Pub Date : 2024-10-01Epub Date: 2024-05-15DOI: 10.1097/RLI.0000000000001078
Michael C McDermott, Thomas Sartoretti, Lion Stammen, Bibi Martens, Gregor Jost, Hubertus Pietsch, Ralf Gutjahr, Bernhard Schmidt, Thomas G Flohr, Hatem Alkadhi, Joachim E Wildberger
Objective: Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization. A pragmatic and simple rule for calcium-dependent CM injection protocols is investigated and proposed for VMI-based coronary CT angiography with PCD-CT.
Materials and methods: A physiological circulation phantom with coronary vessels including calcified lesions (maximum CT value >700 HU) with a 50% diameter stenosis was injected into at iodine delivery rates (IDRs) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g I/s. Images were acquired using a first-generation dual-source PCD-CT and reconstructed at various VMI levels (between 45 and 190 keV). Iodine attenuation in the coronaries was measured at each IDR for each keV, and blooming artifacts from the calcified lesions were assessed including stenosis grading error (as % overestimation vs true lumen). The IDR to achieve 300 HU at each VMI level was then calculated and compared with stenosis grading accuracy to establish a general rule for CM injection protocols.
Results: Plaque blooming artifacts and intraluminal iodine attenuation decreased with increasing keV. Fixed windowing (representing absolute worst case) resulted in stenosis overestimation from 77% ± 4% at 45 keV to 5% ± 2% at 190 keV, whereas optimized windowing resulted in overestimation from 29% ± 3% at 45 keV to 4% ± 1% at 190 keV. The required IDR to achieve 300 HU showed a strong linear correlation to VMI energy ( R2 = 0.98). Comparison of this linear plot versus stenosis grading error and blooming artifact demonstrated that multipliers of 1, 2, and 3 times the reference IDR for theoretical clinical regimes of no, moderate, and severe calcification density, respectively, can be proposed as a general rule.
Conclusions: This study provides a proof-of-concept in an anthropomorphic phantom for a simple pragmatic adaptation of CM injection protocols in coronary CT angiography with PCD-CT. The 1-2-3 rule demonstrates the potential for reducing the effects of calcium blooming artifacts on overall image quality.
{"title":"Countering Calcium Blooming With Personalized Contrast Media Injection Protocols: The 1-2-3 Rule for Photon-Counting Detector CCTA.","authors":"Michael C McDermott, Thomas Sartoretti, Lion Stammen, Bibi Martens, Gregor Jost, Hubertus Pietsch, Ralf Gutjahr, Bernhard Schmidt, Thomas G Flohr, Hatem Alkadhi, Joachim E Wildberger","doi":"10.1097/RLI.0000000000001078","DOIUrl":"10.1097/RLI.0000000000001078","url":null,"abstract":"<p><strong>Objective: </strong>Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization. A pragmatic and simple rule for calcium-dependent CM injection protocols is investigated and proposed for VMI-based coronary CT angiography with PCD-CT.</p><p><strong>Materials and methods: </strong>A physiological circulation phantom with coronary vessels including calcified lesions (maximum CT value >700 HU) with a 50% diameter stenosis was injected into at iodine delivery rates (IDRs) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g I/s. Images were acquired using a first-generation dual-source PCD-CT and reconstructed at various VMI levels (between 45 and 190 keV). Iodine attenuation in the coronaries was measured at each IDR for each keV, and blooming artifacts from the calcified lesions were assessed including stenosis grading error (as % overestimation vs true lumen). The IDR to achieve 300 HU at each VMI level was then calculated and compared with stenosis grading accuracy to establish a general rule for CM injection protocols.</p><p><strong>Results: </strong>Plaque blooming artifacts and intraluminal iodine attenuation decreased with increasing keV. Fixed windowing (representing absolute worst case) resulted in stenosis overestimation from 77% ± 4% at 45 keV to 5% ± 2% at 190 keV, whereas optimized windowing resulted in overestimation from 29% ± 3% at 45 keV to 4% ± 1% at 190 keV. The required IDR to achieve 300 HU showed a strong linear correlation to VMI energy ( R2 = 0.98). Comparison of this linear plot versus stenosis grading error and blooming artifact demonstrated that multipliers of 1, 2, and 3 times the reference IDR for theoretical clinical regimes of no, moderate, and severe calcification density, respectively, can be proposed as a general rule.</p><p><strong>Conclusions: </strong>This study provides a proof-of-concept in an anthropomorphic phantom for a simple pragmatic adaptation of CM injection protocols in coronary CT angiography with PCD-CT. The 1-2-3 rule demonstrates the potential for reducing the effects of calcium blooming artifacts on overall image quality.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"684-690"},"PeriodicalIF":7.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-01-30DOI: 10.1097/RLI.0000000000001066
Lukas Jakob Moser, Victor Mergen, Thomas Allmendinger, Robert Manka, Matthias Eberhard, Hatem Alkadhi
Purpose: Prospective electrocardiography-triggering is one of the most commonly used cardiac computed tomography (CT) scan modes but can be susceptible to stair-step artifacts in the transition areas of an acquisition over multiple cardiac cycles. We evaluated a novel reconstruction algorithm to reduce the occurrence and severity of such artifacts in sequential coronary CT angiography.
Materials and methods: In this institutional review board-approved, retrospective study, 50 consecutive patients (16 females; mean age, 58.9 ± 15.2) were included who underwent coronary CT angiography on a dual-source photon-counting detector CT in the sequential ultra-high-resolution mode with a detector collimation of 120 × 0.2 mm. Each scan was reconstructed without (hereafter called standard reconstruction) and with the novel ZeeFree reconstruction algorithm, which aims to minimize stair-step artifacts. The presence and extent of stair-step artifacts were rated by 2 independent, blinded readers on a 4-point discrete visual scale. The relationship between the occurrences of artifacts was correlated with the average and variability of heart rate and with patient characteristics.
