首页 > 最新文献

International Journal of Phytoremediation最新文献

英文 中文
Different behavior of two strains of the arbuscular mycorrhizal fungus Rhizophagus intraradices on Senecio bonariensis Hook. & Arn. against heavy metal soil pollution: a pilot-scale test. 两种丛枝菌根真菌Rhizophagus intraradices在Senecio bonariensis Hook. & Arn.上对重金属土壤污染的不同表现:试验规模测试。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-01 Epub Date: 2024-05-13 DOI: 10.1080/15226514.2024.2353389
Roxana P Colombo, Vanesa A Silvani, Matias E Benavidez, Adalgisa Scotti, Alicia M Godeas

Arbuscular mycorrhizal fungi (AMF) have different biological mechanisms to alleviate stressful conditions in heavy metals (HMs) polluted soil. These mechanisms were widely assessed under controlled/greenhouse conditions, but scarcely studied at pilot or territory scale. The aim of this study was to evaluate the response of two Rhizophagus intraradices strains isolated from soils with different histories of pollution, in association with Senecio bonariensis plants, growing in an engineering vegetal depuration module filled with artificially HMs polluted substrate. Plants inoculated with GC3 strain uptook low amounts of HMs and translocated them to shoot biomass. Heavy metals (Mg, Zn, Mn, Cr, Cu and Ni) and macronutrients (Ca, K, S and P) were accumulated in roots of S. bonariensis when inoculated with GB8 strain, limiting their translocation to the shoot. Uninoculated plants showed high translocation of all studied elements to shoot tissues. Concluding, tested R. intraradices strains have exhibited different phytoprotection mechanisms under extremely toxic concentrations of HMs. Moreover, the development of the assay at such a high Technological Readiness Level represents a novel contribution in this field of study.

丛枝菌根真菌(AMF)具有不同的生物机制,可缓解重金属(HMs)污染土壤中的压力条件。这些机制在受控/温室条件下得到了广泛评估,但在试点或地区范围内却鲜有研究。本研究的目的是评估从不同污染历史的土壤中分离出的两种根瘤菌(Rhizophagus intraradices)菌株对生长在充满人工 HMs 污染基质的工程植物净化模块中的 Senecio bonariensis 植物的反应。接种了 GC3 菌株的植物吸收了少量的 HMs,并将其转移到嫩枝生物量中。当接种 GB8 菌株时,重金属(Mg、Zn、Mn、Cr、Cu 和 Ni)和宏量营养元素(Ca、K、S 和 P)在 S. bonariensis 根部积累,限制了它们向嫩枝的转移。未接种的植株表现出所有研究元素向嫩枝组织的高转移率。总之,测试的 R. intraradices 菌株在极高浓度的 HMs 毒性条件下表现出不同的植物保护机制。此外,在如此高的技术就绪水平上开发该检测方法是对该研究领域的新贡献。
{"title":"Different behavior of two strains of the arbuscular mycorrhizal fungus <i>Rhizophagus intraradices</i> on <i>Senecio bonariensis</i> Hook. & Arn. against heavy metal soil pollution: a pilot-scale test.","authors":"Roxana P Colombo, Vanesa A Silvani, Matias E Benavidez, Adalgisa Scotti, Alicia M Godeas","doi":"10.1080/15226514.2024.2353389","DOIUrl":"10.1080/15226514.2024.2353389","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) have different biological mechanisms to alleviate stressful conditions in heavy metals (HMs) polluted soil. These mechanisms were widely assessed under controlled/greenhouse conditions, but scarcely studied at pilot or territory scale. The aim of this study was to evaluate the response of two <i>Rhizophagus intraradices</i> strains isolated from soils with different histories of pollution, in association with <i>Senecio bonariensis</i> plants, growing in an engineering vegetal depuration module filled with artificially HMs polluted substrate. Plants inoculated with GC3 strain uptook low amounts of HMs and translocated them to shoot biomass. Heavy metals (Mg, Zn, Mn, Cr, Cu and Ni) and macronutrients (Ca, K, S and P) were accumulated in roots of <i>S. bonariensis</i> when inoculated with GB8 strain, limiting their translocation to the shoot. Uninoculated plants showed high translocation of all studied elements to shoot tissues. Concluding, tested <i>R. intraradices</i> strains have exhibited different phytoprotection mechanisms under extremely toxic concentrations of HMs. Moreover, the development of the assay at such a high Technological Readiness Level represents a novel contribution in this field of study.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the efficacy of Alhagi maurorum plant powder for Janus Green B dye removal from wastewater. 研究 Alhagi maurorum 植物粉末去除废水中 Janus Green B 染料的功效。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-01 Epub Date: 2024-05-22 DOI: 10.1080/15226514.2024.2354415
Saeideh Kalantari, Mahdi Tazeh

