首页 > 最新文献

International Journal of Phytoremediation最新文献

英文 中文
Lead and cadmium biosorption from contaminated water using Tagetes erecta L. flower waste proven through langmuir and freundlich models. 通过langmuir和freundlich模型验证了万寿菊花废弃物对污水中铅和镉的生物吸附。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-09-17 DOI: 10.1080/15226514.2025.2557624
Priti Chauhan, Ritu Panwar, Sudhakar Srivastava, Jyoti Mathur

The discharge of wastewater containing toxic pollutants, such as lead [Pb(II)] and cadmium [Cd(II)], into water bodies is one of the most critical challenges nowadays. Apart from this, the daily generation of organic waste like vegetable, fruit, and flower waste in cities is increasing constantly. Therefore, a novel approach was adopted in this study that used flower waste (Tagetes erecta L. marigold) for the metal removal from polluted water with a view to manage flower waste and metal contaminants simultaneously. The characterization of prepared waste of T. erecta flowers and its biosorption capacity for Cd and Pb were investigated through various techniques viz., atomic absorption spectrophotometer (AAS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared analysis (FTIR). Experiments for adsorption isotherm were carried out at the room temperature and the performance was determined using Langmuir and Freundlich adsorption models. Equilibrium data was confirmed to follow pseudo second order kinetics. The maximum adsorption capacities of flower waste for Cd(II) and Pb(II) were 52.6 and 21.74 mg g-1, respectively. The study findings indicated that the optimum pH and time for the most effective elimination were pH 6 and 150 min, respectively, for Pb (80%) and Cd (91.8%).

将含铅[Pb(II)]和镉[Cd(II)]等有毒污染物的废水排放到水体中是当今最严峻的挑战之一。除此之外,城市中每天产生的蔬菜、水果、花卉等有机废物也在不断增加。为此,本研究提出了利用万寿菊(Tagetes erecta L. marigold)花卉废弃物去除水中金属的新方法,以期实现花卉废弃物和金属污染物的同时治理。采用原子吸收分光光度计(AAS)、扫描电镜-能量色散x射线能谱(SEM-EDX)和傅里叶变换红外光谱(FTIR)等技术,研究了直立木花制备废弃物的特性及其对Cd和Pb的生物吸附能力。在室温条件下进行等温线吸附实验,采用Langmuir和Freundlich吸附模型测定吸附性能。平衡数据符合准二级动力学。花渣对Cd(II)和Pb(II)的最大吸附量分别为52.6和21.74 mg g-1。研究结果表明,对Pb(80%)和Cd(91.8%)去除效果最佳的pH和时间分别为pH 6和150 min。
{"title":"Lead and cadmium biosorption from contaminated water using <i>Tagetes erecta</i> L. flower waste proven through langmuir and freundlich models.","authors":"Priti Chauhan, Ritu Panwar, Sudhakar Srivastava, Jyoti Mathur","doi":"10.1080/15226514.2025.2557624","DOIUrl":"10.1080/15226514.2025.2557624","url":null,"abstract":"<p><p>The discharge of wastewater containing toxic pollutants, such as lead [Pb(II)] and cadmium [Cd(II)], into water bodies is one of the most critical challenges nowadays. Apart from this, the daily generation of organic waste like vegetable, fruit, and flower waste in cities is increasing constantly. Therefore, a novel approach was adopted in this study that used flower waste (<i>Tagetes erecta</i> L. marigold) for the metal removal from polluted water with a view to manage flower waste and metal contaminants simultaneously. The characterization of prepared waste of <i>T. erecta</i> flowers and its biosorption capacity for Cd and Pb were investigated through various techniques viz., atomic absorption spectrophotometer (AAS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared analysis (FTIR). Experiments for adsorption isotherm were carried out at the room temperature and the performance was determined using Langmuir and Freundlich adsorption models. Equilibrium data was confirmed to follow pseudo second order kinetics. The maximum adsorption capacities of flower waste for Cd(II) and Pb(II) were 52.6 and 21.74 mg g<sup>-1</sup>, respectively. The study findings indicated that the optimum pH and time for the most effective elimination were pH 6 and 150 min, respectively, for Pb (80%) and Cd (91.8%).</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"201-209"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145075223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave assisted phyto-mediated synthesis of tartaric acid infused Citrus paradisi peels for phytofiltration of Rhodamine-B dye from wastewater. 微波辅助植物介导的酒石酸注入柑橘果皮的合成及其对废水中罗丹明- b染料的植物过滤。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-09-24 DOI: 10.1080/15226514.2025.2563138
Sibgha Ayub, Rabia Rehman, Asfa Bajwa, Zeshan Iqbal, Zahrah T Al-Thagafi, Eman A Al-Abbad

This study investigates the potential of Citrus paradisi peel (CP) as biosorbent for the elimination of Rhodamine B (RhD B) from wastewater. The study used FTIR, SEM and EDX to determine the structure of CP. It was shown that 1.4 and 2.0 g were the optimal biosorbent doses for plain and treated peels, respectively. A number of factors were optimized in order to examine the sorbent efficiency for Rhodamine-B dye. Simple and acid-modified biosorbents were employed in batch mode processing to remove hazardous basic dyes such as rhodamine-B. Adsorption equilibrium was achieved within 60 min, and treated grapefruit peels (TTCP) were found to be more effective than untreated grapefruit peels (UCP). Kinetic studies outcomes showed that the pseudo-second-order kinetics form fit more with an R2 of ≥ 0.916 and ≥ 0.932 for UCP and TTCP respectively. The adsorption isotherm of Langmuir was used to describe equilibrium for TTCP, with highest sorption ability of 321.507 µg/g. The study also discovered that 1 M HCl and NaOH may be used to regenerate CP, with recovery rates of RhD B reaching up to 98% and 85%, respectively indicating CP is a potential biosorbent for removing RhD B from aqueous solutions.

