首页 > 最新文献

Gestão & Produção最新文献

英文 中文
Consistencies of the capability indices based on the normal probability distribution 基于正态概率分布的能力指标一致性
Pub Date : 1900-01-01 DOI: 10.1590/1806-9649-2022v29e5722
J. A. S. Sediyama, Daibou Alassane, Raphael Henrique Teixeira da Silva, J. I. Ribeiro Júnior
Abstract: Capability analysis seeks to estimate the probability that a process will produce compliant products. The capability indices are dimensionless parameters that measure how well the process can meet specifications. In the literature, eight capability indices are listed, among others, considering a stable process under statistical control and based on the normal probability distribution, defined by: Cp, Pp, Cpk, Ppk, Cpm, Ppm, Cpmk, and Ppmk. Basically, the index formulas differ in the calculations of the variability within and total, and of the shifts of the mean in relation to the nominal value and the nearest specification limit. The objective of this article was to compare these capacity indexes, and for that, it was chosen the most consistent estimator, that is, the one that improved the accuracy and efficiency as the number of observations increased. Thus, a simulation of 30,000 values of a normal random variable with a mean equal to zero and a standard deviation equal to one was performed. This made it possible to sample this process 1,000 times using 5, 10, 15, 20, 25, and 30 rational subgroups with individual observations or sample elements. Subsequently, 20 mean shifts were provoked, with values ranging from 0.1 to 2 and varying by 0.1 unit. According to the results, it was concluded that the indexes Cpk and Ppk were the most consistent in presenting higher accuracy and efficiency for at least 15 rational subgroups or sample elements, regardless of the magnitude of the mean displacement in relation to the nominal value.
摘要:能力分析旨在估计一个过程产生符合要求的产品的概率。能力指标是衡量过程满足规格的程度的无量纲参数。在文献中,我们列出了8个能力指标,其中考虑一个在统计控制下的稳定过程,基于正态概率分布,定义为:Cp、Pp、Cpk、Ppk、Cpm、Ppm、Cpmk、Ppmk。基本上,指数公式的不同之处在于计算内部变异性和总体变异性,以及相对于标称值和最接近的规格限制的平均值的偏移。本文的目的是比较这些容量指标,为此,选择最一致的估计器,即随着观测数量的增加而提高准确性和效率的估计器。因此,模拟了一个正态随机变量的3万个值,平均值等于零,标准差等于1。这使得使用5、10、15、20、25和30个具有单个观察值或样本元素的合理子组对该过程进行1,000次采样成为可能。随后,引发了20次平均位移,其值从0.1到2不等,变化0.1个单位。结果表明,无论相对于标称值的平均位移大小如何,Cpk和Ppk指数在至少15个合理子组或样本元素上表现出较高的准确性和效率,是最一致的。
{"title":"Consistencies of the capability indices based on the normal probability distribution","authors":"J. A. S. Sediyama, Daibou Alassane, Raphael Henrique Teixeira da Silva, J. I. Ribeiro Júnior","doi":"10.1590/1806-9649-2022v29e5722","DOIUrl":"https://doi.org/10.1590/1806-9649-2022v29e5722","url":null,"abstract":"Abstract: Capability analysis seeks to estimate the probability that a process will produce compliant products. The capability indices are dimensionless parameters that measure how well the process can meet specifications. In the literature, eight capability indices are listed, among others, considering a stable process under statistical control and based on the normal probability distribution, defined by: Cp, Pp, Cpk, Ppk, Cpm, Ppm, Cpmk, and Ppmk. Basically, the index formulas differ in the calculations of the variability within and total, and of the shifts of the mean in relation to the nominal value and the nearest specification limit. The objective of this article was to compare these capacity indexes, and for that, it was chosen the most consistent estimator, that is, the one that improved the accuracy and efficiency as the number of observations increased. Thus, a simulation of 30,000 values of a normal random variable with a mean equal to zero and a standard deviation equal to one was performed. This made it possible to sample this process 1,000 times using 5, 10, 15, 20, 25, and 30 rational subgroups with individual observations or sample elements. Subsequently, 20 mean shifts were provoked, with values ranging from 0.1 to 2 and varying by 0.1 unit. According to the results, it was concluded that the indexes Cpk and Ppk were the most consistent in presenting higher accuracy and efficiency for at least 15 rational subgroups or sample elements, regardless of the magnitude of the mean displacement in relation to the nominal value.","PeriodicalId":146264,"journal":{"name":"Gestão & Produção","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126704354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gestão & Produção
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1