Pub Date : 2018-11-07DOI: 10.1007/s10158-018-0219-1
M M Kudelska, A Lewis, C T Ng, D A Doyle, L Holden-Dye, V M O'Connor, R J Walker
Caenorhabditis elegans is an informative model to study the neural basis of feeding. A useful paradigm is one in which adult nematodes feed on a bacterial lawn which has been pre-loaded with pharmacological agents and the effect on pharyngeal pumping rate scored. A crucial aspect of this assay is the availability of good quality bacteria to stimulate pumping to maximal levels. A potential confound is the possibility that the pharmacological agent impacts bacterial viability and indirectly influences feeding rate. Here, the actions of nicotine on pharyngeal pumping of C. elegans and on the Escherichia coli bacterial food source were investigated. Nicotine caused an immediate and concentration-dependent inhibition of C. elegans pharyngeal pumping, IC50 4 mM (95% CI = 3.4 mM to 4.8 mM). At concentrations between 5 and 25 mM, nicotine also affected the growth and viability of E. coli lawns. To test whether this food depletion by nicotine caused the reduced pumping, we modified the experimental paradigm. We investigated pharyngeal pumping stimulated by 10 mM 5-HT, a food 'mimic', before testing if nicotine still inhibited this behaviour. The IC50 for nicotine in these assays was 2.9 mM (95% CI = 3.1 mM to 5.1 mM) indicating the depletion of food lawn does not underpin the potency of nicotine at inhibiting feeding. These studies show that the inhibitory effect of nicotine on C. elegans pharyngeal pumping is mediated by a direct effect rather than by its poorly reported bactericidal actions.
秀丽隐杆线虫是研究取食神经基础的信息模型。一个有用的范例是,成年线虫在细菌草坪上进食,细菌草坪已经预先装载了药理学制剂,并对咽泵速率的影响进行了评分。该试验的一个关键方面是优质细菌的可用性,以刺激泵到最大水平。潜在的混淆是药理学制剂可能影响细菌活力并间接影响摄食率。本文研究了尼古丁对秀丽隐杆线虫咽泵和大肠杆菌食物源的影响。尼古丁对秀丽隐杆线虫咽泵产生立即且浓度依赖性的抑制,IC50为4 mM (95% CI = 3.4 mM至4.8 mM)。在浓度为5 ~ 25 mM时,尼古丁对大肠杆菌草坪的生长和活力也有影响。为了检验尼古丁消耗食物是否导致抽吸减少,我们修改了实验范式。在测试尼古丁是否仍然抑制这种行为之前,我们研究了由10毫米5-HT(一种食物“模拟物”)刺激的咽泵。这些试验中尼古丁的IC50值为2.9 mM (95% CI = 3.1 mM至5.1 mM),表明食物草坪的消耗并不支持尼古丁抑制摄食的效力。这些研究表明,尼古丁对秀丽隐杆线虫咽泵的抑制作用是通过直接作用介导的,而不是通过其鲜为人知的杀菌作用介导的。
{"title":"Investigation of feeding behaviour in C. elegans reveals distinct pharmacological and antibacterial effects of nicotine.","authors":"M M Kudelska, A Lewis, C T Ng, D A Doyle, L Holden-Dye, V M O'Connor, R J Walker","doi":"10.1007/s10158-018-0219-1","DOIUrl":"https://doi.org/10.1007/s10158-018-0219-1","url":null,"abstract":"<p><p>Caenorhabditis elegans is an informative model to study the neural basis of feeding. A useful paradigm is one in which adult nematodes feed on a bacterial lawn which has been pre-loaded with pharmacological agents and the effect on pharyngeal pumping rate scored. A crucial aspect of this assay is the availability of good quality bacteria to stimulate pumping to maximal levels. A potential confound is the possibility that the pharmacological agent impacts bacterial viability and indirectly influences feeding rate. Here, the actions of nicotine on pharyngeal pumping of C. elegans and on the Escherichia coli bacterial food source were investigated. Nicotine caused an immediate and concentration-dependent inhibition of C. elegans pharyngeal pumping, IC<sub>50</sub> 4 mM (95% CI = 3.4 mM to 4.8 mM). At concentrations between 5 and 25 mM, nicotine also affected the growth and viability of E. coli lawns. To test whether this food depletion by nicotine caused the reduced pumping, we modified the experimental paradigm. We investigated pharyngeal pumping stimulated by 10 mM 5-HT, a food 'mimic', before testing if nicotine still inhibited this behaviour. The IC<sub>50</sub> for nicotine in these assays was 2.9 mM (95% CI = 3.1 mM to 5.1 mM) indicating the depletion of food lawn does not underpin the potency of nicotine at inhibiting feeding. These studies show that the inhibitory effect of nicotine on C. elegans pharyngeal pumping is mediated by a direct effect rather than by its poorly reported bactericidal actions.