Results: A total of 504 coronary segments were included into the analyses. In standard reconstructions, reader 1 reported stair-step artifacts in 40/504 (7.9%) segments, from which 12/504 led to nondiagnostic image quality (2.4% of all segments). Reader 2 reported 56/504 (11.1%) stair-step artifacts, from which 11/504 lead to nondiagnostic image quality (2.2% of all segments). With the ZeeFree algorithm, 9/12 (75%) and 8/11 (73%) of the nondiagnostic segments improved to a diagnostic quality for readers 1 and 2, respectively. The ZeeFree reconstruction algorithm significantly reduced the frequency and extent of stair-step artifacts compared with standard reconstructions for both readers ( P < 0.001, each). Heart rate variability and body mass index were significantly related to the occurrence of stair-step artifacts ( P < 0.05).
Conclusions: Our study demonstrates the feasibility and effectiveness of a novel reconstruction algorithm leading to a significant reduction of stair-step artifacts and, hence, a reduction of coronary segments with a nondiagnostic image quality in sequential ultra-high-resolution coronary photon-counting detector CT angiography.
{"title":"A Novel Reconstruction Technique to Reduce Stair-Step Artifacts in Sequential Mode Coronary CT Angiography.","authors":"Lukas Jakob Moser, Victor Mergen, Thomas Allmendinger, Robert Manka, Matthias Eberhard, Hatem Alkadhi","doi":"10.1097/RLI.0000000000001066","DOIUrl":"10.1097/RLI.0000000000001066","url":null,"abstract":"<p><strong>Purpose: </strong>Prospective electrocardiography-triggering is one of the most commonly used cardiac computed tomography (CT) scan modes but can be susceptible to stair-step artifacts in the transition areas of an acquisition over multiple cardiac cycles. We evaluated a novel reconstruction algorithm to reduce the occurrence and severity of such artifacts in sequential coronary CT angiography.</p><p><strong>Materials and methods: </strong>In this institutional review board-approved, retrospective study, 50 consecutive patients (16 females; mean age, 58.9 ± 15.2) were included who underwent coronary CT angiography on a dual-source photon-counting detector CT in the sequential ultra-high-resolution mode with a detector collimation of 120 × 0.2 mm. Each scan was reconstructed without (hereafter called standard reconstruction) and with the novel ZeeFree reconstruction algorithm, which aims to minimize stair-step artifacts. The presence and extent of stair-step artifacts were rated by 2 independent, blinded readers on a 4-point discrete visual scale. The relationship between the occurrences of artifacts was correlated with the average and variability of heart rate and with patient characteristics.</p><p><strong>Results: </strong>A total of 504 coronary segments were included into the analyses. In standard reconstructions, reader 1 reported stair-step artifacts in 40/504 (7.9%) segments, from which 12/504 led to nondiagnostic image quality (2.4% of all segments). Reader 2 reported 56/504 (11.1%) stair-step artifacts, from which 11/504 lead to nondiagnostic image quality (2.2% of all segments). With the ZeeFree algorithm, 9/12 (75%) and 8/11 (73%) of the nondiagnostic segments improved to a diagnostic quality for readers 1 and 2, respectively. The ZeeFree reconstruction algorithm significantly reduced the frequency and extent of stair-step artifacts compared with standard reconstructions for both readers ( P < 0.001, each). Heart rate variability and body mass index were significantly related to the occurrence of stair-step artifacts ( P < 0.05).</p><p><strong>Conclusions: </strong>Our study demonstrates the feasibility and effectiveness of a novel reconstruction algorithm leading to a significant reduction of stair-step artifacts and, hence, a reduction of coronary segments with a nondiagnostic image quality in sequential ultra-high-resolution coronary photon-counting detector CT angiography.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"622-628"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-01DOI: 10.1097/RLI.0000000000001072
Jan Endrikat, Matthias Gutberlet, Karl-Titus Hoffmann, Laura Schöckel, Aasia Bhatti, Cornelia Harz, Jörg Barkhausen
Background: The macrocyclic gadolinium-based contrast agent gadobutrol was introduced to the market in February 1998. Over the last 25 years, gadobutrol has been administered more than 100 million times worldwide providing a wealth of data related to safety.
Objective: The aim of this study was to perform a thorough review and status update on gadobutrol's safety.
Materials and methods: Safety data from the clinical phase II-IV program and postmarketing surveillance were descriptively analyzed from February 1998 until December 31, 2022. Literature on special at-risk populations and specific safety aspects was critically summarized.
Results: Forty-five clinical phase II-IV studies recruited 7856 patients receiving gadobutrol. Drug-related adverse events (AEs) were reported in 3.4% and serious AEs in <0.1% of patients. Nausea (0.7%) and dysgeusia (0.4%) were the most reported AEs. All other drug-related AEs occurred ≤0.3%. After more than 100 million gadobutrol administrations, overall adverse drug reactions (ADRs) from postmarketing surveillance (including clinical trials) were rare with an overall reporting rate of 0.0356%, hypersensitivity reactions (0.0147%), nausea (0.0032%), vomiting (0.0025%), and dyspnea (0.0010%). All other ADRs were <0.001%. No trend for higher rates of AEs was found in patients with reduced renal or liver function. Seven clinical studies reported safety findings in 7292 children ≤18 years, thereof 112 newborns/toddlers younger than 2 years. Overall, 61 ADRs (0.84%) were reported, including 3 serious ones. Adverse events in patients ≥65 years of age ("elderly") were significantly less frequent than in younger patients. A total of 4 reports diagnostic of or consistent with nephrogenic systemic fibrosis have been received. No causal relationship has been established between clinical signs and symptoms and the presence of small amounts of gadolinium in the body in patients with normal renal function after use of gadobutrol.