研究了柑桔皮(CP)作为生物吸附剂去除废水中罗丹明B (RhD B)的潜力。利用FTIR、SEM和EDX对CP的结构进行了分析,结果表明,1.4 g和2.0 g分别是普通果皮和处理果皮的最佳生物吸附剂量。为了考察罗丹明- b染料的吸附效率,对若干因素进行了优化。采用简单的和酸改性的生物吸附剂进行间歇处理,去除罗丹明- b等有害碱性染料。在60 min内达到吸附平衡,处理后的葡萄柚皮(TTCP)比未处理的葡萄柚皮(UCP)更有效。动力学研究结果表明,UCP和TTCP的拟二级动力学形式更符合,R2分别为≥0.916和≥0.932。采用Langmuir等温线描述TTCP的吸附平衡,最高吸附量为321.507µg/g。研究还发现,1 M HCl和NaOH可再生CP, RhD B的回收率分别可达98%和85%,表明CP是一种潜在的去除水溶液中RhD B的生物吸附剂。
{"title":"Microwave assisted phyto-mediated synthesis of tartaric acid infused <i>Citrus paradisi</i> peels for phytofiltration of Rhodamine-B dye from wastewater.","authors":"Sibgha Ayub, Rabia Rehman, Asfa Bajwa, Zeshan Iqbal, Zahrah T Al-Thagafi, Eman A Al-Abbad","doi":"10.1080/15226514.2025.2563138","DOIUrl":"10.1080/15226514.2025.2563138","url":null,"abstract":"<p><p>This study investigates the potential of <i>Citrus paradisi</i> peel (CP) as biosorbent for the elimination of Rhodamine B (RhD B) from wastewater. The study used FTIR, SEM and EDX to determine the structure of CP. It was shown that 1.4 and 2.0 g were the optimal biosorbent doses for plain and treated peels, respectively. A number of factors were optimized in order to examine the sorbent efficiency for Rhodamine-B dye. Simple and acid-modified biosorbents were employed in batch mode processing to remove hazardous basic dyes such as rhodamine-B. Adsorption equilibrium was achieved within 60 min, and treated grapefruit peels (TTCP) were found to be more effective than untreated grapefruit peels (UCP). Kinetic studies outcomes showed that the pseudo-second-order kinetics form fit more with an R2 of ≥ 0.916 and ≥ 0.932 for UCP and TTCP respectively. The adsorption isotherm of Langmuir was used to describe equilibrium for TTCP, with highest sorption ability of 321.507 µg/g. The study also discovered that 1 M HCl and NaOH may be used to regenerate CP, with recovery rates of RhD B reaching up to 98% and 85%, respectively indicating CP is a potential biosorbent for removing RhD B from aqueous solutions.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"336-351"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145130670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytogenic TiO2-biochar nanocomposite derived from Prunus dulcis for enhanced Rhodamine B removal from aqueous systems. 从李子中提取的植物源性tio2 -生物炭纳米复合材料对罗丹明B的去除效果。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-10-06 DOI: 10.1080/15226514.2025.2566936
James Friday Amaku, Ifeoma Anne Omobhude, Okoche Kelvin Amadi, Tunde Lewis Yusuf, Fanyana M Mtunzi, Jesse Greener

Batch adsorption experiments were carried out to evaluate the removal of Rhodamine B (RhB), a cationic dye, from synthetic wastewater using a multi-walled carbon nanotube/titanium dioxide (MWCNT/TiO2)-modified biochar composite (CBTM), with pristine biochar (CCB) as a reference. The effects of solution pH, contact time, adsorbent dosage, temperature, and initial dye concentration on adsorption performance were systematically investigated. Maximum RhB removal occurred at pH 3, with equilibrium achieved after 180 min. Under these conditions, CBTM exhibited a higher adsorption capacity (31.43 mg·g-1) than CCB (17.31 mg·g-1) at 313 K. Equilibrium data were best described by the Freundlich isotherm, indicating multilayer adsorption on heterogeneous surfaces, while kinetic analysis showed that the pseudo-first-order model provided the most accurate fit, suggesting a physisorption-dominated process. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) confirmed that the adsorption was spontaneous and endothermic. Interestingly, while CBTM demonstrated superior dye removal, antimicrobial assays revealed stronger bacterial inhibition by CCB. These results highlight the potential of CBTM for efficient dye removal and underscore the multifunctional capabilities of biochar-based adsorbents.