The growth of industrial activities, has led to a significant increase in the influx of color pollutants into the environment. Phytoremediation can play a crucial role in enhancing wastewater quality. Accordingly, this study sought to evaluate the effectiveness of Alhagi maurorum plant powder in removing Janus Green B (JGB) dye from aqueous solutions. The adsorbent's properties were characterized through Fourier-transform infrared spectroscopy. The study examined various parameters, including initial dye concentration (20-110 mg/L), adsorbent dosage (0.002-0.02 g), solution pH (2-10), and contact time (5-50 min). The experiments revealed that the maximum dye removal efficiency, 99.51%, was achieved under optimal conditions: pH 7, a contact time of 20 min, an adsorbent dosage of 0.01 g, and an initial dye concentration of 90 mg/L. The adsorption of JGB onto the adsorbent followed the Langmuir isotherm model, with a maximum adsorption capacity of 90.909 mg/g. The kinetic results supported a pseudo-second-order model for the adsorption process, with an R2 value of 0.9999. The calculated Gibbs free energy changes (ΔG°) at temperatures of 288, 298, 308, 318, and 328 K were found to be -5354.28, -5993.61, -6439.66, -7026.51, and -7932.05 kJ/mol, respectively, indicating the spontaneity of the adsorption process.

工业活动的增长导致涌入环境的有色污染物大幅增加。植物修复在提高废水质量方面可以发挥至关重要的作用。因此,本研究试图评估 Alhagi maurorum 植物粉末去除水溶液中 Janus Green B(JGB)染料的效果。通过傅立叶变换红外光谱法对吸附剂的特性进行了表征。研究考察了各种参数,包括初始染料浓度(20-110 毫克/升)、吸附剂用量(0.002-0.02 克)、溶液 pH 值(2-10)和接触时间(5-50 分钟)。实验结果表明,在 pH 值为 7、接触时间为 20 分钟、吸附剂用量为 0.01 克、初始染料浓度为 90 毫克/升的最佳条件下,染料去除率最高,达到 99.51%。JGB 在吸附剂上的吸附遵循 Langmuir 等温线模型,最大吸附容量为 90.909 mg/g。动力学结果支持吸附过程的伪秒阶模型,R2 值为 0.9999。在温度为 288、298、308、318 和 328 K 时,计算得出的吉布斯自由能变化(ΔG°)分别为 -5354.28、-5993.61、-6439.66、-7026.51 和 -7932.05 kJ/mol,表明吸附过程具有自发性。
{"title":"Investigation of the efficacy of <i>Alhagi maurorum</i> plant powder for Janus Green B dye removal from wastewater.","authors":"Saeideh Kalantari, Mahdi Tazeh","doi":"10.1080/15226514.2024.2354415","DOIUrl":"10.1080/15226514.2024.2354415","url":null,"abstract":"<p><p>The growth of industrial activities, has led to a significant increase in the influx of color pollutants into the environment. Phytoremediation can play a crucial role in enhancing wastewater quality. Accordingly, this study sought to evaluate the effectiveness of <i>Alhagi maurorum</i> plant powder in removing Janus Green B (JGB) dye from aqueous solutions. The adsorbent's properties were characterized through Fourier-transform infrared spectroscopy. The study examined various parameters, including initial dye concentration (20-110 mg/L), adsorbent dosage (0.002-0.02 g), solution pH (2-10), and contact time (5-50 min). The experiments revealed that the maximum dye removal efficiency, 99.51%, was achieved under optimal conditions: pH 7, a contact time of 20 min, an adsorbent dosage of 0.01 g, and an initial dye concentration of 90 mg/L. The adsorption of JGB onto the adsorbent followed the Langmuir isotherm model, with a maximum adsorption capacity of 90.909 mg/g. The kinetic results supported a pseudo-second-order model for the adsorption process, with an <i>R</i><sup>2</sup> value of 0.9999. The calculated Gibbs free energy changes (Δ<i>G</i>°) at temperatures of 288, 298, 308, 318, and 328 K were found to be -5354.28, -5993.61, -6439.66, -7026.51, and -7932.05 kJ/mol, respectively, indicating the spontaneity of the adsorption process.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of agro-wastes derived biochar and their composite on reducing the mobility of toxic heavy metals and their bioavailability in industrial contaminated soils. 农产废料衍生生物炭及其复合材料对降低工业污染土壤中有毒重金属的流动性及其生物利用率的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-01 Epub Date: 2024-06-04 DOI: 10.1080/15226514.2024.2357640
Javed Nawab, Junaid Ghani, Sajid Ullah, Imran Ahmad, Sultan Akbar Jadoon, Shaukat Ali, Emiliya Hamidova, Asim Muhammad, Muhammad Waqas, Zia Ud Din, Sardar Khan, Ajmal Khan, Syed Aziz Ur Rehman, Tehseen Javed, Muhammad Luqman, Zahid Ullah

The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.

