首页 > 最新文献

International Journal of Phytoremediation最新文献

英文 中文
Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai. 上海铜、铅和锌污染土壤植物修复中木本物种的快速选择策略。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-11 DOI: 10.1080/15226514.2024.2426772
Qian Zhang, Yanchun Wang, Kankan Shang, Hailan Fang, Guowei Zhang, Werther Guidi Nissim

The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.59 to 27.45 mg·kg-1 for Cu, 2.79 to 16.75 mg·kg-1 for Pb and 22.13 to 185.72 mg·kg-1 for Zn in the stem tissues depending on the species. Pterocarya stenoptera, Paulownia fortunei and Salix matsudana were identified as the top performers in terms of overall phytoextraction capacity. Notably, their capacity to transport zinc exceeded that of copper and lead. The enrichment of copper, lead and zinc in the soil showed a synergistic effect in the presence of heavy metal. The distribution of heavy metals within plant tissues was affected by water content and the inherent toxicity of metals. The study highlights that the accumulation of tree biomass and water content in the stem play a significant role in determining the amount of heavy metals phytoextracted. This insight offers a quick method for the rapid selection of woody species for phytoremediation in urban soils contaminated with heavy metals.

利用木本植物修复重金属污染土壤是一种环保且经济可行的策略。本研究调查了 15 种木本植物对污染土壤中铜、铅和锌的植物萃取能力。结果表明,所有物种都具有植物萃取能力,不同物种茎组织中的金属浓度分别为:铜 5.59 至 27.45 毫克-千克-1、铅 2.79 至 16.75 毫克-千克-1、锌 22.13 至 185.72 毫克-千克-1。紫檀、泡桐和沙柳被认定为植物总体萃取能力最强的植物。值得注意的是,它们运输锌的能力超过了运输铜和铅的能力。土壤中铜、铅和锌的富集显示出重金属存在时的协同效应。重金属在植物组织中的分布受含水量和金属固有毒性的影响。该研究强调,树木生物量的积累和茎干中的含水量在决定重金属植物提取量方面起着重要作用。这一见解为在受重金属污染的城市土壤中快速选择用于植物修复的木本物种提供了一种快速方法。
{"title":"Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai.","authors":"Qian Zhang, Yanchun Wang, Kankan Shang, Hailan Fang, Guowei Zhang, Werther Guidi Nissim","doi":"10.1080/15226514.2024.2426772","DOIUrl":"https://doi.org/10.1080/15226514.2024.2426772","url":null,"abstract":"<p><p>The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.59 to 27.45 mg·kg<sup>-1</sup> for Cu, 2.79 to 16.75 mg·kg<sup>-1</sup> for Pb and 22.13 to 185.72 mg·kg<sup>-1</sup> for Zn in the stem tissues depending on the species. <i>Pterocarya stenoptera</i>, <i>Paulownia fortunei</i> and <i>Salix matsudana</i> were identified as the top performers in terms of overall phytoextraction capacity. Notably, their capacity to transport zinc exceeded that of copper and lead. The enrichment of copper, lead and zinc in the soil showed a synergistic effect in the presence of heavy metal. The distribution of heavy metals within plant tissues was affected by water content and the inherent toxicity of metals. The study highlights that the accumulation of tree biomass and water content in the stem play a significant role in determining the amount of heavy metals phytoextracted. This insight offers a quick method for the rapid selection of woody species for phytoremediation in urban soils contaminated with heavy metals.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the growth and phytoremediation efficacy of Suaeda fruticosa in agricultural soil contaminated by shrimp aquaculture. 探索 Suaeda fruticosa 在受对虾养殖污染的农业土壤中的生长和植物修复功效。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-09 DOI: 10.1080/15226514.2024.2426177
Killivalavan Narayanan, Ravindran Konganapuram Chellappan

