperaccumulation of metal in the apoplast contributes to the tolerance of the phytoremediator Pistia stratiotes L. to manganese-contaminated water. 金属在细胞质中的超积累有助于植物修复者 Pistia stratiotes L. 对锰污染水的耐受性。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1080/15226514.2024.2422462
Daniel G Coelho, Vinicius M Silva, Claudio S Marinato, Pedro H S Neves, Antonio A P Gomes Filho, Fernanda S Farnese, Wagner L Araújo, Juraci A Oliveira

Phytoremediation of manganese (Mn)-contaminated water requires the selection of Mn-tolerant species. This study reports on physiological changes and Mn bioaccumulation in the aquatic macrophyte Pistia stratiotes cultivated under various MnCl2 concentrations: control, 80, 340, 600, 1000, 2000, and 4000 µM. Few visual symptoms of Mn toxicity, such as chlorosis, were observed after 10 days, especially in plants treated with 2000 and 4000 µM MnCl2. High Mn accumulation was recorded, with maximum values of 23,700 and 24,600 µg g-1 DW in the shoots and roots, respectively, at 4000 µM Mn, contrasting with 825.01 and 1587.53 µg g-1 DW in control plants. Cellular fractioning showed that Mn in shoots and roots was mainly associated with the cell wall, with approximately 90% of the Mn in roots detected in the apoplast. There were no significant changes in net CO2 assimilation or respiratory rates after 5 and 10 days of Mn exposure. These results demonstrate that P. stratiotes is a Mn hyperaccumulator species with excellent phytoremediation potential, as shown by its high bioaccumulation capacity and its ability to maintain photosynthetic efficiency under Mn stress.

锰(Mn)污染水体的植物修复需要选择耐锰物种。本研究报告了在不同氯化锰浓度(对照、80、340、600、1000、2000 和 4000 µM)下栽培的水生大型藻类 Pistia stratiotes 的生理变化和锰的生物累积情况。10 天后,几乎观察不到锰中毒的直观症状,如枯萎,尤其是在用 2000 和 4000 µM MnCl2 处理的植物中。在 4000 µM 的锰浓度下,记录到锰的高积累,芽和根的最大值分别为 23,700 和 24,600 µg g-1 DW,而对照植物的最大值分别为 825.01 和 1587.53 µg g-1 DW。细胞分馏结果表明,芽和根中的锰主要与细胞壁有关,根中约 90% 的锰在细胞质中被检测到。锰暴露 5 天和 10 天后,二氧化碳净同化或呼吸速率没有明显变化。这些结果表明,地层锰是一种锰超积累物种,具有很好的植物修复潜力,这体现在它的高生物积累能力以及在锰胁迫下保持光合效率的能力。
{"title":"Hyperaccumulation of metal in the apoplast contributes to the tolerance of the phytoremediator <i>Pistia stratiotes</i> L. to manganese-contaminated water.","authors":"Daniel G Coelho, Vinicius M Silva, Claudio S Marinato, Pedro H S Neves, Antonio A P Gomes Filho, Fernanda S Farnese, Wagner L Araújo, Juraci A Oliveira","doi":"10.1080/15226514.2024.2422462","DOIUrl":"10.1080/15226514.2024.2422462","url":null,"abstract":"<p><p>Phytoremediation of manganese (Mn)-contaminated water requires the selection of Mn-tolerant species. This study reports on physiological changes and Mn bioaccumulation in the aquatic macrophyte <i>Pistia stratiotes</i> cultivated under various MnCl<sub>2</sub> concentrations: control, 80, 340, 600, 1000, 2000, and 4000 µM. Few visual symptoms of Mn toxicity, such as chlorosis, were observed after 10 days, especially in plants treated with 2000 and 4000 µM MnCl<sub>2</sub>. High Mn accumulation was recorded, with maximum values of 23,700 and 24,600 µg g<sup>-1</sup> DW in the shoots and roots, respectively, at 4000 µM Mn, contrasting with 825.01 and 1587.53 µg g<sup>-1</sup> DW in control plants. Cellular fractioning showed that Mn in shoots and roots was mainly associated with the cell wall, with approximately 90% of the Mn in roots detected in the apoplast. There were no significant changes in net CO<sub>2</sub> assimilation or respiratory rates after 5 and 10 days of Mn exposure. These results demonstrate that <i>P. stratiotes</i> is a Mn hyperaccumulator species with excellent phytoremediation potential, as shown by its high bioaccumulation capacity and its ability to maintain photosynthetic efficiency under Mn stress.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"400-411"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Phytoremediation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1