Conclusions: More than 100 million administrations worldwide have shown gadobutrol's well-established benefit-risk profile in any approved indication and populations.
{"title":"Clinical Safety of Gadobutrol: Review of Over 25 Years of Use Exceeding 100 Million Administrations.","authors":"Jan Endrikat, Matthias Gutberlet, Karl-Titus Hoffmann, Laura Schöckel, Aasia Bhatti, Cornelia Harz, Jörg Barkhausen","doi":"10.1097/RLI.0000000000001072","DOIUrl":"10.1097/RLI.0000000000001072","url":null,"abstract":"<p><strong>Background: </strong>The macrocyclic gadolinium-based contrast agent gadobutrol was introduced to the market in February 1998. Over the last 25 years, gadobutrol has been administered more than 100 million times worldwide providing a wealth of data related to safety.</p><p><strong>Objective: </strong>The aim of this study was to perform a thorough review and status update on gadobutrol's safety.</p><p><strong>Materials and methods: </strong>Safety data from the clinical phase II-IV program and postmarketing surveillance were descriptively analyzed from February 1998 until December 31, 2022. Literature on special at-risk populations and specific safety aspects was critically summarized.</p><p><strong>Results: </strong>Forty-five clinical phase II-IV studies recruited 7856 patients receiving gadobutrol. Drug-related adverse events (AEs) were reported in 3.4% and serious AEs in <0.1% of patients. Nausea (0.7%) and dysgeusia (0.4%) were the most reported AEs. All other drug-related AEs occurred ≤0.3%. After more than 100 million gadobutrol administrations, overall adverse drug reactions (ADRs) from postmarketing surveillance (including clinical trials) were rare with an overall reporting rate of 0.0356%, hypersensitivity reactions (0.0147%), nausea (0.0032%), vomiting (0.0025%), and dyspnea (0.0010%). All other ADRs were <0.001%. No trend for higher rates of AEs was found in patients with reduced renal or liver function. Seven clinical studies reported safety findings in 7292 children ≤18 years, thereof 112 newborns/toddlers younger than 2 years. Overall, 61 ADRs (0.84%) were reported, including 3 serious ones. Adverse events in patients ≥65 years of age (\"elderly\") were significantly less frequent than in younger patients. A total of 4 reports diagnostic of or consistent with nephrogenic systemic fibrosis have been received. No causal relationship has been established between clinical signs and symptoms and the presence of small amounts of gadolinium in the body in patients with normal renal function after use of gadobutrol.</p><p><strong>Conclusions: </strong>More than 100 million administrations worldwide have shown gadobutrol's well-established benefit-risk profile in any approved indication and populations.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"605-613"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-08DOI: 10.1097/RLI.0000000000001069
Henner Huflage, Robin Hendel, Piotr Woznicki, Nora Conrads, Philipp Feldle, Theresa Sophie Patzer, Süleyman Ergün, Thorsten Alexander Bley, Andreas Steven Kunz, Jan-Peter Grunz
Objectives: Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging.
Materials and methods: Eight cadaveric specimens were examined with 7 dose levels (5-35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient ( r ) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement.
Results: Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement ( W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r 's ≥ 0.95; P < 0.001).
Conclusions: In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.
{"title":"The Small Pixel Effect in Ultra-High-Resolution Photon-Counting CT of the Lumbar Spine.","authors":"Henner Huflage, Robin Hendel, Piotr Woznicki, Nora Conrads, Philipp Feldle, Theresa Sophie Patzer, Süleyman Ergün, Thorsten Alexander Bley, Andreas Steven Kunz, Jan-Peter Grunz","doi":"10.1097/RLI.0000000000001069","DOIUrl":"10.1097/RLI.0000000000001069","url":null,"abstract":"<p><strong>Objectives: </strong>Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging.</p><p><strong>Materials and methods: </strong>Eight cadaveric specimens were examined with 7 dose levels (5-35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient ( r ) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement.</p><p><strong>Results: </strong>Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement ( W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r 's ≥ 0.95; P < 0.001).</p><p><strong>Conclusions: </strong>In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"629-634"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-28DOI: 10.1097/RLI.0000000000001067
Marcel Tschopp, Christian W A Pfirrmann, Florian Brunner, Sandro F Fucentese, Julien Galley, Christoph Stern, Reto Sutter, Sabrina Catanzaro, Nathalie Kühne, Andrea B Rosskopf
Background: Intra-articular injections are routinely used for conservative treatment of knee osteoarthritis (OA). The detailed comparative therapeutic effects of these injections on cartilage tissue are still unclear.
Objective: The aim of this study was to detect and compare knee cartilage changes after intra-articular injection of glucocorticoid, hyaluronic acid, or platelet-rich plasma (PRP) to placebo using quantitative (T2 and T2* mapping) and morphological magnetic resonance imaging parameters in patients with mild or moderate osteoarthritis.
Materials and methods: In a double-blinded, placebo-controlled, single-center trial, knees with mild or moderate osteoarthritis (Kellgren-Lawrence grade 1-3) were randomly assigned to an intra-articular injection with 1 of these substances: glucocorticoid, hyaluronic acid, PRP, or placebo. Cartilage degeneration on baseline and follow-up magnetic resonance imaging scans (after 3 and 12 months) was assessed by 2 readers using quantitative T2 and T2* times (milliseconds) and morphological parameters (modified Outerbridge grading, subchondral bone marrow edema, subchondral cysts, osteophytes).