Plants face numerous environmental challenges from biotic and abiotic stressors, with soil salinization emerging as a significant global concern. The coastal regions of Tamil Nadu, face severe environmental challenges due to discharge of saline water from shrimp farms exacerbates this issue, compromising the viability of paddy and other crops in the vicinity. This study explores the phytoremediation potential of Suaeda fruticosa in addressing soil salinity resulting from shrimp farming activities under field conditions over a 120-day period to restore soil health in salt affected soil. This research demonstrates Suaeda fruticosa's exceptional salt tolerance and bioaccumulation potential in facilitating soil restoration. Significant enhancements were observed in various growth parameters, including 466% increase in plant height, 338% in fresh weight and 387% in dry weight. Biochemical parameters also showed substantial enhancements with total chlorophyll, protein, proline, phenol, and glycinebetaine levels increasing by 655%, 588%, 690%, 153%, and 531%, respectively. Enzymatic activities exhibited notable elevations as well, with catalase, peroxidase, and polyphenol oxidase activities escalating by 258%, 587%, and 121% respectively, indicating robust adaptation to saline environments. Moreover, Suaeda fruticosa exhibited remarkable bioaccumulation capabilities, accumulating 461 kg NaCl ha-1. This led to substantial improvements in soil characteristics, including a reduction in pH from 8.8 to 6.49, electrical conductivity from 5.7 to 1.53 dSm-1, and sodium adsorption ratio from 16.1 to 4.4 mmol L-1. The successive cultivation of Suaeda fruticosa in this study, has proven to be a viable strategy for reclaiming salt-affected lands, thereby alleviating a significant constraint on crop productivity.

植物面临着来自生物和非生物压力的众多环境挑战,土壤盐碱化已成为全球关注的一个重要问题。泰米尔纳德邦沿海地区面临着严峻的环境挑战,养虾场排放的盐水加剧了这一问题,损害了附近水稻和其他作物的生存能力。本研究探讨了 Suaeda fruticosa 的植物修复潜力,在 120 天的实地条件下解决养虾活动造成的土壤盐碱化问题,恢复受盐碱影响土壤的健康。这项研究证明了 Suaeda fruticosa 在促进土壤恢复方面的卓越耐盐性和生物累积潜力。各种生长参数都有显著提高,包括株高增加 466%,鲜重增加 338%,干重增加 387%。生化参数也有大幅提高,总叶绿素、蛋白质、脯氨酸、酚和甘氨酸甜菜碱水平分别提高了 655%、588%、690%、153% 和 531%。酶活性也有显著提高,过氧化氢酶、过氧化物酶和多酚氧化酶活性分别提高了 258%、587% 和 121%,表明对盐碱环境的适应能力很强。此外,Suaeda fruticosa 还表现出显著的生物累积能力,每公顷可累积 461 千克 NaCl。这大大改善了土壤特性,包括 pH 值从 8.8 降至 6.49,电导率从 5.7 降至 1.53 dSm-1,钠吸附率从 16.1 降至 4.4 mmol L-1。在这项研究中,连续种植 Suaeda fruticosa 被证明是开垦受盐碱影响土地的可行策略,从而减轻了对作物生产力的严重制约。
{"title":"Exploring the growth and phytoremediation efficacy of <i>Suaeda fruticosa</i> in agricultural soil contaminated by shrimp aquaculture.","authors":"Killivalavan Narayanan, Ravindran Konganapuram Chellappan","doi":"10.1080/15226514.2024.2426177","DOIUrl":"https://doi.org/10.1080/15226514.2024.2426177","url":null,"abstract":"<p><p>Plants face numerous environmental challenges from biotic and abiotic stressors, with soil salinization emerging as a significant global concern. The coastal regions of Tamil Nadu, face severe environmental challenges due to discharge of saline water from shrimp farms exacerbates this issue, compromising the viability of paddy and other crops in the vicinity. This study explores the phytoremediation potential of <i>Suaeda fruticosa</i> in addressing soil salinity resulting from shrimp farming activities under field conditions over a 120-day period to restore soil health in salt affected soil. This research demonstrates <i>Suaeda fruticosa's</i> exceptional salt tolerance and bioaccumulation potential in facilitating soil restoration. Significant enhancements were observed in various growth parameters, including 466% increase in plant height, 338% in fresh weight and 387% in dry weight. Biochemical parameters also showed substantial enhancements with total chlorophyll, protein, proline, phenol, and glycinebetaine levels increasing by 655%, 588%, 690%, 153%, and 531%, respectively. Enzymatic activities exhibited notable elevations as well, with catalase, peroxidase, and polyphenol oxidase activities escalating by 258%, 587%, and 121% respectively, indicating robust adaptation to saline environments. Moreover, <i>Suaeda fruticosa</i> exhibited remarkable bioaccumulation capabilities, accumulating 461 kg NaCl ha<sup>-1</sup>. This led to substantial improvements in soil characteristics, including a reduction in pH from 8.8 to 6.49, electrical conductivity from 5.7 to 1.53 dSm<sup>-1</sup>, and sodium adsorption ratio from 16.1 to 4.4 mmol L<sup>-1</sup>. The successive cultivation of <i>Suaeda fruticosa</i> in this study, has proven to be a viable strategy for reclaiming salt-affected lands, thereby alleviating a significant constraint on crop productivity.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-11"},"PeriodicalIF":3.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses of glyoxalase system, ascorbate-glutathione cycle, and antioxidant enzymes in Pontederia cordata to lead stress and its capacity to remove lead. Pontederia cordata 中的乙二醛酶系统、抗坏血酸-谷胱甘肽循环和抗氧化酶对铅胁迫的反应及其除铅能力。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-08 DOI: 10.1080/15226514.2024.2421362
Jianpan Xin, Sisi Ma, Runan Tian