农业废弃物衍生的有价值产品是有效管理有毒重金属(THMs)的首选。本研究调查了生物炭(BCs)对固定三卤甲烷(铬、锌、铅、铜、镍和镉)、生物累积和健康风险的功效。在工业污染土壤(ICS)中施用农业废弃物衍生生物炭,包括小麦秸秆生物炭(WSB)、橘皮生物炭(OPB)、稻壳生物炭(RHB)及其复合生物炭(CB),施用量分别为 1%和 3%。所有生物炭都明显降低了生物可利用的三卤甲烷含量,并明显(p p
{"title":"Influence of agro-wastes derived biochar and their composite on reducing the mobility of toxic heavy metals and their bioavailability in industrial contaminated soils.","authors":"Javed Nawab, Junaid Ghani, Sajid Ullah, Imran Ahmad, Sultan Akbar Jadoon, Shaukat Ali, Emiliya Hamidova, Asim Muhammad, Muhammad Waqas, Zia Ud Din, Sardar Khan, Ajmal Khan, Syed Aziz Ur Rehman, Tehseen Javed, Muhammad Luqman, Zahid Ullah","doi":"10.1080/15226514.2024.2357640","DOIUrl":"10.1080/15226514.2024.2357640","url":null,"abstract":"<p><p>The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (<i>p</i> < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (<i>p</i> < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential of Canavalia ensiformis for phytoremediation of B10 biodiesel-contaminated soil: insights on aromatic compound degradation and soil fertility. 探索 Canavalia ensiformis 对受 B10 生物柴油污染的土壤进行植物修复的潜力:对芳香族化合物降解和土壤肥力的见解。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-01 Epub Date: 2024-05-28 DOI: 10.1080/15226514.2024.2357646
Andres Lancheros, Fabio Cajamarca, Carmen Guedes, Osmar Brito, Maria de Fátima Guimarães

The widespread use of petroleum-based fuels poses a significant environmental problem due to the risks associated with accidental spills. Among the treatments available, phytoremediation is increasingly accepted as an effective and low-cost solution. This study aimed to evaluate the degradation of the aromatic fraction of biodiesel B10 and the soil fertility analysis in artificially contaminated soils treated with phytoremediation. The experimental design consisted of a 3x3 factorial, with three types of soil treatment: control, autoclaved, and planted with C. ensiformis L, and three levels of B10 biodiesel contamination: 0, 1, and 2%, to simulate spills of 30,000 and 60,000 L ha-1. The soil was analyzed at three depths: 0-10, 10-20, and 20-30 cm. The results indicated that aromatic compound degradation after phytoremediation was superior to 92,76% and 88,65% for 1% and 2% B10 soil contamination, respectively. The fuel contamination affected soil fertility, reducing the availability of phosphorus and zinc while increasing the Total Organic Carbon (TOC), pH, and the availability of manganese and iron for plants.