以原始生物炭(CCB)为对照,采用多壁碳纳米管/二氧化钛(MWCNT/TiO2)改性生物炭复合材料(CBTM)对合成废水中的阳离子染料罗丹明B (RhB)进行了间歇吸附实验。系统考察了溶液pH、接触时间、吸附剂用量、温度和染料初始浓度对吸附性能的影响。最大的RhB去除发生在pH 3, 180分钟后达到平衡。在此条件下,CBTM在313 K时的吸附量(31.43 mg·g-1)高于CCB (17.31 mg·g-1)。Freundlich等温线最能描述平衡数据,表明在非均质表面上有多层吸附,而动力学分析表明伪一阶模型拟合最准确,表明吸附过程以物理吸附为主。热力学参数(ΔG°,ΔH°,ΔS°)证实吸附是自发的吸热吸附。有趣的是,虽然CBTM表现出优异的染料去除效果,但抗菌试验显示CCB对细菌的抑制作用更强。这些结果突出了CBTM在有效去除染料方面的潜力,并强调了生物炭基吸附剂的多功能能力。
{"title":"Phytogenic TiO<sub>2</sub>-biochar nanocomposite derived from <i>Prunus dulcis</i> for enhanced Rhodamine B removal from aqueous systems.","authors":"James Friday Amaku, Ifeoma Anne Omobhude, Okoche Kelvin Amadi, Tunde Lewis Yusuf, Fanyana M Mtunzi, Jesse Greener","doi":"10.1080/15226514.2025.2566936","DOIUrl":"10.1080/15226514.2025.2566936","url":null,"abstract":"<p><p>Batch adsorption experiments were carried out to evaluate the removal of Rhodamine B (RhB), a cationic dye, from synthetic wastewater using a multi-walled carbon nanotube/titanium dioxide (MWCNT/TiO<sub>2</sub>)-modified biochar composite (CBTM), with pristine biochar (CCB) as a reference. The effects of solution pH, contact time, adsorbent dosage, temperature, and initial dye concentration on adsorption performance were systematically investigated. Maximum RhB removal occurred at pH 3, with equilibrium achieved after 180 min. Under these conditions, CBTM exhibited a higher adsorption capacity (31.43 mg·g<sup>-1</sup>) than CCB (17.31 mg·g<sup>-1</sup>) at 313 K. Equilibrium data were best described by the Freundlich isotherm, indicating multilayer adsorption on heterogeneous surfaces, while kinetic analysis showed that the pseudo-first-order model provided the most accurate fit, suggesting a physisorption-dominated process. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) confirmed that the adsorption was spontaneous and endothermic. Interestingly, while CBTM demonstrated superior dye removal, antimicrobial assays revealed stronger bacterial inhibition by CCB. These results highlight the potential of CBTM for efficient dye removal and underscore the multifunctional capabilities of biochar-based adsorbents.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"399-411"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145232583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness and mechanism of plant purification of nutrients and perfluoroalkyl acids in simulated river water under microplastic stress. 微塑性胁迫下模拟河水中植物净化营养物质和全氟烷基酸的有效性及机理
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-10-21 DOI: 10.1080/15226514.2025.2572316
Yi-Xi Liu, Yi-Li Wang, Guo-Hao Wang, Yu-Cheng Wang, De-Tao Que, Yuan-Yuan Zhou

Pontederia cordata, Canna indica, Myriophyllum verticillatum, and Vallisneria natans were selected to investigate the effect and mechanism of plant removal of total nitrogen (TN), total phosphorus (TP), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) from simulated river water under microplastic stress through hydroponic experiments. The results showed that the four plants had good ability to remove TN, TP, PFOA, and PFOS from simulated river water under microplastic stress. The removal of TN, TP, PFOA, and PFOS by plants under microplastic stress ranged from 57.1% to 80.0%, 48.5% to 67.6%, 42.0% to 68.5%, and 48.0% to 85.3%, respectively. The best removal of TN and TP was achieved by P. cordata with 80.0% and 67.6%, respectively, while PFOA and PFOS were removed by P. cordata at a rate of 42.0% and 48.0%, respectively. M. verticillatum showed the most significant removal of PFOA and PFOS. The uptake of PFOS by plants was better than that of PFOA. Perfluorooctane sulfonate (PFOS) tended to accumulate in plant roots more than PFOA in P. cordata and C. indica. Microplastic stress resulted in a decrease in plant removal of TN, TP, PFOA, and PFOS by 3.9%∼5.3%, 5.4%∼6.9%, 4.9%∼7.2%, and 2.7%∼7.2%, respectively.