A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of Pontederia cordata with 0 ∼ 15.0 mg L-1 lead ion (Pb2+) exposure. The concentrations of Pb2+ accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L-1 Pb2+ exposure for 28 days, nearly 66.36% of Pb2+ accumulated in the roots, while excess Pb2+ immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L-1 Pb2+ for 28 days significantly increased Pb2+ contents in the leaves. This led to decrease in chlorophyll a, b, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L-1 Pb2+ exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb2+ at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb2+ exposure in the present investigation.

通过水培实验研究了 Pontederia cordata 在 0 ∼ 15.0 mg L-1 铅离子(Pb2+)暴露条件下叶片的膜渗透性、叶绿素含量、抗氧化酶活性、抗坏血酸(AsA)-谷胱甘肽(GSH)循环和乙二醛酶系统的变化。此外,还对植物根、茎和叶中积累的 Pb2+ 浓度进行了评估。暴露 7 天后,植物保持正常生长,抗坏血酸过氧化物酶和脱氢抗坏血酸还原酶活性显著增加。暴露于 5.0 mg L-1 Pb2+ 28 天后,近 66.36% 的 Pb2+ 在根部积累,而叶片中未观察到过量的固定 Pb2+。暴露于 10.0 和 15.0 mg L-1 Pb2+ 28 天会显著增加叶片中的 Pb2+ 含量。这导致叶片中叶绿素 a、b 和类胡萝卜素含量减少,甲基乙二酸含量增加。在 10 毫克/升和 15 毫克/升的 Pb2+ 浓度下,叶片中的 NPT 和 PCs 含量增加。在本研究中,AsA-GSH 循环与乙二醛酶系统在植物抵御 Pb2+ 暴露的过程中并不合作。
{"title":"Responses of glyoxalase system, ascorbate-glutathione cycle, and antioxidant enzymes in <i>Pontederia cordata</i> to lead stress and its capacity to remove lead.","authors":"Jianpan Xin, Sisi Ma, Runan Tian","doi":"10.1080/15226514.2024.2421362","DOIUrl":"https://doi.org/10.1080/15226514.2024.2421362","url":null,"abstract":"<p><p>A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of <i>Pontederia cordata</i> with 0 ∼ 15.0 mg L<sup>-1</sup> lead ion (Pb<sup>2+</sup>) exposure. The concentrations of Pb<sup>2+</sup> accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure for 28 days, nearly 66.36% of Pb<sup>2+</sup> accumulated in the roots, while excess Pb<sup>2+</sup> immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L<sup>-1</sup> Pb<sup>2+</sup> for 28 days significantly increased Pb<sup>2+</sup> contents in the leaves. This led to decrease in chlorophyll <i>a, b</i>, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb<sup>2+</sup> at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb<sup>2+</sup> exposure in the present investigation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperaccumulation of metal in the apoplast contributes to the tolerance of the phytoremediator Pistia stratiotes L. to manganese-contaminated water. 金属在细胞质中的超积累有助于植物修复者 Pistia stratiotes L. 对锰污染水的耐受性。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-07 DOI: 10.1080/15226514.2024.2422462
Daniel G Coelho, Vinicius M Silva, Claudio S Marinato, Pedro H S Neves, Antonio A P Gomes Filho, Fernanda S Farnese, Wagner L Araújo, Juraci A Oliveira