由于意外泄漏带来的风险,石油基燃料的广泛使用造成了严重的环境问题。在各种可用的处理方法中,植物修复作为一种有效且低成本的解决方案正被越来越多的人所接受。本研究旨在评估生物柴油 B10 芳烃部分的降解情况,以及经植物修复处理的人工污染土壤的肥力分析。实验设计为 3x3 因式分解,包括三种土壤处理方式:对照、高压灭菌和种植 C. ensiformis L,以及三种 B10 生物柴油污染水平:0%、1% 和 2%:以及三种 B10 生物柴油污染水平:0、1 和 2%,以模拟 30,000 和 60,000 升/公顷的泄漏量。对 0-10、10-20 和 20-30 厘米三个深度的土壤进行了分析。结果表明,在 1% 和 2% 的 B10 土壤污染中,植物修复后的芳香化合物降解率分别为 92.76% 和 88.65%。燃料污染影响了土壤肥力,降低了磷和锌的可用性,同时增加了总有机碳(TOC)、pH 值以及植物对锰和铁的可用性。
{"title":"Exploring the potential of <i>Canavalia ensiformis</i> for phytoremediation of B10 biodiesel-contaminated soil: insights on aromatic compound degradation and soil fertility.","authors":"Andres Lancheros, Fabio Cajamarca, Carmen Guedes, Osmar Brito, Maria de Fátima Guimarães","doi":"10.1080/15226514.2024.2357646","DOIUrl":"10.1080/15226514.2024.2357646","url":null,"abstract":"<p><p>The widespread use of petroleum-based fuels poses a significant environmental problem due to the risks associated with accidental spills. Among the treatments available, phytoremediation is increasingly accepted as an effective and low-cost solution. This study aimed to evaluate the degradation of the aromatic fraction of biodiesel B10 and the soil fertility analysis in artificially contaminated soils treated with phytoremediation. The experimental design consisted of a 3x3 factorial, with three types of soil treatment: control, autoclaved, and planted with <i>C. ensiformis L</i>, and three levels of B10 biodiesel contamination: 0, 1, and 2%, to simulate spills of 30,000 and 60,000 L ha<sup>-1</sup>. The soil was analyzed at three depths: 0-10, 10-20, and 20-30 cm. The results indicated that aromatic compound degradation after phytoremediation was superior to 92,76% and 88,65% for 1% and 2% B10 soil contamination, respectively. The fuel contamination affected soil fertility, reducing the availability of phosphorus and zinc while increasing the Total Organic Carbon (TOC), pH, and the availability of manganese and iron for plants.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies. 以营养保健品工业用芫荽籽为吸附剂对水中的艳绿阳离子染料进行生物修复:吸附等温线、动力学模型和热力学研究。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-27 DOI: 10.1080/15226514.2024.2391949
Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare

The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, qe, was roughly 110 mg g-1. The result has a maximum adsorption of 136.17 mg g-1 as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters ΔG0, ΔH0, and ΔS0 demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of ΔH0 specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.

文章详细介绍了利用低成本的芫荽籽作为营养保健品行业的副产品,通过吸附从水溶液中去除致突变染料亮绿(BG)的可行性研究。这项研究包括对影响吸附过程的参数进行分析。已确定的变量包括 pH 值、染料浓度、加工温度、吸附剂用量和吸附剂粒度。为了获得吸附过程的信息并设计实验平衡吸附系统的机理,应用了 10 种等温线模型,即 Langmuir、Freundlich、Jovanovic、Dubinin-Radushkevich、Sips、Redlich-Peterson、Toth、Vieth-Sladek、Brouers-Sotolongo 和 Radke-Prausnitz。结果发现,实验吸附容量 qe 约为 110 毫克 g-1。根据 Dubinin-Radushkevich 等温线的预测,实验结果的最大吸附量为 136.17 毫克/克。在确定吸附动力学时,使用了扩散膜模型、Dumwald-Wagner 和 Weber-Morris 模型以及伪一阶和二阶模型。结果发现,吸附动力学数据符合伪二阶模型。热力学分析表明这是一个物理过程。热力学参数 ΔG0、ΔH0 和 ΔS0 的值表明这是一个近乎自发的内热吸附过程。ΔH0值较小,说明这一过程是物理过程。傅立叶变换红外光谱和扫描电镜成像证实了 BG 染料在吸附剂表面的吸附。研究得出结论,NICSS 是一种从废水溶液中提取 BG 染料的有效吸附剂,提供了许多染料与吸附剂相互作用的可能性,并表明该过程可以按比例放大,以适应循环经济的概念。
{"title":"Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies.","authors":"Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare","doi":"10.1080/15226514.2024.2391949","DOIUrl":"https://doi.org/10.1080/15226514.2024.2391949","url":null,"abstract":"<p><p>The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, <i>q<sub>e</sub></i>, was roughly 110<b> </b>mg g<sup>-1</sup>. The result has a maximum adsorption of 136.17 mg g<sup>-1</sup> as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ<i>G</i><sup>0</sup>, Δ<i>H</i><sup>0</sup>, and Δ<i>S</i><sup>0</sup> demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ<i>H</i><sup>0</sup> specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of plant growth-promoting endophytic bacteria from hyperaccumulator to non-host plant zinc nutrition and health. 高积累植物的植物生长促进内生菌对非寄主植物锌营养和健康的贡献。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-26 DOI: 10.1080/15226514.2024.2395983
Zhesi Li, Lukuan Huang, Xuan Chen, Qizhen Liu, Yaru Liu, Chanjuan Liu, Chao Yu, Ying Feng