Results: One hundred twenty knees (30 knees per treatment group) were analyzed with a median patient age of 60 years (interquartile range, 54.0-68.0 years). Interreader reliability was good for T2 (ICC, 0.76; IQR, 0.68-0.83) and T2* (ICC, 0.83; IQR, 0.76-0.88) measurements. Morphological parameters showed no significant changes between all groups after 3 and 12 months. T2 mapping after 12 months showed the following significant ( P = 0.001-0.03) changes between groups in 6 of 14 compartments: values after PRP injection decreased compared with glucocorticoid in 4 compartments (complete medial femoral condyle and central part of lateral condyle) and compared with placebo in 2 compartments (anterior and central part of medial tibial plateau); values after glucocorticoid injection decreased compared with placebo in 1 compartment (central part of medial tibial plateau). No significant changes were seen for T2 and T2* times after 3 months and T2* times after 12 months. No correlation was found between T2/T2* times and Kellgren-Lawrence grade, age, body mass index, or pain (Spearman ρ, -0.23 to 0.18).
Conclusions: Platelet-rich plasma injection has a positive long-term effect on cartilage quality in the medial femoral compartment compared to glucocorticoid, resulting in significantly improved T2 values after 12 months. For morphological cartilage parameters, injections with glucocorticoid, PRP, or hyaluronic acid showed no better effect in the short or long term compared with placebo.
{"title":"Morphological and Quantitative Parametric MRI Follow-up of Cartilage Changes Before and After Intra-articular Injection Therapy in Patients With Mild to Moderate Knee Osteoarthritis: A Randomized, Placebo-Controlled Trial.","authors":"Marcel Tschopp, Christian W A Pfirrmann, Florian Brunner, Sandro F Fucentese, Julien Galley, Christoph Stern, Reto Sutter, Sabrina Catanzaro, Nathalie Kühne, Andrea B Rosskopf","doi":"10.1097/RLI.0000000000001067","DOIUrl":"10.1097/RLI.0000000000001067","url":null,"abstract":"<p><strong>Background: </strong>Intra-articular injections are routinely used for conservative treatment of knee osteoarthritis (OA). The detailed comparative therapeutic effects of these injections on cartilage tissue are still unclear.</p><p><strong>Objective: </strong>The aim of this study was to detect and compare knee cartilage changes after intra-articular injection of glucocorticoid, hyaluronic acid, or platelet-rich plasma (PRP) to placebo using quantitative (T2 and T2* mapping) and morphological magnetic resonance imaging parameters in patients with mild or moderate osteoarthritis.</p><p><strong>Materials and methods: </strong>In a double-blinded, placebo-controlled, single-center trial, knees with mild or moderate osteoarthritis (Kellgren-Lawrence grade 1-3) were randomly assigned to an intra-articular injection with 1 of these substances: glucocorticoid, hyaluronic acid, PRP, or placebo. Cartilage degeneration on baseline and follow-up magnetic resonance imaging scans (after 3 and 12 months) was assessed by 2 readers using quantitative T2 and T2* times (milliseconds) and morphological parameters (modified Outerbridge grading, subchondral bone marrow edema, subchondral cysts, osteophytes).</p><p><strong>Results: </strong>One hundred twenty knees (30 knees per treatment group) were analyzed with a median patient age of 60 years (interquartile range, 54.0-68.0 years). Interreader reliability was good for T2 (ICC, 0.76; IQR, 0.68-0.83) and T2* (ICC, 0.83; IQR, 0.76-0.88) measurements. Morphological parameters showed no significant changes between all groups after 3 and 12 months. T2 mapping after 12 months showed the following significant ( P = 0.001-0.03) changes between groups in 6 of 14 compartments: values after PRP injection decreased compared with glucocorticoid in 4 compartments (complete medial femoral condyle and central part of lateral condyle) and compared with placebo in 2 compartments (anterior and central part of medial tibial plateau); values after glucocorticoid injection decreased compared with placebo in 1 compartment (central part of medial tibial plateau). No significant changes were seen for T2 and T2* times after 3 months and T2* times after 12 months. No correlation was found between T2/T2* times and Kellgren-Lawrence grade, age, body mass index, or pain (Spearman ρ, -0.23 to 0.18).</p><p><strong>Conclusions: </strong>Platelet-rich plasma injection has a positive long-term effect on cartilage quality in the medial femoral compartment compared to glucocorticoid, resulting in significantly improved T2 values after 12 months. For morphological cartilage parameters, injections with glucocorticoid, PRP, or hyaluronic acid showed no better effect in the short or long term compared with placebo.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"646-655"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-01DOI: 10.1097/RLI.0000000000001070
Sanja Bogdanovic, Matthias Staib, Marco Schleiniger, Livio Steiner, Leonardo Schwarz, Christoph Germann, Reto Sutter, Benjamin Fritz
Objectives: The aim of this study was to clinically validate a fully automated AI model for magnetic resonance imaging (MRI)-based quantifications of lumbar spinal canal stenosis.
Materials and methods: This retrospective study included lumbar spine MRI of 100 consecutive clinical patients (56 ± 17 years; 43 females, 57 males) performed on clinical 1.5 (51 examinations) and 3 T MRI scanners (49 examinations) with heterogeneous clinical imaging protocols. The AI model performed segmentations of the thecal sac on axial T2-weighted sequences. Based on these segmentations, the anteroposterior (AP) and mediolateral (ML) distance, and the area of the thecal sac were measured in a fully automated manner. For comparison, 2 fellowship-trained musculoskeletal radiologists performed the same segmentations and measurements independently. Statistics included 1-sample t tests, the intraclass correlation coefficient (ICC), Bland-Altman plots, and Dice coefficients. A P value of <0.05 was considered statistically significant.