Phytoremediation of manganese (Mn)-contaminated water requires the selection of Mn-tolerant species. This study reports on physiological changes and Mn bioaccumulation in the aquatic macrophyte Pistia stratiotes cultivated under various MnCl2 concentrations: control, 80, 340, 600, 1000, 2000, and 4000 µM. Few visual symptoms of Mn toxicity, such as chlorosis, were observed after 10 days, especially in plants treated with 2000 and 4000 µM MnCl2. High Mn accumulation was recorded, with maximum values of 23,700 and 24,600 µg g-1 DW in the shoots and roots, respectively, at 4000 µM Mn, contrasting with 825.01 and 1587.53 µg g-1 DW in control plants. Cellular fractioning showed that Mn in shoots and roots was mainly associated with the cell wall, with approximately 90% of the Mn in roots detected in the apoplast. There were no significant changes in net CO2 assimilation or respiratory rates after 5 and 10 days of Mn exposure. These results demonstrate that P. stratiotes is a Mn hyperaccumulator species with excellent phytoremediation potential, as shown by its high bioaccumulation capacity and its ability to maintain photosynthetic efficiency under Mn stress.

锰(Mn)污染水体的植物修复需要选择耐锰物种。本研究报告了在不同氯化锰浓度(对照、80、340、600、1000、2000 和 4000 µM)下栽培的水生大型藻类 Pistia stratiotes 的生理变化和锰的生物累积情况。10 天后,几乎观察不到锰中毒的直观症状,如枯萎,尤其是在用 2000 和 4000 µM MnCl2 处理的植物中。在 4000 µM 的锰浓度下,记录到锰的高积累,芽和根的最大值分别为 23,700 和 24,600 µg g-1 DW,而对照植物的最大值分别为 825.01 和 1587.53 µg g-1 DW。细胞分馏结果表明,芽和根中的锰主要与细胞壁有关,根中约 90% 的锰在细胞质中被检测到。锰暴露 5 天和 10 天后,二氧化碳净同化或呼吸速率没有明显变化。这些结果表明,地层锰是一种锰超积累物种,具有很好的植物修复潜力,这体现在它的高生物积累能力以及在锰胁迫下保持光合效率的能力。
{"title":"Hyperaccumulation of metal in the apoplast contributes to the tolerance of the phytoremediator <i>Pistia stratiotes</i> L. to manganese-contaminated water.","authors":"Daniel G Coelho, Vinicius M Silva, Claudio S Marinato, Pedro H S Neves, Antonio A P Gomes Filho, Fernanda S Farnese, Wagner L Araújo, Juraci A Oliveira","doi":"10.1080/15226514.2024.2422462","DOIUrl":"10.1080/15226514.2024.2422462","url":null,"abstract":"<p><p>Phytoremediation of manganese (Mn)-contaminated water requires the selection of Mn-tolerant species. This study reports on physiological changes and Mn bioaccumulation in the aquatic macrophyte <i>Pistia stratiotes</i> cultivated under various MnCl<sub>2</sub> concentrations: control, 80, 340, 600, 1000, 2000, and 4000 µM. Few visual symptoms of Mn toxicity, such as chlorosis, were observed after 10 days, especially in plants treated with 2000 and 4000 µM MnCl<sub>2</sub>. High Mn accumulation was recorded, with maximum values of 23,700 and 24,600 µg g<sup>-1</sup> DW in the shoots and roots, respectively, at 4000 µM Mn, contrasting with 825.01 and 1587.53 µg g<sup>-1</sup> DW in control plants. Cellular fractioning showed that Mn in shoots and roots was mainly associated with the cell wall, with approximately 90% of the Mn in roots detected in the apoplast. There were no significant changes in net CO<sub>2</sub> assimilation or respiratory rates after 5 and 10 days of Mn exposure. These results demonstrate that <i>P. stratiotes</i> is a Mn hyperaccumulator species with excellent phytoremediation potential, as shown by its high bioaccumulation capacity and its ability to maintain photosynthetic efficiency under Mn stress.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ bioaugmented phytoremediation of cadmium and crude oil co-contaminated soil by Ocimum gratissimum in association with PGPR Micrococcus luteus WN01. 欧芹与 PGPR 微球菌黄体 WN01 共同对镉和原油共污染土壤进行原位生物增强植物修复。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-06 DOI: 10.1080/15226514.2024.2415535
Pem Choden, Toemthip Poolpak, Prayad Pokethitiyook, Kwang Mo Yang, Maleeya Kruatrachue