Application of microbial agents is a novel strategy to improve the quality and health of plant, which can be used to increase zinc (Zn) uptake and alleviate Zn toxicity. Here, endophytic bacteria with Zn solubilizing and growth-promoting properties were isolated from hyperaccumulating ecotype (HE) of Sedum alfredii Hance and their effects on Zn absorption and accumulation of non-hyperaccumulating ecotype (NHE) were studied. The results showed that most endophytic bacteria of HE have good Zn solubilizing or growth-promoting properties. Under the condition of 20 μM ZnSO4, the biomass of NHE inoculated with SaPS1, SaEN2, SaPR2, SaBA2, SaBA3 was 2.8-3.2 times higher than that of non-inoculation control, and the Zn concentration of shoots was increased by 45.9, 89.0, 53.7, 77.5, and 42.6% after inoculation with SaPA1, SaP1, SaEN2, SaBA1, and SaBA2. Under the condition of 100 μM ZnSO4, inoculation with SaVA1, SaPS3, SaB1, SaPR1, and SaEN3 alleviated Zn stress and significantly reduced Zn concentration of shoots. Therefore, endophytic bacteria can be an effective means of improving plant Zn nutrition quality in the normal condition and benefit plant health in the stress environment.

应用微生物制剂是改善植物质量和健康的一种新策略,可用于增加锌(Zn)的吸收和减轻锌的毒性。本文从 Sedum alfredii Hance 的高积累生态型(HE)中分离出了具有锌溶解和生长促进特性的内生细菌,并研究了它们对非高积累生态型(NHE)锌吸收和积累的影响。结果表明,HE 的大多数内生细菌都具有良好的锌增溶或生长促进特性。在20 μM ZnSO4条件下,接种SaPS1、SaEN2、SaPR2、SaBA2、SaBA3后,NHE的生物量是未接种对照的2.8-3.2倍,接种SaPA1、SaP1、SaEN2、SaBA1、SaBA2后,芽的锌浓度分别提高了45.9%、89.0%、53.7%、77.5%和42.6%。在 100 μM ZnSO4 条件下,接种 SaVA1、SaPS3、SaB1、SaPR1 和 SaEN3 可缓解锌胁迫并显著降低芽的锌浓度。因此,内生细菌可以有效改善正常条件下植物的锌营养质量,并有利于胁迫环境下的植物健康。
{"title":"Contribution of plant growth-promoting endophytic bacteria from hyperaccumulator to non-host plant zinc nutrition and health.","authors":"Zhesi Li, Lukuan Huang, Xuan Chen, Qizhen Liu, Yaru Liu, Chanjuan Liu, Chao Yu, Ying Feng","doi":"10.1080/15226514.2024.2395983","DOIUrl":"https://doi.org/10.1080/15226514.2024.2395983","url":null,"abstract":"<p><p>Application of microbial agents is a novel strategy to improve the quality and health of plant, which can be used to increase zinc (Zn) uptake and alleviate Zn toxicity. Here, endophytic bacteria with Zn solubilizing and growth-promoting properties were isolated from hyperaccumulating ecotype (HE) of <i>Sedum alfredii</i> Hance and their effects on Zn absorption and accumulation of non-hyperaccumulating ecotype (NHE) were studied. The results showed that most endophytic bacteria of HE have good Zn solubilizing or growth-promoting properties. Under the condition of 20 μM ZnSO<sub>4</sub>, the biomass of NHE inoculated with SaPS1, SaEN2, SaPR2, SaBA2, SaBA3 was 2.8-3.2 times higher than that of non-inoculation control, and the Zn concentration of shoots was increased by 45.9, 89.0, 53.7, 77.5, and 42.6% after inoculation with SaPA1, SaP1, SaEN2, SaBA1, and SaBA2. Under the condition of 100 μM ZnSO<sub>4</sub>, inoculation with SaVA1, SaPS3, SaB1, SaPR1, and SaEN3 alleviated Zn stress and significantly reduced Zn concentration of shoots. Therefore, endophytic bacteria can be an effective means of improving plant Zn nutrition quality in the normal condition and benefit plant health in the stress environment.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass. 四种表面活性剂对红羊茅吸收全氟和多氟烷基物质 (PFAS) 的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-24 DOI: 10.1080/15226514.2024.2394903
Weilan Zhang, Yanna Liang

Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.