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 4","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0219-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36704272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pulmonate gastropods provide unique opportunities to examine physiological and biochemical adaptation strategies when cellular metabolic activity is reduced. In this study, cytochemical changes in metacerebral neurons of the cerebral ganglia were investigated in the garden snail Cornu aspersum during the hibernation phase. The immunocytochemical expression of three cytoskeletal markers: microtubule-associate protein 2-like (MAP-2-li), phosphorylated form of tau-like (P-Tau-li) and heavy subunit of neurofilaments-like (NF-H-li), and of two calcium-binding proteins: calmodulin-like (CaM-li) and parvalbumin-like (PV-li) was compared in active and hibernated snails. The immunopositivity for all the markers increased during hibernation versus activity in metacerebral neurons, with the notable exception of PV-li, which remained highly expressed during the whole annual cycle. Strongly positive aggregates of MAP-2-li and P-Tau-li were detected in the somata of hibernated snail neurons. P-Tau-li aggregates co-localized with CaM-li-labelled masses during hibernation. In addition, increased labelling of NF-H-li epitopes was associated with enhancement of CaM immunopositivity. These changes may reflect neural plasticity mechanisms mainly mediated by microtubule-associated proteins and CaM. Moreover, neuroprotective strategies may allow neurons to endure the prolonged hypometabolic conditions, taking into account that many of the functions controlled by the metacerebrum, such as feeding and movement, are suspended during hibernation. In this context, the molluscan ganglia model offers an easy opportunity to understand the molecular mechanisms behind these life cycle changes in cell physiology and to investigate possible cytological similarities among distantly related animals that adapt to the same environmental challenges through hibernation.
{"title":"Hibernation induces changes in the metacerebral neurons of Cornu aspersum: distribution and co-localization of cytoskeletal and calcium-binding proteins.","authors":"Giacomo Gattoni, Violetta Insolia, Graziella Bernocchi","doi":"10.1007/s10158-018-0217-3","DOIUrl":"https://doi.org/10.1007/s10158-018-0217-3","url":null,"abstract":"<p><p>Pulmonate gastropods provide unique opportunities to examine physiological and biochemical adaptation strategies when cellular metabolic activity is reduced. In this study, cytochemical changes in metacerebral neurons of the cerebral ganglia were investigated in the garden snail Cornu aspersum during the hibernation phase. The immunocytochemical expression of three cytoskeletal markers: microtubule-associate protein 2-like (MAP-2-li), phosphorylated form of tau-like (P-Tau-li) and heavy subunit of neurofilaments-like (NF-H-li), and of two calcium-binding proteins: calmodulin-like (CaM-li) and parvalbumin-like (PV-li) was compared in active and hibernated snails. The immunopositivity for all the markers increased during hibernation versus activity in metacerebral neurons, with the notable exception of PV-li, which remained highly expressed during the whole annual cycle. Strongly positive aggregates of MAP-2-li and P-Tau-li were detected in the somata of hibernated snail neurons. P-Tau-li aggregates co-localized with CaM-li-labelled masses during hibernation. In addition, increased labelling of NF-H-li epitopes was associated with enhancement of CaM immunopositivity. These changes may reflect neural plasticity mechanisms mainly mediated by microtubule-associated proteins and CaM. Moreover, neuroprotective strategies may allow neurons to endure the prolonged hypometabolic conditions, taking into account that many of the functions controlled by the metacerebrum, such as feeding and movement, are suspended during hibernation. In this context, the molluscan ganglia model offers an easy opportunity to understand the molecular mechanisms behind these life cycle changes in cell physiology and to investigate possible cytological similarities among distantly related animals that adapt to the same environmental challenges through hibernation.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 4","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0217-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36596035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-01DOI: 10.1007/s10158-018-0216-4
Andrew E Christie, Meredith E Stanhope, Helen I Gandler, Tess J Lameyer, Micah G Pascual, Devlin N Shea, Andy Yu, Patsy S Dickinson, J Joe Hull
The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.