Heavy metals and petroleum oil are the two most important contaminants in the environment. Currently, phytoremediation is regarded as an effective and affordable solution that allows the attenuation of toxic pollutants through the use of plants. Not many studies are carried out regarding the use of aromatic plants capable of remediating soil that is co-contaminated by heavy metal and petroleum hydrocarbons. A pot experiment was conducted to investigate the influence of cadmium-resistant PGPR Micrococcus luteus on the phytoremediation efficiency of Ocimum gratissimum in Cd and petroleum co-contaminated soil. The plants were harvested after 60 days of treatment and their growth and biomass were determined. The accumulation of Cd in plant shoots and roots was determined. The residual petroleum hydrocarbon concentration during the 60 days of the phytoremediation experiment was determined using GC-FID. O. gratissimum with M. luteus showed the highest Cd accumulation (14.05 mg kg-1) and the highest reduction of TPH (46.64%). M. luteus ameliorated contaminant toxicity and promoted biomass production of O. gratissimum. These results demonstrated that O. gratissimum in combination with M. luteus can be efficiently used to remediate Cd and petroleum-co-contaminated soils.

重金属和石油是环境中最重要的两种污染物。目前,植物修复被认为是一种有效且经济实惠的解决方案,可以通过利用植物来衰减有毒污染物。关于利用芳香植物修复受重金属和石油碳氢化合物共同污染的土壤的研究并不多。我们进行了一项盆栽实验,研究抗镉的 PGPR 微球菌(Micrococcus luteus)对受镉和石油共同污染的土壤中的欧柯玛(Ocimum gratissimum)的植物修复效率的影响。处理 60 天后收获植物,测定其生长和生物量。测定了镉在植物芽和根中的积累。在 60 天的植物修复实验中,使用 GC-FID 测定了石油烃的残留浓度。含黄体菌的 O. gratissimum 的镉积累量最高(14.05 mg kg-1),TPH 的减少量最高(46.64%)。黄体霉菌可改善污染物的毒性,并促进 O. gratissimum 的生物量生产。这些结果表明,O. gratissimum 与黄体霉菌结合使用可有效修复镉和石油共污染土壤。
{"title":"<i>In situ</i> bioaugmented phytoremediation of cadmium and crude oil co-contaminated soil by <i>Ocimum gratissimum</i> in association with PGPR <i>Micrococcus luteus</i> WN01.","authors":"Pem Choden, Toemthip Poolpak, Prayad Pokethitiyook, Kwang Mo Yang, Maleeya Kruatrachue","doi":"10.1080/15226514.2024.2415535","DOIUrl":"https://doi.org/10.1080/15226514.2024.2415535","url":null,"abstract":"<p><p>Heavy metals and petroleum oil are the two most important contaminants in the environment. Currently, phytoremediation is regarded as an effective and affordable solution that allows the attenuation of toxic pollutants through the use of plants. Not many studies are carried out regarding the use of aromatic plants capable of remediating soil that is co-contaminated by heavy metal and petroleum hydrocarbons. A pot experiment was conducted to investigate the influence of cadmium-resistant PGPR <i>Micrococcus luteus</i> on the phytoremediation efficiency of <i>Ocimum gratissimum</i> in Cd and petroleum co-contaminated soil. The plants were harvested after 60 days of treatment and their growth and biomass were determined. The accumulation of Cd in plant shoots and roots was determined. The residual petroleum hydrocarbon concentration during the 60 days of the phytoremediation experiment was determined using GC-FID. <i>O. gratissimum</i> with <i>M. luteus</i> showed the highest Cd accumulation (14.05 mg kg<sup>-1</sup>) and the highest reduction of TPH (46.64%). <i>M. luteus</i> ameliorated contaminant toxicity and promoted biomass production of <i>O. gratissimum</i>. These results demonstrated that <i>O. gratissimum</i> in combination with <i>M. luteus</i> can be efficiently used to remediate Cd and petroleum-co-contaminated soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elicitors fortifies the plant resilience against metal and metalloid stress. 诱导剂可增强植物抵御金属和类金属胁迫的能力。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-03 DOI: 10.1080/15226514.2024.2420328
Parammal Faseela, Mathew Veena, Akhila Sen, K S Anjitha, K P Raj Aswathi, Palliyath Sruthi, Jos T Puthur