全氟烷基和多氟烷基物质(PFAS)对人类健康和生态系统构成巨大风险,因此有必要采取有效的修复策略,如植物修复。表面活性剂能够提高疏水性污染物的生物利用率,因此被认为是改善 PFAS 植物修复的潜在药剂。在这项研究中,我们探讨了四种表面活性剂(十二烷基硫酸钠(SDS)、鼠李糖脂、Triton X-100 和 Glucopone 600 CS UP)在 110 天内对植物生长和红羊茅吸收 PFAS 的影响。结果表明,虽然较低浓度的表面活性剂不会对植物生长产生负面影响,但最高剂量(2,500 毫克/千克)会显著降低植物嫩枝的干重。虽然四种表面活性剂都没有提高红羊茅在 110 天内对∑PFAS 的总体去除效率,但 SDS 确实提高了对碳链长的 PFAS 化合物的吸收。在添加 2,500 毫克/千克 SDS 的情况下,全氟辛酸(PFOA)、全氟壬酸(PFNA)、全氟十二烷酸(PFNA)和全氟辛酸(PFOA)的长链 PFAS 去除率分别平均增加了 1.99 倍、2.44 倍和 2.11 倍。全氟癸酸 (PFDA)为 2.11,全氟十一酸 (PFUnA)为 1.52,全氟己烷磺酸 (PFHxS) 为 1.88,全氟辛烷磺酸 (PFOS) 为 2.97。研究表明,使用适当剂量的 SDS 等表面活性剂可以提高植物修复在减轻长链全氟辛烷磺酸方面的效果,而这正是土壤修复中的一个已知难题。
{"title":"Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass.","authors":"Weilan Zhang, Yanna Liang","doi":"10.1080/15226514.2024.2394903","DOIUrl":"https://doi.org/10.1080/15226514.2024.2394903","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of calcium nanoferrites using leaf extract of Brassica oleracea for photocatalysis of malachite green dye. 利用甘蓝叶提取物绿色合成用于光催化孔雀石绿染料的纳米钙铁。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-24 DOI: 10.1080/15226514.2024.2390188
P Raji, K Balachandra Kumar

The calcium ferrite nanoparticles were made by the sol-gel process. X-ray diffraction, a scanning electron microscope, and UV-vis spectroscopy were used to analyze the material. There is an orthorhombic phase in the space group Pnma. There were four techniques used to calculate the average crystallite size. Using ImageJ software, the particles were aggregated and their size was ascertained. Using energy-dispersive X-ray (EDX) analysis, the composition of the material was ascertained. 2.29 eV was determined to be the band gap. Vibrating test magnetometer (VSM) provided an explanation for the materials' magnetic property. A decreased band gap energy is responsible for the 90% degradation of malachite green dye at a concentration of 15 mg/L in 150 min, with a four-cycle reusability.

钙铁氧体纳米粒子是通过溶胶-凝胶工艺制成的。分析材料时使用了 X 射线衍射、扫描电子显微镜和紫外可见光谱。在空间群 Pnma 中存在正交相。计算平均晶粒大小使用了四种技术。使用 ImageJ 软件聚集颗粒并确定其大小。利用能量色散 X 射线(EDX)分析确定了材料的成分。2.29 eV 被确定为带隙。振动测试磁力计(VSM)为材料的磁性提供了解释。当孔雀石绿染料的浓度为 15 毫克/升时,带隙能降低是其在 150 分钟内降解 90% 的原因,并且可重复使用四次。
{"title":"Green synthesis of calcium nanoferrites using leaf extract of <i>Brassica oleracea</i> for photocatalysis of malachite green dye.","authors":"P Raji, K Balachandra Kumar","doi":"10.1080/15226514.2024.2390188","DOIUrl":"https://doi.org/10.1080/15226514.2024.2390188","url":null,"abstract":"<p><p>The calcium ferrite nanoparticles were made by the sol-gel process. X-ray diffraction, a scanning electron microscope, and UV-vis spectroscopy were used to analyze the material. There is an orthorhombic phase in the space group <i>Pnma</i>. There were four techniques used to calculate the average crystallite size. Using ImageJ software, the particles were aggregated and their size was ascertained. Using energy-dispersive X-ray (EDX) analysis, the composition of the material was ascertained. 2.29 eV was determined to be the band gap. Vibrating test magnetometer (VSM) provided an explanation for the materials' magnetic property. A decreased band gap energy is responsible for the 90% degradation of malachite green dye at a concentration of 15 mg/L in 150 min, with a four-cycle reusability.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Cyclodextrin enhanced bioavailability of petroleum hydrocarbons in industrially contaminated soil: A phytoremediation field study. β-环糊精提高了工业污染土壤中石油碳氢化合物的生物利用率:植物修复实地研究。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-18 DOI: 10.1080/15226514.2024.2389563
Chaoyang Huang, Xiaonuo Zhang, Xintong Li, Hongxia Zhao