{"title":"Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus.","authors":"Andrew E Christie, Meredith E Stanhope, Helen I Gandler, Tess J Lameyer, Micah G Pascual, Devlin N Shea, Andy Yu, Patsy S Dickinson, J Joe Hull","doi":"10.1007/s10158-018-0216-4","DOIUrl":"https://doi.org/10.1007/s10158-018-0216-4","url":null,"abstract":"<p><p>The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 4","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0216-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36588983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-31DOI: 10.1007/s10158-018-0215-5
Yu Li, Huien Li, Zhigang Wang, Danyang Gao, Kun Xiao, Aihua Yan
Anoplophora glabripennis (Motschulsky) has an advanced and complicated olfactory system to identify hosts, mates and spawning locations, and odorant-binding proteins (OBPs) play a key role by binding to volatile materials from different hosts. The full-length cDNA sequence of an OBP, AglaOBP, was cloned by RACE from an antenna cDNA library, and the protein structure and function were predicted by bioinformatics analysis. Gene temporal and spatial expression was detected by real-time qPCR. AglaOBP had distinctive sequence, location and expression profiles compared with other OBPs of A. glabripennis, as it was found in different tissues, and the highest expression was in the elytrums. The possible physiological functions of this OBP were discussed. These findings help elucidate the physiology of this pest and provide a new potential target for pest control.
{"title":"Cloning, localization and bioinformatics analysis of a gene encoding an odorant-binding protein (OBP) in Anoplophora glabripennis (Motschulsky).","authors":"Yu Li, Huien Li, Zhigang Wang, Danyang Gao, Kun Xiao, Aihua Yan","doi":"10.1007/s10158-018-0215-5","DOIUrl":"https://doi.org/10.1007/s10158-018-0215-5","url":null,"abstract":"<p><p>Anoplophora glabripennis (Motschulsky) has an advanced and complicated olfactory system to identify hosts, mates and spawning locations, and odorant-binding proteins (OBPs) play a key role by binding to volatile materials from different hosts. The full-length cDNA sequence of an OBP, AglaOBP, was cloned by RACE from an antenna cDNA library, and the protein structure and function were predicted by bioinformatics analysis. Gene temporal and spatial expression was detected by real-time qPCR. AglaOBP had distinctive sequence, location and expression profiles compared with other OBPs of A. glabripennis, as it was found in different tissues, and the highest expression was in the elytrums. The possible physiological functions of this OBP were discussed. These findings help elucidate the physiology of this pest and provide a new potential target for pest control.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 3","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0215-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36452917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-20DOI: 10.1007/s10158-018-0214-6
Kee-Chan Ahn, Glen B Baker, Won-Cheoul Jang, Hyeon-Cheol Cha, Myung Jin Moon, Mee-Sook Song
Neurite outgrowth is a morphological marker of neuronal differentiation and neuroregeneration, and the process includes four essential phases, namely initiation, elongation, guidance and cessation. Intrinsic and extrinsic signaling molecules seem to involve morphological changes of neurite outgrowth via various cellular signaling cascades phase transition. Although mechanisms associated with neurite outgrowth have been studied extensively, little is known about how phase transition is regulated during neurite outgrowth. 5-HT has long been studied with regard to its relationship to neurite outgrowth in invertebrate and vertebrate culture systems, and many studies have suggested 5-HT inhibits neurite elongation and growth cone motility, in particular, at the growing parts of neurite such as growth cones and filopodia. However, the underlying mechanisms need to be investigated. In this study, we investigated roles of 5-HT on neurite outgrowth using single serotonergic neurons C1 isolated from Helisoma trivolvis. We observed that 5-HT delayed phase transitions from initiation to elongation of neurite outgrowth. This study for the first time demonstrated that 5-HT has a critical role in phase-controlling mechanisms of neurite outgrowth in neuronal cell cultures.