This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.

本综述探讨植物与 HMs 的相互作用,强调防御机制以及螯合剂、抗氧化剂和各种激发分子在减轻植物体内金属毒性方面的作用。为了应对土壤中的 HMs 污染,使用天然或合成氨基多羧酸进行螯合剂辅助植物萃取是一种有效的策略。植物还利用多种信号通路,包括激素、钙、活性氧、一氧化氮和影响基因表达和防御机制的丝裂原活化蛋白激酶来对抗 HM 压力。当植物受到 HM 胁迫时,植物激素会增强植物的酶和非酶抗氧化防御机制,并提高次生代谢物的水平。它还能激活负责 DNA 修复机制的基因。此外,植物激素还能调节几种 HMs 转运体的活性,从而阻止它们进入细胞。诱导剂分子可调节植物对金属和类金属的吸收、螯合和运输。茉莉酸、钙、水杨酸等不同诱导剂的组合能有效缓解植物的金属和类金属胁迫。此外,包括细菌和真菌在内的微生物为 HM 修复提供了生态友好和高效的解决方案。了解这些诱导剂、微生物和各种信号通路,对于制定提高植物对金属和类金属胁迫的抗逆性的策略至关重要。
{"title":"Elicitors fortifies the plant resilience against metal and metalloid stress.","authors":"Parammal Faseela, Mathew Veena, Akhila Sen, K S Anjitha, K P Raj Aswathi, Palliyath Sruthi, Jos T Puthur","doi":"10.1080/15226514.2024.2420328","DOIUrl":"https://doi.org/10.1080/15226514.2024.2420328","url":null,"abstract":"<p><p>This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-18"},"PeriodicalIF":3.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the optimal ratio of improved electrolytic manganese residue substrate about Pennisetum sinese Roxb growth effects. 关于改良电解锰渣基质对 Pennisetum sinese Roxb 生长影响的最佳配比研究
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 Epub Date: 2024-07-24 DOI: 10.1080/15226514.2024.2379610
Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu

Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn2+, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for Pennisetum sinese Roxb growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% Hericium erinaceus fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g-1) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of Pennisetum sinese Roxb increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g-1) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g-1) was lowest. Our study suggested P. sinese Roxb grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.