Low remediation efficiency due to low bioavailability is a primary restrictive factor for phytoremediation applications. Specifically, this investigation examines whether Suaeda heteroptera Kitagawa (S. heteroptera) can be used in combination with β-cyclodextrin (β-CD) to remediate contaminated site. The study was conducted on the growth response of S. heteroptera, bioavailability and dissipation of petroleum hydrocarbons (PHs) in soil under the influence of β-CD Our preliminary studies confirmed that β-CD is effective in increasing the biomass and height of plants. The presence of β-CD could dramatically elevate polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in S. heteroptera. Moreover, a remarkable positive correlation between PHs levels in roots with the dosage of β-CD and a negative correlation between the PHs levels in roots with KOW of PHs have been observed. The dissipation of n-alkanes was estimated to be 38.73-62.27%, and the dissipation of PAHs was 36.59-60.10%. In addition, the dissipation behavior of n-alkanes and PAHs was well agreement with the first-order kinetic model. These results display that applying β-CD accelerated the desorption process of PHs from soil and promoted the absorption process of PHs onto the root epidermis. The enhancement of phytoremediation was achieved by increasing the bioavailability of PHs.

生物利用率低导致的修复效率低是限制植物修复应用的主要因素。具体而言,本研究探讨了北川缨异翅虫(Suaeda heteroptera Kitagawa,简称 S.heteroptera)是否可与β-环糊精(β-CD)结合用于污染场地的修复。我们的初步研究证实,β-CD 能有效增加植物的生物量和高度。β-CD 的存在可显著提高异翅果中多环芳烃(PAHs)和正烷烃的含量。此外,还观察到根中的 PHs 含量与 β-CD 的用量呈显著的正相关,根中的 PHs 含量与 PHs 的 KOW 呈负相关。据估计,正构烷烃的消散率为 38.73%-62.27%,多环芳烃的消散率为 36.59%-60.10%。此外,正构烷烃和多环芳烃的耗散行为与一阶动力学模型十分吻合。这些结果表明,β-CD 的应用加速了土壤中 PHs 的解吸过程,并促进了根表皮对 PHs 的吸收过程。通过提高 PHs 的生物利用率,实现了植物修复的增强。
{"title":"β-Cyclodextrin enhanced bioavailability of petroleum hydrocarbons in industrially contaminated soil: A phytoremediation field study.","authors":"Chaoyang Huang, Xiaonuo Zhang, Xintong Li, Hongxia Zhao","doi":"10.1080/15226514.2024.2389563","DOIUrl":"https://doi.org/10.1080/15226514.2024.2389563","url":null,"abstract":"<p><p>Low remediation efficiency due to low bioavailability is a primary restrictive factor for phytoremediation applications. Specifically, this investigation examines whether <i>Suaeda heteroptera</i> Kitagawa (<i>S. heteroptera</i>) can be used in combination with β-cyclodextrin (β-CD) to remediate contaminated site. The study was conducted on the growth response of <i>S. heteroptera</i>, bioavailability and dissipation of petroleum hydrocarbons (PHs) in soil under the influence of β-CD Our preliminary studies confirmed that β-CD is effective in increasing the biomass and height of plants. The presence of β-CD could dramatically elevate polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in <i>S. heteroptera</i>. Moreover, a remarkable positive correlation between PHs levels in roots with the dosage of β-CD and a negative correlation between the PHs levels in roots with KOW of PHs have been observed. The dissipation of n-alkanes was estimated to be 38.73-62.27%, and the dissipation of PAHs was 36.59-60.10%. In addition, the dissipation behavior of n-alkanes and PAHs was well agreement with the first-order kinetic model. These results display that applying β-CD accelerated the desorption process of PHs from soil and promoted the absorption process of PHs onto the root epidermis. The enhancement of phytoremediation was achieved by increasing the bioavailability of PHs.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation of crude oil-contaminated soil using Vigna Unguiculata and associated rhizosphere bacteria. 利用 Vigna Unguiculata 和相关根瘤菌对原油污染土壤进行植物修复。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-18 DOI: 10.1080/15226514.2024.2389559
Haruna Yahaya Ismail, Ahmad Ali Farouq, Abdullahi Bako Rabah, Aminu Bayawa Muhammad, Rabiu Umar Aliyu, Aliyu Sarki Baki, Ibrahim Alkali Allamin, Usman Ali Bukar