Results: The average measurements of the AI model, reader 1, and reader 2 were 194 ± 72 mm 2 , 181 ± 71 mm 2 , and 179 ± 70 mm 2 for thecal sac area, 13 ± 3.3 mm, 12.6 ± 3.3 mm, and 12.6 ± 3.2 mm for AP distance, and 19.5 ± 3.9 mm, 20 ± 4.3 mm, and 19.4 ± 4 mm for ML distance, respectively. Significant differences existed for all pairwise comparisons, besides reader 1 versus AI model for the ML distance and reader 1 versus reader 2 for the AP distance ( P = 0.1 and P = 0.21, respectively). The pairwise mean absolute errors among reader 1, reader 2, and the AI model ranged from 0.59 mm and 0.75 mm for the AP distance, from 1.16 mm to 1.37 mm for the ML distance, and from 7.9 mm 2 to 15.54 mm 2 for the thecal sac area. Pairwise ICCs among reader 1, reader 2, and the AI model ranged from 0.91 and 0.94 for the AP distance and from 0.86 to 0.9 for the ML distance without significant differences. For the thecal sac area, the pairwise ICC between both readers and the AI model of 0.97 each was slightly, but significantly lower than the ICC between reader 1 and reader 2 of 0.99. Similarly, the Dice coefficient and Hausdorff distance between both readers and the AI model were significantly lower than the values between reader 1 and reader 2, overall ranging from 0.93 to 0.95 for the Dice coefficients and 1.1 to 1.44 for the Hausdorff distances.
Conclusions: The investigated AI model is reliable for assessing the AP and the ML thecal sac diameters with human level accuracies. The small differences for measurement and segmentation of the thecal sac area between the AI model and the radiologists are likely within a clinically acceptable range.
{"title":"AI-Based Measurement of Lumbar Spinal Stenosis on MRI: External Evaluation of a Fully Automated Model.","authors":"Sanja Bogdanovic, Matthias Staib, Marco Schleiniger, Livio Steiner, Leonardo Schwarz, Christoph Germann, Reto Sutter, Benjamin Fritz","doi":"10.1097/RLI.0000000000001070","DOIUrl":"10.1097/RLI.0000000000001070","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to clinically validate a fully automated AI model for magnetic resonance imaging (MRI)-based quantifications of lumbar spinal canal stenosis.</p><p><strong>Materials and methods: </strong>This retrospective study included lumbar spine MRI of 100 consecutive clinical patients (56 ± 17 years; 43 females, 57 males) performed on clinical 1.5 (51 examinations) and 3 T MRI scanners (49 examinations) with heterogeneous clinical imaging protocols. The AI model performed segmentations of the thecal sac on axial T2-weighted sequences. Based on these segmentations, the anteroposterior (AP) and mediolateral (ML) distance, and the area of the thecal sac were measured in a fully automated manner. For comparison, 2 fellowship-trained musculoskeletal radiologists performed the same segmentations and measurements independently. Statistics included 1-sample t tests, the intraclass correlation coefficient (ICC), Bland-Altman plots, and Dice coefficients. A P value of <0.05 was considered statistically significant.</p><p><strong>Results: </strong>The average measurements of the AI model, reader 1, and reader 2 were 194 ± 72 mm 2 , 181 ± 71 mm 2 , and 179 ± 70 mm 2 for thecal sac area, 13 ± 3.3 mm, 12.6 ± 3.3 mm, and 12.6 ± 3.2 mm for AP distance, and 19.5 ± 3.9 mm, 20 ± 4.3 mm, and 19.4 ± 4 mm for ML distance, respectively. Significant differences existed for all pairwise comparisons, besides reader 1 versus AI model for the ML distance and reader 1 versus reader 2 for the AP distance ( P = 0.1 and P = 0.21, respectively). The pairwise mean absolute errors among reader 1, reader 2, and the AI model ranged from 0.59 mm and 0.75 mm for the AP distance, from 1.16 mm to 1.37 mm for the ML distance, and from 7.9 mm 2 to 15.54 mm 2 for the thecal sac area. Pairwise ICCs among reader 1, reader 2, and the AI model ranged from 0.91 and 0.94 for the AP distance and from 0.86 to 0.9 for the ML distance without significant differences. For the thecal sac area, the pairwise ICC between both readers and the AI model of 0.97 each was slightly, but significantly lower than the ICC between reader 1 and reader 2 of 0.99. Similarly, the Dice coefficient and Hausdorff distance between both readers and the AI model were significantly lower than the values between reader 1 and reader 2, overall ranging from 0.93 to 0.95 for the Dice coefficients and 1.1 to 1.44 for the Hausdorff distances.</p><p><strong>Conclusions: </strong>The investigated AI model is reliable for assessing the AP and the ML thecal sac diameters with human level accuracies. The small differences for measurement and segmentation of the thecal sac area between the AI model and the radiologists are likely within a clinically acceptable range.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"656-666"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-07DOI: 10.1097/RLI.0000000000001083
Gaëlle Hugon, Hans Adriaensen, Mélody Wintrebert, Laurent Arnould, Jean-Michel Serfaty, Philippe Robert
Objectives: Unexpected accumulations of gadolinium in various organs were reported after the administration of gadolinium-based contrast agents, making desirable to reduce the dose while maintaining equivalent diagnostic performance. The aim of this study was to evaluate the contrast enhancement performance of high relaxivity gadopiclenol compared with gadoterate meglumine in abdominal contrast-enhanced magnetic resonance angiography (CE-MRA).
Materials and methods: In a first study in healthy rabbits, axial 3D gradient echo sequences were applied at 4.7 T to study arterial enhancement as a function of gadopiclenol dose (0.025, 0.05, 0.075, and 0.1 mmol Gd/kg) or gadoterate meglumine at 0.1 mmol Gd/kg (n = 5-6/group). The increase in signal-to-noise ratio (ΔSNR) in the aorta at the first pass was measured and compared. In a second, crossover study in 6 healthy pigs, abdominal CE-MRA sequences were acquired at 3 T with gadopiclenol at 0.05 mmol Gd/kg or gadoterate meglumine at 0.1 mmol Gd/kg at a 1-week interval. Quantitatively on the maximum intensity projection (MIP) images, the mean MIP SNR within the aorta of both groups was compared. Qualitatively, a blinded comparison of the angiograms was performed by an experienced radiologist to determine the preferred contrast agent.