采用水培试验,研究了微塑性胁迫下模拟河水中植物对总氮(TN)、总磷(TP)、全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的去除效果及机制。结果表明,4种植物在微塑性胁迫下对模拟河水中TN、TP、PFOA和PFOS具有较好的去除能力。微塑性胁迫下植物对TN、TP、PFOA和PFOS的去除率分别为57.1% ~ 80.0%、48.5% ~ 67.6%、42.0% ~ 68.5%和48.0% ~ 85.3%。对TN和TP的去除率分别为80.0%和67.6%,对PFOA和PFOS的去除率分别为42.0%和48.0%。M. verticillatum对PFOA和PFOS的去除效果最显著。植物对全氟辛烷磺酸的吸收优于对全氟辛烷磺酸的吸收。全氟辛烷磺酸(PFOS)在植物根部的积累倾向于比全氟辛烷磺酸更强。微塑性胁迫导致植物对TN、TP、PFOA和PFOS的去除率分别下降3.9% ~ 5.3%、5.4% ~ 6.9%、4.9% ~ 7.2%和2.7% ~ 7.2%。
{"title":"Effectiveness and mechanism of plant purification of nutrients and perfluoroalkyl acids in simulated river water under microplastic stress.","authors":"Yi-Xi Liu, Yi-Li Wang, Guo-Hao Wang, Yu-Cheng Wang, De-Tao Que, Yuan-Yuan Zhou","doi":"10.1080/15226514.2025.2572316","DOIUrl":"10.1080/15226514.2025.2572316","url":null,"abstract":"<p><p><i>Pontederia cordata</i>, <i>Canna indica</i>, <i>Myriophyllum verticillatum</i>, and <i>Vallisneria natans</i> were selected to investigate the effect and mechanism of plant removal of total nitrogen (TN), total phosphorus (TP), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) from simulated river water under microplastic stress through hydroponic experiments. The results showed that the four plants had good ability to remove TN, TP, PFOA, and PFOS from simulated river water under microplastic stress. The removal of TN, TP, PFOA, and PFOS by plants under microplastic stress ranged from 57.1% to 80.0%, 48.5% to 67.6%, 42.0% to 68.5%, and 48.0% to 85.3%, respectively. The best removal of TN and TP was achieved by <i>P. cordata</i> with 80.0% and 67.6%, respectively, while PFOA and PFOS were removed by <i>P. cordata</i> at a rate of 42.0% and 48.0%, respectively. <i>M. verticillatum</i> showed the most significant removal of PFOA and PFOS. The uptake of PFOS by plants was better than that of PFOA. Perfluorooctane sulfonate (PFOS) tended to accumulate in plant roots more than PFOA in <i>P. cordata</i> and <i>C. indica</i>. Microplastic stress resulted in a decrease in plant removal of TN, TP, PFOA, and PFOS by 3.9%∼5.3%, 5.4%∼6.9%, 4.9%∼7.2%, and 2.7%∼7.2%, respectively.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"493-504"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145336860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate. 吉菲和废侧耳菌基质对柴油污染农业土壤的植物修复、生物刺激和毒性研究。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-08-01 DOI: 10.1080/15226514.2025.2540481
Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz

In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in Vicia faba cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.

在墨西哥,石油泄漏主要是由燃料盗窃引起的。这些事件导致农业土壤退化,对环境、人类健康和受影响地区的经济发展产生不利影响。因此,生物技术去污技术已成为恢复这些地点的一种有希望的解决办法。本研究旨在评价利用石膏和废侧耳菌基质作为生物刺激素修复柴油污染农业土壤的效果。此外,在应用生物净化处理前后,对土壤中存在的污染物造成的潜在遗传和细胞损伤进行了评估。温室试验持续50 d。测定植物形态变量和总石油烃(TPH) (mg/kg),并通过蚕豆细胞有丝分裂指数(%)和微核频率(%)评价土壤毒性。添加了生物刺激素的植物表现出增强的形态特征,而生物修复处理的柴油去除率在29.4% ~ 46.1%之间。然而,在所有治疗中都观察到潜在的基因毒性和细胞毒性作用。
{"title":"Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate.","authors":"Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz","doi":"10.1080/15226514.2025.2540481","DOIUrl":"10.1080/15226514.2025.2540481","url":null,"abstract":"<p><p>In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in <i>Vicia faba</i> cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"28-35"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144759975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sorption of textile azo dyes by Miscanthus × giganteus and characterization of the interaction. 芒草对纺织偶氮染料的吸附及相互作用的表征。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-07-28 DOI: 10.1080/15226514.2025.2538646
Olgica Nedić, Steva M Lević, Gordana Andrejić, Ivana Vukašinović, Dragana Robajac

Miscanthus × giganteus was tested for textile dye removal. Sorption of Direct Blue 78 was achieved slowly by the leaf (63% after 24 h), while sorption of Basic Red 18 was fast by the stem (96% in an hour). Lignocellulose (24.62% in leaf, 41.34% in fresh and 48.05% in old stem) was responsible for the interaction. FTIR spectra and SEM images of native material and with sorbed dye were similar. Negligible quantities of peroxidases (2 μg/g in old stem) pointed to physical forces underlying sorption. pHpzc for stem-BR18 pair was 5.90 and maximum sorption could be achieved in pH interval 4-9. Desorption and repeated sorption defined maximal binding capacity of 20.8 mg BR18/g of stem. BR18 could be desorbed by only 23% with 0.1 M HCl. Small quantities of zinc (0.71-1.13%), copper (0.74-1.43%) and silicon (0.12-0.28%) were detected without significant difference between samples, as well as chlorine (0.24%) in the sample after desorption and in the sample with sorbed 20.8 mg/g BR18. We propose a more thorough investigation of M. × giganteus as a sorbent of a wider pallet of dyes, as it exerts a potential for such purpose.