Persistent crude oil contamination poses a significant environmental challenge. In this study, the efficacy of Vigna unguiculata (L.) and associated rhizospheric microorganisms in remediating crude oil-contaminated soil within a microcosm setting was investigated. A randomized block design was employed, and soil samples were subjected to varying degrees of contamination: 0% (UR), 2.5% (CR2), 5.0% (CR5), 7.5% (CR7), and 10.0% (CR10) w/w crude oil. The investigation aimed to assess the potential of Vigna unguiculata (L.) in mitigating crude oil contamination across these defined contamination gradients. The plant growth and crude oil removal were monitored concurrently post-emergence. Plant emergence and growth were significantly affected due to contamination, especially among plants in CR5 and CR10. The bacterial population was higher in the rhizosphere, and the treatments with lower hydrocarbon contamination. It was shown that plant density encouraged the growth of bacterial communities. Significant reduction in soil TPH was observed in CR2 (76.61%) and CR7 (65.88%). There was a strong correlation between plant growth and oil-utilizing bacterial population (r2 = 0.966) and plant growth and hydrocarbon reduction (r2 = 0.956), signifying the role of plant-bacterial synergy. Saturate fractions (C30 - C32) were significantly degraded to lower molecular weight compounds (C11 - C14). Except in CR5 and CR10, the remediation within the cowpea rhizosphere was effective even at regulatory standards. Understanding the rhizosphere ecological dynamics would further highlight the role the bacteria played; hence, it is recommended.

持续的原油污染对环境构成了重大挑战。本研究调查了 Vigna unguiculata (L.) 和相关根瘤微生物在微生态环境中修复原油污染土壤的功效。采用随机区组设计,土壤样本受到不同程度的污染:0% (UR)、2.5% (CR2)、5.0% (CR5)、7.5% (CR7) 和 10.0% (CR10) w/w 原油。调查旨在评估 Vigna unguiculata (L.) 在这些确定的污染梯度中减轻原油污染的潜力。萌芽后同时监测植物生长和原油去除情况。污染严重影响了植物的出苗和生长,尤其是 CR5 和 CR10 的植物。碳氢化合物污染程度较低的处理中,根瘤层的细菌数量较多。结果表明,植物密度促进了细菌群落的生长。在 CR2(76.61%)和 CR7(65.88%)中观察到土壤中的 TPH 显著减少。植物生长与石油利用细菌数量(r2 = 0.966)和植物生长与碳氢化合物减少量(r2 = 0.956)之间存在很强的相关性,这表明植物与细菌之间存在协同作用。饱和馏分(C30 - C32)被显著降解为低分子量化合物(C11 - C14)。除 CR5 和 CR10 外,豇豆根瘤菌圈内的修复即使达到监管标准也是有效的。对根瘤菌生态动态的了解将进一步突出细菌所发挥的作用,因此建议对其进行研究。
{"title":"Phytoremediation of crude oil-contaminated soil using <i>Vigna Unguiculata</i> and associated rhizosphere bacteria.","authors":"Haruna Yahaya Ismail, Ahmad Ali Farouq, Abdullahi Bako Rabah, Aminu Bayawa Muhammad, Rabiu Umar Aliyu, Aliyu Sarki Baki, Ibrahim Alkali Allamin, Usman Ali Bukar","doi":"10.1080/15226514.2024.2389559","DOIUrl":"https://doi.org/10.1080/15226514.2024.2389559","url":null,"abstract":"<p><p>Persistent crude oil contamination poses a significant environmental challenge. In this study, the efficacy of <i>Vigna unguiculata</i> (L.) and associated rhizospheric microorganisms in remediating crude oil-contaminated soil within a microcosm setting was investigated. A randomized block design was employed, and soil samples were subjected to varying degrees of contamination: 0% (UR), 2.5% (CR2), 5.0% (CR5), 7.5% (CR7), and 10.0% (CR10) w/w crude oil. The investigation aimed to assess the potential of <i>Vigna unguiculata</i> (L.) in mitigating crude oil contamination across these defined contamination gradients. The plant growth and crude oil removal were monitored concurrently post-emergence. Plant emergence and growth were significantly affected due to contamination, especially among plants in CR5 and CR10. The bacterial population was higher in the rhizosphere, and the treatments with lower hydrocarbon contamination. It was shown that plant density encouraged the growth of bacterial communities. Significant reduction in soil TPH was observed in CR2 (76.61%) and CR7 (65.88%). There was a strong correlation between plant growth and oil-utilizing bacterial population (r<sup>2</sup> = 0.966) and plant growth and hydrocarbon reduction (r<sup>2</sup> = 0.956), signifying the role of plant-bacterial synergy. Saturate fractions (C30 - C32) were significantly degraded to lower molecular weight compounds (C11 - C14). Except in CR5 and CR10, the remediation within the cowpea rhizosphere was effective even at regulatory standards. Understanding the rhizosphere ecological dynamics would further highlight the role the bacteria played; hence, it is recommended.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Phytoremediation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1