Results: In the rabbit, ∆SNR is linearly correlated with the gadopiclenol dose ( P = 0.0010). Compared with gadoterate meglumine 0.1 mmol Gd/kg, an increase in the ∆SNR is observed after 0.05, 0.075, and 0.1 mmol Gd/kg of gadopiclenol (+63% P = 0.0731, +78% P = 0.0081, and +72% P = 0.0773, respectively), whereas at 0.025 mmol Gd/kg, ∆SNR is in the same range as with gadoterate meglumine 0.1 mmol Gd/kg (+15% P > 0.9999). In pigs, contrast enhancement after gadopiclenol at 0.05 mmol/kg is +22% superior to MIP SNR after gadoterate meglumine at 0.1 mmol Gd/kg ( P = 0.3095). Qualitatively, a preference was shown for gadopiclenol images (3/6) over the gadoterate meglumine examinations (1/6), with no preference being shown for the remainder (2/6).
Conclusions: First-pass CE-MRA is feasible with gadopiclenol at 0.05 mmol Gd/kg with at least the same arterial signal enhancement and image quality as gadoterate meglumine at 0.1 mmol Gd/kg.
{"title":"Evaluation of the Contrast Enhancement Performance of Gadopiclenol for Magnetic Resonance Angiography in Healthy Rabbits and Pigs.","authors":"Gaëlle Hugon, Hans Adriaensen, Mélody Wintrebert, Laurent Arnould, Jean-Michel Serfaty, Philippe Robert","doi":"10.1097/RLI.0000000000001083","DOIUrl":"10.1097/RLI.0000000000001083","url":null,"abstract":"<p><strong>Objectives: </strong>Unexpected accumulations of gadolinium in various organs were reported after the administration of gadolinium-based contrast agents, making desirable to reduce the dose while maintaining equivalent diagnostic performance. The aim of this study was to evaluate the contrast enhancement performance of high relaxivity gadopiclenol compared with gadoterate meglumine in abdominal contrast-enhanced magnetic resonance angiography (CE-MRA).</p><p><strong>Materials and methods: </strong>In a first study in healthy rabbits, axial 3D gradient echo sequences were applied at 4.7 T to study arterial enhancement as a function of gadopiclenol dose (0.025, 0.05, 0.075, and 0.1 mmol Gd/kg) or gadoterate meglumine at 0.1 mmol Gd/kg (n = 5-6/group). The increase in signal-to-noise ratio (ΔSNR) in the aorta at the first pass was measured and compared. In a second, crossover study in 6 healthy pigs, abdominal CE-MRA sequences were acquired at 3 T with gadopiclenol at 0.05 mmol Gd/kg or gadoterate meglumine at 0.1 mmol Gd/kg at a 1-week interval. Quantitatively on the maximum intensity projection (MIP) images, the mean MIP SNR within the aorta of both groups was compared. Qualitatively, a blinded comparison of the angiograms was performed by an experienced radiologist to determine the preferred contrast agent.</p><p><strong>Results: </strong>In the rabbit, ∆SNR is linearly correlated with the gadopiclenol dose ( P = 0.0010). Compared with gadoterate meglumine 0.1 mmol Gd/kg, an increase in the ∆SNR is observed after 0.05, 0.075, and 0.1 mmol Gd/kg of gadopiclenol (+63% P = 0.0731, +78% P = 0.0081, and +72% P = 0.0773, respectively), whereas at 0.025 mmol Gd/kg, ∆SNR is in the same range as with gadoterate meglumine 0.1 mmol Gd/kg (+15% P > 0.9999). In pigs, contrast enhancement after gadopiclenol at 0.05 mmol/kg is +22% superior to MIP SNR after gadoterate meglumine at 0.1 mmol Gd/kg ( P = 0.3095). Qualitatively, a preference was shown for gadopiclenol images (3/6) over the gadoterate meglumine examinations (1/6), with no preference being shown for the remainder (2/6).</p><p><strong>Conclusions: </strong>First-pass CE-MRA is feasible with gadopiclenol at 0.05 mmol Gd/kg with at least the same arterial signal enhancement and image quality as gadoterate meglumine at 0.1 mmol Gd/kg.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"614-621"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-04DOI: 10.1097/RLI.0000000000001071
Giulia Baldini, René Hosch, Cynthia S Schmidt, Katarzyna Borys, Lennard Kroll, Sven Koitka, Patrizia Haubold, Obioma Pelka, Felix Nensa, Johannes Haubold
Objectives: Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT).
Materials and methods: This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs).
Results: For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58-99.63] for the noncontrast phase, 99.50% [95% CI, 99.49-99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10-99.15] for the arterial phase, 99.8% [95% CI, 99.79-99.81] for the venous phase, and 99.7% [95% CI, 99.68-99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27-97.35] and 97.38% [95% CI, 97.34-97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89-99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71-99.73] and 99.31% [95% CI, 99.27-99.33] was achieved with the first and second annotator, respectively.
Conclusions: The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.