对芒草进行了纺织染料脱除试验。叶片对直接蓝78的吸附速度较慢(24 h后吸附63%),而茎对碱性红18的吸附速度较快(1 h后吸附96%)。叶片中木质纤维素占24.62%,新鲜茎中占41.34%,老茎中占48.05%。天然材料和吸附染料的FTIR光谱和SEM图像相似。可忽略不计的过氧化物酶含量(老茎中2 μg/g)表明了吸收背后的物理力量。茎- br18对的pHpzc为5.90,在4 ~ 9的pH范围内吸附效果最好。解吸和重复吸附确定茎的最大结合容量为20.8 mg BR18/g。0.1 M HCl对BR18的解吸率仅为23%。在解吸后的样品和吸附20.8 mg/g BR18的样品中检测到少量的锌(0.71-1.13%)、铜(0.74-1.43%)和硅(0.12-0.28%),样品间差异不显著。我们建议对M. x . giganteus作为一种更广泛染料的吸附剂进行更彻底的研究,因为它具有这种目的的潜力。
{"title":"Sorption of textile azo dyes by <i>Miscanthus × giganteus</i> and characterization of the interaction.","authors":"Olgica Nedić, Steva M Lević, Gordana Andrejić, Ivana Vukašinović, Dragana Robajac","doi":"10.1080/15226514.2025.2538646","DOIUrl":"10.1080/15226514.2025.2538646","url":null,"abstract":"<p><p><i>Miscanthus × giganteus</i> was tested for textile dye removal. Sorption of Direct Blue 78 was achieved slowly by the leaf (63% after 24 h), while sorption of Basic Red 18 was fast by the stem (96% in an hour). Lignocellulose (24.62% in leaf, 41.34% in fresh and 48.05% in old stem) was responsible for the interaction. FTIR spectra and SEM images of native material and with sorbed dye were similar. Negligible quantities of peroxidases (2 μg/g in old stem) pointed to physical forces underlying sorption. pHpzc for stem-BR18 pair was 5.90 and maximum sorption could be achieved in pH interval 4-9. Desorption and repeated sorption defined maximal binding capacity of 20.8 mg BR18/g of stem. BR18 could be desorbed by only 23% with 0.1 M HCl. Small quantities of zinc (0.71-1.13%), copper (0.74-1.43%) and silicon (0.12-0.28%) were detected without significant difference between samples, as well as chlorine (0.24%) in the sample after desorption and in the sample with sorbed 20.8 mg/g BR18. We propose a more thorough investigation of <i>M. × giganteus</i> as a sorbent of a wider pallet of dyes, as it exerts a potential for such purpose.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"10-18"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144730867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of proteins in phytoremediation and mycoremediation for heavy metal removal: a focus on protein-based remediation. 蛋白质在植物修复和真菌修复重金属去除中的作用:基于蛋白质的修复的焦点。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-10-15 DOI: 10.1080/15226514.2025.2572308
Santhoshkumar Jayakodi

Heavy metal contamination is a global issue caused by persistent, toxic, and bioaccumulative elements such as cadmium, lead, arsenic, chromium, and mercury. Unlike organic pollutants, these metals resist biodegradation and accumulate in soils, water, and living organisms, creating severe ecological and health risks. Conventional remediation techniques are expensive, energy-intensive, and produce secondary waste, driving the need for sustainable alternatives. Bioremediation, particularly phytoremediation and mycoremediation, has emerged as an eco-friendly and cost-effective strategy. Recent studies highlight the central role of proteins and peptides in these processes. In plants, metal transporters, metallothioneins, phytochelatins, and redox enzymes regulate the uptake, detoxification, and sequestration of metals, while fungi rely on extracellular enzymes, redox-active metabolites, and cell wall proteins for biosorption and transformation. Advances in protein engineering and synthetic biology now enhance the ability of plants and fungi to target and detoxify metals with greater efficiency. The novelty of this review emphasizes the mechanistic contributions of proteins and peptides to bioadsorption, bioaccumulation, and biotransformation, while addressing current challenges related to scalability, environmental variability, and regulatory acceptance. By integrating synthetic biology, nanobiotechnology, and omics-driven protein discovery, we propose design-based frameworks for next-generation remediation that could transform heavy metal cleanup into predictable, programmable, and field-ready technologies.