{"title":"Roles of 5-HT on phase transition of neurite outgrowth in the identified serotoninergic neuron C1, Helisoma trivolvis.","authors":"Kee-Chan Ahn, Glen B Baker, Won-Cheoul Jang, Hyeon-Cheol Cha, Myung Jin Moon, Mee-Sook Song","doi":"10.1007/s10158-018-0214-6","DOIUrl":"https://doi.org/10.1007/s10158-018-0214-6","url":null,"abstract":"<p><p>Neurite outgrowth is a morphological marker of neuronal differentiation and neuroregeneration, and the process includes four essential phases, namely initiation, elongation, guidance and cessation. Intrinsic and extrinsic signaling molecules seem to involve morphological changes of neurite outgrowth via various cellular signaling cascades phase transition. Although mechanisms associated with neurite outgrowth have been studied extensively, little is known about how phase transition is regulated during neurite outgrowth. 5-HT has long been studied with regard to its relationship to neurite outgrowth in invertebrate and vertebrate culture systems, and many studies have suggested 5-HT inhibits neurite elongation and growth cone motility, in particular, at the growing parts of neurite such as growth cones and filopodia. However, the underlying mechanisms need to be investigated. In this study, we investigated roles of 5-HT on neurite outgrowth using single serotonergic neurons C1 isolated from Helisoma trivolvis. We observed that 5-HT delayed phase transitions from initiation to elongation of neurite outgrowth. This study for the first time demonstrated that 5-HT has a critical role in phase-controlling mechanisms of neurite outgrowth in neuronal cell cultures.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 3","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0214-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36415247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-17DOI: 10.1007/s10158-018-0213-7
Bora Ergin, Nuhan Purali
Crayfish is a common model animal for different experimental purposes. However, the lack of information about the genetic properties of the animal limits its use in comparison to other model animals. In the present study, a putative crayfish sodium/calcium exchanger gene has firstly been cloned in ganglia cDNA samples by conducting a series of PCR experiments, where a set of degenerate and specific primers and RACE method were used. The complete sequence is 2955 bp, and the ORF is 2718 bp in length. Molecular properties of the calculated peptide were similar to the sodium/calcium exchangers reported in the other species. Analysis of the qPCR data indicated that the putative gene has the highest expression level in the ganglia. However, an apparently elevated level of expression is observed in highly active tissues like heart, muscle and intestine, while the least expression level was observed in the stomach samples. It was proposed that the cloned gene may code the sodium/calcium exchanger protein in the crayfish.
{"title":"Cloning of a putative sodium/calcium exchanger gene in the crayfish.","authors":"Bora Ergin, Nuhan Purali","doi":"10.1007/s10158-018-0213-7","DOIUrl":"https://doi.org/10.1007/s10158-018-0213-7","url":null,"abstract":"<p><p>Crayfish is a common model animal for different experimental purposes. However, the lack of information about the genetic properties of the animal limits its use in comparison to other model animals. In the present study, a putative crayfish sodium/calcium exchanger gene has firstly been cloned in ganglia cDNA samples by conducting a series of PCR experiments, where a set of degenerate and specific primers and RACE method were used. The complete sequence is 2955 bp, and the ORF is 2718 bp in length. Molecular properties of the calculated peptide were similar to the sodium/calcium exchangers reported in the other species. Analysis of the qPCR data indicated that the putative gene has the highest expression level in the ganglia. However, an apparently elevated level of expression is observed in highly active tissues like heart, muscle and intestine, while the least expression level was observed in the stomach samples. It was proposed that the cloned gene may code the sodium/calcium exchanger protein in the crayfish.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 3","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0213-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36320142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-30DOI: 10.1007/s10158-018-0211-9
Monica G Risley, Stephanie P Kelly, Justin Minnerly, Kailiang Jia, Ken Dawson-Scully
Increased neuronal excitability causes seizures with debilitating symptoms. Effective and noninvasive treatments are limited for easing symptoms, partially due to the complexity of the disorder and lack of knowledge of specific molecular faults. An unexplored, novel target for seizure therapeutics is the cGMP/protein kinase G (PKG) pathway, which targets downstream K+ channels, a mechanism similar to Retigabine, a recently FDA-approved antiepileptic drug. Our results demonstrate that increased PKG activity decreased seizure duration in C. elegans utilizing a recently developed electroconvulsive seizure assay. While the fly is a well-established seizure model, C. elegans are an ideal yet unexploited model which easily uptakes drugs and can be utilized for high-throughput screens. In this study, we show that treating the worms with either a potassium channel opener, Retigabine or published pharmaceuticals that increase PKG activity, significantly reduces seizure recovery times. Our results suggest that PKG signaling modulates downstream K+ channel conductance to control seizure recovery time in C. elegans. Hence, we provide powerful evidence, suggesting that pharmacological manipulation of the PKG signaling cascade may control seizure duration across phyla.