{"title":"Addressing the Contrast Media Recognition Challenge: A Fully Automated Machine Learning Approach for Predicting Contrast Phases in CT Imaging.","authors":"Giulia Baldini, René Hosch, Cynthia S Schmidt, Katarzyna Borys, Lennard Kroll, Sven Koitka, Patrizia Haubold, Obioma Pelka, Felix Nensa, Johannes Haubold","doi":"10.1097/RLI.0000000000001071","DOIUrl":"10.1097/RLI.0000000000001071","url":null,"abstract":"<p><strong>Objectives: </strong>Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT).</p><p><strong>Materials and methods: </strong>This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs).</p><p><strong>Results: </strong>For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58-99.63] for the noncontrast phase, 99.50% [95% CI, 99.49-99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10-99.15] for the arterial phase, 99.8% [95% CI, 99.79-99.81] for the venous phase, and 99.7% [95% CI, 99.68-99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27-97.35] and 97.38% [95% CI, 97.34-97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89-99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71-99.73] and 99.31% [95% CI, 99.27-99.33] was achieved with the first and second annotator, respectively.</p><p><strong>Conclusions: </strong>The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"635-645"},"PeriodicalIF":7.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1097/RLI.0000000000001119
Wei Zhou, Afrouz Ataei, Donglai Huo, Liqiang Ren, Lorna P Browne, Xin Zhou, Jason P Weinman
Purpose: The comprehensive evaluation of kV selection on photon-counting computed tomography (PCCT) has yet to be performed. The aim of the study is to evaluate and determine the optimal kV options for variable pediatric body sizes on the PCCT unit.
Materials and methods: In this study, 4 phantoms of variable sizes were utilized to represent abdomens of newborn, 5-year-old, 10-year-old, and adult-sized pediatric patients. One solid water and 4 solid iodine inserts with known concentrations (2, 5, 10, and 15 mg I/mL) were inserted into phantoms. Each phantom setting was scanned on a PCCT system (Siemens Alpha) with 4 kV options (70 and 90 kV under Quantum Mode, 120 and 140 kV under QuantumPlus Mode) and clinical dual-source (3.0 pitch) protocol. For each phantom setting, radiation dose (CTDIvol) was determined by clinical dose settings and matched for all kV acquisitions. Sixty percent clinical dose images were also acquired. Reconstruction was matched across all acquisitions using Qr40 kernel and QIR level 3. Virtual monoenergetic images (VMIs) between 40 and 80 keV with 10 keV interval were generated on the scanner. Low-energy and high-energy images were reconstructed from each scan and subsequently used to generate an iodine map (IM) using an image-based 2-material decomposition method. Image noise of VMIs from each kV acquisition was calculated and compared between kV options. Absolute percent error (APE) of iodine CT number accuracy in VMIs was calculated and compared. Root mean square error (RMSE) and bias of iodine quantification from IMs were compared across kV options.
Results: At the newborn size and 50 keV VMI, noise is lower at low kV acquisitions (70 kV: 10.5 HU, 90 kV: 10.4 HU), compared with high kV acquisitions (120 kV: 13.8 HU, 140 kV: 13.9 HU). At the newborn size and 70 keV VMI, the image noise from different kV options is comparable (9.4 HU for 70 kV, 8.9 HU for 90 kV, 9.7 HU for 120 kV, 10.2 HU for 140 kV). For APE of VMI, high kV (120 or 140 kV) performed overall better than low kV (70 or 90 kV). At the 5-year-old size, APE of 90 kV (median: 3.6%) is significantly higher (P < 0.001, Kruskal-Wallis rank sum test with Bonferroni correction) than 140 kV (median: 1.6%). At adult size, APE of 70 kV (median: 18.0%) is significantly higher (P < 0.0001, Kruskal-Wallis rank sum test with Bonferroni correction) than 120 kV (median: 1.4%) or 140 kV (median: 0.8%). The high kV also demonstrated lower RMSE and bias than the low kV across all controlled conditions. At 10-year-old size, RMSE and bias of 120 kV are 1.4 and 0.2 mg I/mL, whereas those from 70 kV are 1.9 and 0.8 mg I/mL.
Conclusions: The high kV options (120 or 140 kV) on the PCCT unit demonstrated overall better performance than the low kV options (70 or 90 kV), in terms of image quality of VMIs and IMs. Our results recommend the use of high kV for general body imaging on the PCCT.
{"title":"Optimal Spectral Performance on Pediatric Photon-Counting CT: Investigating Phantom-Based Size-Dependent kV Selection for Spectral Body Imaging.","authors":"Wei Zhou, Afrouz Ataei, Donglai Huo, Liqiang Ren, Lorna P Browne, Xin Zhou, Jason P Weinman","doi":"10.1097/RLI.0000000000001119","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001119","url":null,"abstract":"<p><strong>Purpose: </strong>The comprehensive evaluation of kV selection on photon-counting computed tomography (PCCT) has yet to be performed. The aim of the study is to evaluate and determine the optimal kV options for variable pediatric body sizes on the PCCT unit.</p><p><strong>Materials and methods: </strong>In this study, 4 phantoms of variable sizes were utilized to represent abdomens of newborn, 5-year-old, 10-year-old, and adult-sized pediatric patients. One solid water and 4 solid iodine inserts with known concentrations (2, 5, 10, and 15 mg I/mL) were inserted into phantoms. Each phantom setting was scanned on a PCCT system (Siemens Alpha) with 4 kV options (70 and 90 kV under Quantum Mode, 120 and 140 kV under QuantumPlus Mode) and clinical dual-source (3.0 pitch) protocol. For each phantom setting, radiation dose (CTDIvol) was determined by clinical dose settings and matched for all kV acquisitions. Sixty percent clinical dose images were also acquired. Reconstruction was matched across all acquisitions using Qr40 kernel and QIR level 3. Virtual monoenergetic images (VMIs) between 40 and 80 keV with 10 keV interval were generated on the scanner. Low-energy and high-energy images were reconstructed from each scan and subsequently used to generate an iodine map (IM) using an image-based 2-material decomposition method. Image noise of VMIs from each kV acquisition was calculated and compared between kV options. Absolute percent error (APE) of iodine CT number accuracy in VMIs was calculated and compared. Root mean square error (RMSE) and bias of iodine quantification from IMs were compared across kV options.