电解锰渣(EMR)是锰湿法冶金过程中产生的一种固体废物。它不仅占用大量土地空间,还含有 Mn2+,可能导致环境污染。有必要对 EMR 的处理和利用进行研究。在盆栽实验中确定了适合 Pennisetum sinese Roxb 生长的改良 EMR 基质。该研究测试了浸出液、微生物、叶细胞结构和生长数据的影响。结果表明,与纯土壤相比,45% EMR、40% 磷石膏、5% Hericium erinaceus 真菌残留物、5% 生石灰和 5%白云石砂组成的基质可显著提高可用磷含量(135.54 ± 2.88 μg-g-1)17.95 倍,并提高优势菌的相对丰度。240 天后,Pennisetum sinese Roxb 的株高(147.00 ± 0.52 厘米)、分蘖数(6)和气干重(144.00 ± 15.99 克)分别增加了 5.81%、200% 和 32.58%。叶片和浸出液分析表明,叶片锰含量最高(46.84 ± 2.91 μg-g-1),是纯土壤的 3.38 倍,浸出液锰含量最低(0.66 ± 0.13 μg-g-1)。我们的研究表明,在改良的 EMR 基质中生长的 P. sinese Roxb 是固化处理和资源化利用 EMR 的可行选择。
{"title":"Research on the optimal ratio of improved electrolytic manganese residue substrate about <i>Pennisetum sinese Roxb</i> growth effects.","authors":"Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu","doi":"10.1080/15226514.2024.2379610","DOIUrl":"10.1080/15226514.2024.2379610","url":null,"abstract":"<p><p>Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn<sup>2+</sup>, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for <i>Pennisetum sinese Roxb</i> growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% <i>Hericium erinaceus</i> fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g<sup>-1</sup>) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of <i>Pennisetum sinese Roxb</i> increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g<sup>-1</sup>) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g<sup>-1</sup>) was lowest. Our study suggested <i>P. sinese Roxb</i> grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2206-2215"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pontederia crassipes utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach. 在中水处理中利用 Pontederia crassipes 进行双重植物修复和吸附:一种技术经济和可持续的方法。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 Epub Date: 2024-07-05 DOI: 10.1080/15226514.2024.2374887
Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr

While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.

虽然植物修复技术已被广泛用于中水处理,但这一系统会通过部分处理后的污水和/或枯竭植物的处置将大量表面活性剂转移到水生环境中。因此,本研究重点关注中水植物修复,然后回收利用废植物制备用作后处理的吸附材料。在温度 23 °C、相对湿度 60%、植物密度(5-30 克/升)、稀释度(0-50%)、pH 值(4-10)和保留时间(3-15 天)条件下,使用十字花科植物运行植物修复装置。最佳条件是密度为 12.7 克/升、稀释度为 34.0%、pH 值为 8.4、停留时间为 13 天,化学需氧量(COD)、表面活性剂和 NH4-N 的去除率分别为 94.62%、90.45% 和 88.09%。然后,在 550 °C 和 40 分钟的热处理条件下对枯竭的植物进行热处理,以获得生物炭,用作处理植物修复废水的吸附剂。最佳的吸附过程是生物炭用量为 1.51 克/升,pH 值为 2.1,时间为 137 分钟,表面活性剂去除率为 92.56%。该植物修复/吸附组合工艺的最终排放物中含有 8.30 mg/L COD、0.23 mg/L 表面活性剂和 0.94 mg/L NH4+-N。有趣的是,这种方法在经济上是可行的,投资回收期为 6.5 年,净现值为 14 美元,内部收益率为 8.6%。
{"title":"<i>Pontederia crassipes</i> utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach.","authors":"Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr","doi":"10.1080/15226514.2024.2374887","DOIUrl":"10.1080/15226514.2024.2374887","url":null,"abstract":"<p><p>While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. <i>P. crassipes</i> was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH<sub>4</sub>-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH<sub>4</sub><sup>+</sup>-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2113-2126"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of monocultures and polycultures of Typha latifolia and Heliconia psittacorum on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands. 在部分饱和的垂直建造湿地中,单株和多株栽培晚香玉(Typha latifolia)和鹤望兰(Heliconia psittacorum)对处理受垃圾填埋场渗滤液/生活废水污染的河水的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 Epub Date: 2024-07-11 DOI: 10.1080/15226514.2024.2379007
Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.