重金属污染是由镉、铅、砷、铬和汞等持久性、毒性和生物蓄积性元素引起的全球性问题。与有机污染物不同,这些金属不易生物降解,并在土壤、水和生物体中积累,造成严重的生态和健康风险。传统的修复技术是昂贵的,能源密集型的,并产生二次废物,推动需要可持续的替代品。生物修复,特别是植物修复和真菌修复,已经成为一种生态友好和具有成本效益的战略。最近的研究强调了蛋白质和多肽在这些过程中的核心作用。在植物中,金属转运体、金属硫蛋白、植物螯合蛋白和氧化还原酶调节金属的吸收、解毒和封存,而真菌则依赖于细胞外酶、氧化还原活性代谢物和细胞壁蛋白进行生物吸收和转化。蛋白质工程和合成生物学的进步现在增强了植物和真菌以更高效率靶向和解毒金属的能力。这篇综述的新颖之处在于强调了蛋白质和肽对生物吸附、生物积累和生物转化的机制贡献,同时解决了当前与可扩展性、环境可变性和监管接受性相关的挑战。通过整合合成生物学、纳米生物技术和组学驱动的蛋白质发现,我们提出了基于设计的下一代修复框架,可以将重金属清理转化为可预测、可编程和现场准备的技术。
{"title":"Role of proteins in phytoremediation and mycoremediation for heavy metal removal: a focus on protein-based remediation.","authors":"Santhoshkumar Jayakodi","doi":"10.1080/15226514.2025.2572308","DOIUrl":"10.1080/15226514.2025.2572308","url":null,"abstract":"<p><p>Heavy metal contamination is a global issue caused by persistent, toxic, and bioaccumulative elements such as cadmium, lead, arsenic, chromium, and mercury. Unlike organic pollutants, these metals resist biodegradation and accumulate in soils, water, and living organisms, creating severe ecological and health risks. Conventional remediation techniques are expensive, energy-intensive, and produce secondary waste, driving the need for sustainable alternatives. Bioremediation, particularly phytoremediation and mycoremediation, has emerged as an eco-friendly and cost-effective strategy. Recent studies highlight the central role of proteins and peptides in these processes. In plants, metal transporters, metallothioneins, phytochelatins, and redox enzymes regulate the uptake, detoxification, and sequestration of metals, while fungi rely on extracellular enzymes, redox-active metabolites, and cell wall proteins for biosorption and transformation. Advances in protein engineering and synthetic biology now enhance the ability of plants and fungi to target and detoxify metals with greater efficiency. The novelty of this review emphasizes the mechanistic contributions of proteins and peptides to bioadsorption, bioaccumulation, and biotransformation, while addressing current challenges related to scalability, environmental variability, and regulatory acceptance. By integrating synthetic biology, nanobiotechnology, and omics-driven protein discovery, we propose design-based frameworks for next-generation remediation that could transform heavy metal cleanup into predictable, programmable, and field-ready technologies.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"476-492"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145292206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-metabolic breakdown of LDPE microplastics in PGPR-Assisted phytoremediation of hydrocarbon-contaminated soil. LDPE微塑料在pgpr辅助植物修复烃污染土壤中的协同代谢分解。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-10-01 DOI: 10.1080/15226514.2025.2566159
Kwang Mo Yang, Toemthip Poolpak, Patompong Saengwilai, Prayad Pokethitiyook, Maleeya Kruatrachue

A 90-day pot study investigated the effect of low-density polyethylene microplastics (LDPE MPs) on bioaugmented phytoremediation of crude oil-contaminated soil using lemongrass (Cymbopogon flexuosus) and Micrococcus luteus WN01 (PGPR). Plant growth, root morphology, root exudates, microbial population, dehydrogenase activity, residual TPH concentration, and LDPE MP degradation were evaluated. M. luteus significantly increased plant biomass and improved TPH degradation by 79.16% and 64.43%, which were 25.04% and 15.85% higher than uninoculated treatments. M. luteus inoculation still led to higher TPH removal compared to uninoculated treatments despite MP-induced alterations in plant biochemical and morphological traits. GC/MS analysis of lemongrass root exudates showed that M. luteus enriched plants with GABA-associated allelochemicals. FTIR analysis indicated accelerated oxidation of LDPE MPs in planted treatments compared to unplanted ones, evidenced by increased absorbance at characteristic peaks (3620.71 cm-1 O-H stretching, 1651 cm-1 C=O stretching, and 1031.10 cm-1 C-O stretching). This strongly suggests a co-metabolic breakdown of LDPE MPs within the plant rhizosphere (a degradation hotspot). Lemongrass essential oil was not significantly affected by the contaminant or M. luteus. This study highlights the lemongrass-M. luteus association as a promising candidate for the remediation of both petroleum- and MP-contaminated soil, with the added benefit of essential oil production.