{"title":"egl-4 modulates electroconvulsive seizure duration in C. elegans.","authors":"Monica G Risley, Stephanie P Kelly, Justin Minnerly, Kailiang Jia, Ken Dawson-Scully","doi":"10.1007/s10158-018-0211-9","DOIUrl":"https://doi.org/10.1007/s10158-018-0211-9","url":null,"abstract":"<p><p>Increased neuronal excitability causes seizures with debilitating symptoms. Effective and noninvasive treatments are limited for easing symptoms, partially due to the complexity of the disorder and lack of knowledge of specific molecular faults. An unexplored, novel target for seizure therapeutics is the cGMP/protein kinase G (PKG) pathway, which targets downstream K<sup>+</sup> channels, a mechanism similar to Retigabine, a recently FDA-approved antiepileptic drug. Our results demonstrate that increased PKG activity decreased seizure duration in C. elegans utilizing a recently developed electroconvulsive seizure assay. While the fly is a well-established seizure model, C. elegans are an ideal yet unexploited model which easily uptakes drugs and can be utilized for high-throughput screens. In this study, we show that treating the worms with either a potassium channel opener, Retigabine or published pharmaceuticals that increase PKG activity, significantly reduces seizure recovery times. Our results suggest that PKG signaling modulates downstream K<sup>+</sup> channel conductance to control seizure recovery time in C. elegans. Hence, we provide powerful evidence, suggesting that pharmacological manipulation of the PKG signaling cascade may control seizure duration across phyla.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0211-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36173726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-18DOI: 10.1007/s10158-018-0212-8
Animesh Banerjee, Jagat Kumar Roy
During development, axonogenesis, an integral part of neurogenesis, is based on well-concerted events comprising generation, rearrangement, migration, elongation, and adhesion of neurons. Actin, specifically the crosstalk between the guardians of actin polymerization, like enabled, chickadee, capping protein plays an essential role in crafting several events of axonogenesis. Recent evidences reflect multifaceted role of microRNA during axonogenesis. Here, we investigated the role of bantam miRNA, a well-established miRNA in Drosophila, in regulating the actin organization during brain development. Our immunofluorescence studies showed altered arrangement of neurons and actin filaments whereas both qPCR and western blot revealed elevated expression of enabled, one of the actin modulators in bantam mutant background. Collectively, our results clearly demonstrate that bantam plays an instrumental role in shaping the axon architecture regulating the actin geometry through its modulator enabled.
{"title":"Bantam regulates the axonal geometry of Drosophila larval brain by modulating actin regulator enabled.","authors":"Animesh Banerjee, Jagat Kumar Roy","doi":"10.1007/s10158-018-0212-8","DOIUrl":"https://doi.org/10.1007/s10158-018-0212-8","url":null,"abstract":"<p><p>During development, axonogenesis, an integral part of neurogenesis, is based on well-concerted events comprising generation, rearrangement, migration, elongation, and adhesion of neurons. Actin, specifically the crosstalk between the guardians of actin polymerization, like enabled, chickadee, capping protein plays an essential role in crafting several events of axonogenesis. Recent evidences reflect multifaceted role of microRNA during axonogenesis. Here, we investigated the role of bantam miRNA, a well-established miRNA in Drosophila, in regulating the actin organization during brain development. Our immunofluorescence studies showed altered arrangement of neurons and actin filaments whereas both qPCR and western blot revealed elevated expression of enabled, one of the actin modulators in bantam mutant background. Collectively, our results clearly demonstrate that bantam plays an instrumental role in shaping the axon architecture regulating the actin geometry through its modulator enabled.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0212-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36112213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-26DOI: 10.1007/s10158-018-0210-x
Saurabh Sarkar, Arnab Roy, Sumedha Roy
Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F1 and F2 generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.
{"title":"Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F<sub>1</sub> and F<sub>2</sub>).","authors":"Saurabh Sarkar, Arnab Roy, Sumedha Roy","doi":"10.1007/s10158-018-0210-x","DOIUrl":"https://doi.org/10.1007/s10158-018-0210-x","url":null,"abstract":"<p><p>Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F<sub>1</sub> and F<sub>2</sub> generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0210-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36047432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6-8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9-13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14-17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2-Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17β (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.
{"title":"Three-dimensional organization of the brain and distribution of serotonin in the brain and ovary, and its effects on ovarian steroidogenesis in the giant freshwater prawn, Macrobrachium rosenbergii.","authors":"Boworn Soonthornsumrith, Jirawat Saetan, Thanapong Kruangkum, Tipsuda Thongbuakaew, Thanyaporn Senarai, Ronnarong Palasoon, Prasert Sobhon, Prapee Sretarugsa","doi":"10.1007/s10158-018-0209-3","DOIUrl":"https://doi.org/10.1007/s10158-018-0209-3","url":null,"abstract":"<p><p>The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6-8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9-13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14-17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc<sub>1</sub>) and very intense in Oc<sub>2</sub>-Oc<sub>4</sub>. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17β (E<sub>2</sub>) and progesterone (P<sub>4</sub>) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0209-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35932053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}