部分饱和垂直建造湿地(PSV-CWs)是一种新型废水处理系统,通过好氧和厌氧条件,有利于去除高浓度污染物,如受生活废水和垃圾填埋场沥滤液污染的河流。这项研究的目的是评估 PSV-CWs 的效率,即使用单株和多株栽培的晚香玉(Typha latifolia)和鹤望兰(Heliconia psittacorum)处理受露天垃圾场沥滤液和生活废水污染的河水。共使用了 6 个 PSV-CW 试验单元,其中两个单元种植了单一栽培的香蒲,两个单元种植了单一栽培的鹤望兰,两个单元种植了两种植物的复种栽培。结果表明,有机物和氮的去除率较高(p 5:83%,COD:89%,TN:82%,NH4+:99%)。总体而言,整个系统的平均去除率较高(TSS:93%、BOD5:79%、COD:85%、TN:79%、NH4+:98% 和 TP:85%)。在植被方面,两种植物在单一种植区都有较好的发展,其中花叶香蒲的发展更为显著。不过,两种植物对污染环境的抵抗力都很强。这些结果表明,与文献报道的传统自由流垂直建造湿地(FFV-CWs)相比,PSV-CWs 的去除率更高,因此 PSV-CWs 可以成为处理这类污水的合适选择。
{"title":"Effect of monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands.","authors":"Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo","doi":"10.1080/15226514.2024.2379007","DOIUrl":"10.1080/15226514.2024.2379007","url":null,"abstract":"<p><p>Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with <i>Typha latifolia</i> monoculture, two with <i>Heliconia psittacorum</i> monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (<i>p</i> < 0.05) in systems with polycultures (TSS:95%, BOD<sub>5</sub>:83%, COD:89%, TN:82% and NH<sub>4+</sub>:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD<sub>5</sub>:79%, COD:85%, TN:79%, NH<sub>4+</sub>:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being <i>Typha latifolia</i> the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2163-2174"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil amendment-assisted phytoremediation with ryegrass offers a promising approach to mitigate environmental health concerns. 利用黑麦草进行土壤改良辅助植物修复,为缓解环境健康问题提供了一种前景广阔的方法。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI: 10.1080/15226514.2024.2380039
Albert Kobina Mensah

This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.

本研究旨在考察利用黑麦草进行土壤改良剂辅助植物修复在加纳西南部废弃金矿土壤改良中的潜力,特别关注与金属和类金属相关的土壤污染危害。为评估堆肥、氧化铁和家禽粪便等土壤改良剂在减轻环境危害方面的功效,进行了为期 60 天的盆栽实验。采用三种土壤污染指数(土壤污染指数 = CF、富集因子 = ER 和污染负荷指数 = PLI)来计算钴、汞、镍、钼、硒、锑和铅对土壤的污染、富集和污染程度。结果表明,汞对整个 PLI 的贡献最大(土壤 CF 最大值为 18.0),最大值为 74.4。这些地点有毒元素的平均富集程度依次递减:镍(ER = 33.3)>钼(20.5)>锑(14.1)>铅(11.0)>汞(7.9)>硒(2.1)。生物累积系数(BCF > 1)表明,黑麦草具有植物稳定钴、汞、钼和镍的能力。这意味着黑麦草可以将这些元素储存在根部,从而减少它们对环境和人类健康的负面影响。最终,添加了氧化铁的混合肥料可能会增加这些金属在根部的螯合作用。这些元素可能是通过粪肥或铁表面的吸附作用、盆栽植物浇水时的溶解作用或有机粪肥的矿化作用积累起来的。因此,在粪肥和氧化铁的共同作用下,黑麦草具有植物稳定钴、汞、钼和镍的潜力,从而减轻对环境和人类健康的影响。
{"title":"Soil amendment-assisted phytoremediation with ryegrass offers a promising approach to mitigate environmental health concerns.","authors":"Albert Kobina Mensah","doi":"10.1080/15226514.2024.2380039","DOIUrl":"10.1080/15226514.2024.2380039","url":null,"abstract":"<p><p>This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2216-2233"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Phytoremediation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1