通过90天盆栽试验,研究了低密度聚乙烯微塑料(LDPE MPs)对柠檬草(Cymbopogon flexuosus)和木犀微球菌(Micrococcus luteus WN01)对原油污染土壤的生物增强植物修复效果。对植物生长、根系形态、根系分泌物、微生物数量、脱氢酶活性、残余TPH浓度和LDPE MP降解进行了评估。黄黄菌处理显著提高了植物生物量和TPH降解能力,分别提高了79.16%和64.43%,分别比未接种处理高25.04%和15.85%。尽管mp诱导了植物生化和形态性状的改变,但与未接种处理相比,接种黄曲霉仍能导致更高的TPH去除率。GC/MS分析表明,香茅根分泌物富含与gaba相关的化感物质。FTIR分析表明,与未种植处理相比,种植处理加速了LDPE MPs的氧化,特征峰(3620.71 cm-1 O- h拉伸,1651 cm-1 C-O拉伸和1031.10 cm-1 C-O拉伸)的吸光度增加。这强烈表明LDPE MPs在植物根际(降解热点)内的共同代谢分解。香茅精油受污染物和黄体分枝杆菌的影响不显著。这项研究强调了柠檬草。黄豆结合体作为修复石油和mp污染土壤的一个有前途的候选人,具有精油生产的额外好处。
{"title":"Co-metabolic breakdown of LDPE microplastics in PGPR-Assisted phytoremediation of hydrocarbon-contaminated soil.","authors":"Kwang Mo Yang, Toemthip Poolpak, Patompong Saengwilai, Prayad Pokethitiyook, Maleeya Kruatrachue","doi":"10.1080/15226514.2025.2566159","DOIUrl":"10.1080/15226514.2025.2566159","url":null,"abstract":"<p><p>A 90-day pot study investigated the effect of low-density polyethylene microplastics (LDPE MPs) on bioaugmented phytoremediation of crude oil-contaminated soil using lemongrass (<i>Cymbopogon flexuosus</i>) and <i>Micrococcus luteus</i> WN01 (PGPR). Plant growth, root morphology, root exudates, microbial population, dehydrogenase activity, residual TPH concentration, and LDPE MP degradation were evaluated. <i>M. luteus</i> significantly increased plant biomass and improved TPH degradation by 79.16% and 64.43%, which were 25.04% and 15.85% higher than uninoculated treatments. <i>M. luteus</i> inoculation still led to higher TPH removal compared to uninoculated treatments despite MP-induced alterations in plant biochemical and morphological traits. GC/MS analysis of lemongrass root exudates showed that <i>M. luteus</i> enriched plants with GABA-associated allelochemicals. FTIR analysis indicated accelerated oxidation of LDPE MPs in planted treatments compared to unplanted ones, evidenced by increased absorbance at characteristic peaks (3620.71 cm<sup>-1</sup> O-H stretching, 1651 cm<sup>-1</sup> C=O stretching, and 1031.10 cm<sup>-1</sup> C-O stretching). This strongly suggests a co-metabolic breakdown of LDPE MPs within the plant rhizosphere (a degradation hotspot). Lemongrass essential oil was not significantly affected by the contaminant or <i>M. luteus</i>. This study highlights the lemongrass-<i>M. luteus</i> association as a promising candidate for the remediation of both petroleum- and MP-contaminated soil, with the added benefit of essential oil production.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"376-389"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145199347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using Triticum monococcum seed extract. 单粒小麦种子提取物绿色合成氧化锰纳米颗粒的表征、光催化及抗菌抗氧化活性。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-09-09 DOI: 10.1080/15226514.2025.2554166
Şeyda Karabörk, Şennur Merve Yakut, Gamze Doğdu Yücetürk

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using Triticum monococcum (T. monococcum) (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m2/g. Photocatalytic experiments showed significant degradation of Rhodamine B dye, with an efficiency of 98.50% under UV light and the synergistic influence of H2O2. The antimicrobial activity of MnONPs was used through the disk diffusion method to observe the sensitivity of Gram-positive and Gram-negative bacterial strains and MnONPs inhibited the growth of Escherichia coli, and Staphylococcus aureus (MRSA and MSSA) bacteria. Antioxidant evaluations showed that MnONPs exhibited improved total oxidant and antioxidant status compared to T. monococcum extract, suggesting superior mitigation of oxidative stress. These results indicate that MnONPs synthesized via this green method are promising materials for environmental remediation and biomedical applications, particularly in oxidative stress management.

本研究提出了一种以小麦种子提取物为还原剂和稳定剂的绿色合成氧化锰纳米颗粒(MnONPs)的环保方法。通过UV-Vis、XRD、FTIR、SEM-EDX、BET和zeta电位等手段对合成的MnONPs进行了表征,证实了其结晶性质、球形形貌和介孔结构,比表面积为41.50 m2/g。光催化实验表明,在紫外光和H2O2的协同作用下,对罗丹明B染料的降解效率达到98.50%。通过纸片扩散法观察MnONPs对革兰氏阳性和革兰氏阴性菌株的敏感性,MnONPs抑制大肠杆菌、金黄色葡萄球菌(MRSA和MSSA)细菌的生长。抗氧化评价表明,与单球菌提取物相比,MnONPs表现出更好的总氧化和抗氧化状态,表明其具有更好的氧化应激缓解作用。这些结果表明,通过这种绿色方法合成的MnONPs是一种有前景的环境修复和生物医学应用材料,特别是在氧化应激管理方面。
{"title":"Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using <i>Triticum monococcum</i> seed extract.","authors":"Şeyda Karabörk, Şennur Merve Yakut, Gamze Doğdu Yücetürk","doi":"10.1080/15226514.2025.2554166","DOIUrl":"10.1080/15226514.2025.2554166","url":null,"abstract":"<p><p>This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using <i>Triticum monococcum</i> (<i>T. monococcum</i>) (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m<sup>2</sup>/g. Photocatalytic experiments showed significant degradation of Rhodamine B dye, with an efficiency of 98.50% under UV light and the synergistic influence of H<sub>2</sub>O<sub>2</sub>. The antimicrobial activity of MnONPs was used through the disk diffusion method to observe the sensitivity of Gram-positive and Gram-negative bacterial strains and MnONPs inhibited the growth of <i>Escherichia coli</i>, and <i>Staphylococcus aureus</i> (MRSA and MSSA) bacteria. Antioxidant evaluations showed that MnONPs exhibited improved total oxidant and antioxidant status compared to <i>T. monococcum</i> extract, suggesting superior mitigation of oxidative stress. These results indicate that MnONPs synthesized <i>via</i> this green method are promising materials for environmental remediation and biomedical applications, particularly in oxidative stress management.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"123-138"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145023287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applicability of different woody plant species to vertical flow constructed wetland. 不同木本植物种类对垂直流人工湿地的适用性。
IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-01-01 Epub Date: 2025-09-24 DOI: 10.1080/15226514.2025.2563132
Jiali Yue, Ruotong Wang, Yaxin Gu, Jiacheng Gu, Xiaodeng Shi, Hepeng Li, Chunlei Yue