</p><p><strong>Results: </strong>At the newborn size and 50 keV VMI, noise is lower at low kV acquisitions (70 kV: 10.5 HU, 90 kV: 10.4 HU), compared with high kV acquisitions (120 kV: 13.8 HU, 140 kV: 13.9 HU). At the newborn size and 70 keV VMI, the image noise from different kV options is comparable (9.4 HU for 70 kV, 8.9 HU for 90 kV, 9.7 HU for 120 kV, 10.2 HU for 140 kV). For APE of VMI, high kV (120 or 140 kV) performed overall better than low kV (70 or 90 kV). At the 5-year-old size, APE of 90 kV (median: 3.6%) is significantly higher (P < 0.001, Kruskal-Wallis rank sum test with Bonferroni correction) than 140 kV (median: 1.6%). At adult size, APE of 70 kV (median: 18.0%) is significantly higher (P < 0.0001, Kruskal-Wallis rank sum test with Bonferroni correction) than 120 kV (median: 1.4%) or 140 kV (median: 0.8%). The high kV also demonstrated lower RMSE and bias than the low kV across all controlled conditions. At 10-year-old size, RMSE and bias of 120 kV are 1.4 and 0.2 mg I/mL, whereas those from 70 kV are 1.9 and 0.8 mg I/mL.</p><p><strong>Conclusions: </strong>The high kV options (120 or 140 kV) on the PCCT unit demonstrated overall better performance than the low kV options (70 or 90 kV), in terms of image quality of VMIs and IMs. Our results recommend the use of high kV for general body imaging on the PCCT.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-01-12DOI: 10.1097/RLI.0000000000001061
Sylvain Bodard, Louise Denis, Georges Chabouh, Jacques Battaglia, Dany Anglicheau, Olivier Hélénon, Jean-Michel Correas, Olivier Couture
Objectives: Kidney diseases significantly impact individuals' quality of life and strongly reduce life expectancy. Glomeruli play a crucial role in kidney function. Current imaging techniques cannot visualize them due to their small size. Sensing ultrasound localization microscopy (sULM) has shown promising results for visualizing in vivo the glomeruli of human kidney grafts. This study aimed to evaluate the ability of sULM to visualize glomeruli in vivo in native human kidneys despite their depth and a shorter duration of ultrasound acquisition limited by the period of the patient's apnea. Sensing ultrasound localization microscopy parameters in native kidneys and kidney grafts and their consequence regarding glomeruli detection were also compared.
Materials and methods: Exploration by sULM was conducted in 15 patients with native kidneys and 5 with kidney allografts. Glomeruli were counted using a normalized distance metric projected onto sULM density maps. The difference in the acquisition time, the kidney depth, and the frame rate between native kidneys and kidney grafts and their consequence regarding glomeruli detection were assessed.
Results: Glomerular visualization was achieved in 12 of 15 patients with native kidneys. It failed due to impossible breath-holding for 2 patients and a too-deep kidney for 1 patient. Sensing ultrasound localization microscopy found 16 glomeruli per square centimeter in the native kidneys (6-31) and 33 glomeruli per square centimeter in kidney transplant patients (18-55).
Conclusions: This study demonstrated that sULM can visualize glomeruli in native human kidneys in vivo. The proposed method may have many hypothetical applications, including biomarker development, assisting biopsy, or potentially avoiding it. It establishes a framework for improving the detection of local microstructural pathology, influencing the evaluation of allografts, and facilitating disease monitoring in the native kidney.
{"title":"Visualization of Renal Glomeruli in Human Native Kidneys With Sensing Ultrasound Localization Microscopy.","authors":"Sylvain Bodard, Louise Denis, Georges Chabouh, Jacques Battaglia, Dany Anglicheau, Olivier Hélénon, Jean-Michel Correas, Olivier Couture","doi":"10.1097/RLI.0000000000001061","DOIUrl":"10.1097/RLI.0000000000001061","url":null,"abstract":"<p><strong>Objectives: </strong>Kidney diseases significantly impact individuals' quality of life and strongly reduce life expectancy. Glomeruli play a crucial role in kidney function. Current imaging techniques cannot visualize them due to their small size. Sensing ultrasound localization microscopy (sULM) has shown promising results for visualizing in vivo the glomeruli of human kidney grafts. This study aimed to evaluate the ability of sULM to visualize glomeruli in vivo in native human kidneys despite their depth and a shorter duration of ultrasound acquisition limited by the period of the patient's apnea. Sensing ultrasound localization microscopy parameters in native kidneys and kidney grafts and their consequence regarding glomeruli detection were also compared.</p><p><strong>Materials and methods: </strong>Exploration by sULM was conducted in 15 patients with native kidneys and 5 with kidney allografts. Glomeruli were counted using a normalized distance metric projected onto sULM density maps. The difference in the acquisition time, the kidney depth, and the frame rate between native kidneys and kidney grafts and their consequence regarding glomeruli detection were assessed.</p><p><strong>Results: </strong>Glomerular visualization was achieved in 12 of 15 patients with native kidneys. It failed due to impossible breath-holding for 2 patients and a too-deep kidney for 1 patient. Sensing ultrasound localization microscopy found 16 glomeruli per square centimeter in the native kidneys (6-31) and 33 glomeruli per square centimeter in kidney transplant patients (18-55).</p><p><strong>Conclusions: </strong>This study demonstrated that sULM can visualize glomeruli in native human kidneys in vivo. The proposed method may have many hypothetical applications, including biomarker development, assisting biopsy, or potentially avoiding it. It establishes a framework for improving the detection of local microstructural pathology, influencing the evaluation of allografts, and facilitating disease monitoring in the native kidney.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"561-568"},"PeriodicalIF":7.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}