The plant species used in constructed wetlands are mainly aquatic herbaceous, most of which tend to die during winter in subtropical areas. At present, very few studies have examined the performance of woody plants in constructed wetlands. In order to increase plant diversity and improve purification ability of vertical-flow constructed wetland during winter, 10 woody plant species were tested by establishing the microcosms simulating vertical-flow constructed wetlands. Their applicability was integrally evaluated, on basis of their adaptability, rhizospheric enzyme activity, and rhizospheric microbial diversity. The results showed that (1) seven woody plant species, Adina rubella, Salix rosthornii, Callicarpa dichotoma, Nerium oleander, Hibiscus mutabilis, Ligustrum obtusifolium, and Ligustrum lucidum could survive in the simulated vertical-flow constructed wetland; (2) N. oleander and C. dichotoma had higher nitrogen (N) and phosphorous (P) absorption capacity; (3) according to the integral evaluation, N. oleander, C. dichotoma, and S. rosthornii have excellent applicability for vertical-flow constructed wetland; A. rubella and H. mutabilis have moderate applicability; L. obtusifolium and L. lucidum have poor applicability; Ligustrum. japonicum "Howardii", Pittosporum. tobira and Distylium. buxifolium, were not applicable to vertical-flow constructed wetland. N. oleander, C. dichotoma, and S. rosthornii are recommended for application in vertical-flow constructed wetland.

人工湿地的植物种类主要是水生草本植物,在亚热带地区,这些植物在冬季往往会死亡。目前,对人工湿地木本植物生长性能的研究很少。为增加垂直流人工湿地冬季植物多样性,提高垂直流人工湿地的净化能力,通过建立模拟垂直流人工湿地的微观环境,对10种木本植物进行了测试。根据其适应性、根际酶活性和根际微生物多样性综合评价其适用性。结果表明:(1)在垂直流模拟人工湿地中,风笛草、玫瑰柳、金盏花、夹竹桃、木槿、女贞子、女贞子等7种木本植物均能存活;(2)夹竹桃和夹竹桃对氮、磷的吸收能力较强;(3)综合评价结果表明,夹竹桃、夹竹桃和刺桐在垂直流人工湿地中具有较好的适用性;风疹嗜血杆菌和变异嗜血杆菌有中等适用性;烟叶L. obtusifolium和露珠L. lucidum适用性较差;Ligustrum。“华地藤”,皮孢。托比拉和狄狄利翁。垂直流人工湿地中不适宜种植黄叶菊。建议在垂直流人工湿地中应用夹竹桃、夹竹桃和刺桐。
{"title":"Applicability of different woody plant species to vertical flow constructed wetland.","authors":"Jiali Yue, Ruotong Wang, Yaxin Gu, Jiacheng Gu, Xiaodeng Shi, Hepeng Li, Chunlei Yue","doi":"10.1080/15226514.2025.2563132","DOIUrl":"10.1080/15226514.2025.2563132","url":null,"abstract":"<p><p>The plant species used in constructed wetlands are mainly aquatic herbaceous, most of which tend to die during winter in subtropical areas. At present, very few studies have examined the performance of woody plants in constructed wetlands. In order to increase plant diversity and improve purification ability of vertical-flow constructed wetland during winter, 10 woody plant species were tested by establishing the microcosms simulating vertical-flow constructed wetlands. Their applicability was integrally evaluated, on basis of their adaptability, rhizospheric enzyme activity, and rhizospheric microbial diversity. The results showed that (1) seven woody plant species, <i>Adina rubella</i>, <i>Salix rosthornii</i>, <i>Callicarpa dichotoma</i>, <i>Nerium oleander</i>, <i>Hibiscus mutabilis</i>, <i>Ligustrum obtusifolium</i>, and <i>Ligustrum lucidum</i> could survive in the simulated vertical-flow constructed wetland; (2) <i>N. oleander</i> and <i>C. dichotoma</i> had higher nitrogen (N) and phosphorous (P) absorption capacity; (3) according to the integral evaluation, <i>N. oleander</i>, <i>C. dichotoma</i>, and <i>S. rosthornii</i> have excellent applicability for vertical-flow constructed wetland; <i>A. rubella</i> and <i>H. mutabilis</i> have moderate applicability; <i>L. obtusifolium</i> and <i>L. lucidum</i> have poor applicability; <i>Ligustrum. japonicum</i> \"Howardii\", <i>Pittosporum. tobira</i> and <i>Distylium. buxifolium</i>, were not applicable to vertical-flow constructed wetland. <i>N. oleander</i>, <i>C. dichotoma</i>, and <i>S. rosthornii</i> are recommended for application in vertical-flow constructed wetland.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"316-323"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145137424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Phytoremediation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1