The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's reaction to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation, with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
蛋白质糖基化蛋白质翻译后修饰,包括磷酸化、乙酰化、泛素化等,具有关键的调控水平,可以显著改变蛋白质的结构和功能,起到调整活性的分子开关或调速器的作用。许多翻译后修饰都是专门针对特定亚细胞区和客户的,例如内质网(ER)和高尔基体中由一系列糖基转移酶和糖苷酶介导的复杂的蛋白质 N-糖基化途径。蛋白质糖基化涉及氨基酸侧链与糖的共价修饰,从而产生线性或支链结构(聚糖;图 1)。糖基化的结果会影响蛋白质的功能、细胞-细胞识别、细胞-基质相互作用等。2图1在图形浏览器中打开PowerPoint蛋白质N-连接糖基化是一种共翻译修饰和翻译后修饰,涉及在穿过分泌途径的蛋白质中特定氨基酸序列的天冬酰胺侧链上安装聚糖。A: 14 个残基的前体寡糖首先以分步的方式合成,同时附着在 ER 膜上的焦磷酸多糖分子上。核苷酸糖形式的单糖底物通过各自的转移酶加入到不断增长的糖链中。然后,在多肽从核糖体转运到 ER 时,寡糖基转移酶(OST)复合体将寡糖连接的前体添加到新生的 ER 客户蛋白中,然后寡糖连接的前体需要翻转酶的作用。需要注意的是,N-聚糖也可以通过 OST 在翻译后安装。安装前体后,折叠和初步修剪在 ER 中进行,新生糖蛋白被输送到高尔基体进行进一步处理。B:ER 和高尔基体中的聚糖修饰酶通过特异性酶依次去除和添加单糖来处理 N-聚糖,最终产生大量潜在的聚糖结构,包括杂交聚糖、复合聚糖、核心岩藻糖基化聚糖和硅烷基化聚糖。与 DNA、RNA 和蛋白质等其他生物大分子不同,聚糖的合成不需要模板,而是依赖于核苷酸激活的单糖作为构建模块、与之相关的转运体3 以及介导糖的添加和去除的酶的可用性/合成。虽然细胞中会出现几种形式的蛋白质糖基化(包括但不限于N-连接、O-连接、C-连接和S-连接形式的糖基化),但天冬酰胺的N-连接糖基化可能是最常见的。N-糖基化的特点是分步合成 14 元前体寡糖,将前体整体转移到 ER 客户蛋白中的(典型的)Asn-Xaa-Ser/Thr(其中 Asn=天冬酰胺;Xaa=除脯氨酸外的任何氨基酸;Ser=丝氨酸;Thr=苏氨酸)序列上,然后由 ER 和高尔基定位酶进一步分步加工(图 1),6 最终产生种类繁多的高度分支结构。N-糖基化在进化过程中是保守的7 ,对健康和疾病有着广泛的影响8。事实上,所有生物界都具有 N-糖基化功能,尽管它们可能根据生物体的不同而利用专门的构建模块。
{"title":"Protein Glycosylation Patterns Shaped by the IRE1-XBP1s Arm of the Unfolded Protein Response","authors":"Kenny Chen, Prof. Matthew D. Shoulders","doi":"10.1002/ijch.202300162","DOIUrl":"10.1002/ijch.202300162","url":null,"abstract":"<p>The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of <i>N</i>- and <i>O</i>-glycans installed on ER client proteins. This crosstalk between the UPR's reaction to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation, with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the Ising model on the Bronze-mean hexagonal quasicrystal (BMH QC), an aperiodic tiling with geometric frustration. Our extensive Monte Carlo simulations explore the model's rich phase diagram, revealing six distinct phases with diverse magnetic properties and degrees of frustration. We uncover exotic spin glass phases, signaled by the replica symmetry breaking and slow relaxation dynamics. We shed light on the intriguing magnetic properties of frustrated quasicrystals and open new avenues for studying exotic phases in condensed matter physics.
{"title":"Ising Spins on Frustrated Bronze-Mean Hexagonal Quasicrystal","authors":"Pratyay Ghosh","doi":"10.1002/ijch.202300113","DOIUrl":"https://doi.org/10.1002/ijch.202300113","url":null,"abstract":"<p>We investigate the Ising model on the Bronze-mean hexagonal quasicrystal (BMH QC), an aperiodic tiling with geometric frustration. Our extensive Monte Carlo simulations explore the model's rich phase diagram, revealing six distinct phases with diverse magnetic properties and degrees of frustration. We uncover exotic spin glass phases, signaled by the replica symmetry breaking and slow relaxation dynamics. We shed light on the intriguing magnetic properties of frustrated quasicrystals and open new avenues for studying exotic phases in condensed matter physics.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 10-11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prof. Aaron M. Fleming, Justin C. Dingman, Yizhou Wu, Spencer S. Hoon, Prof. Cynthia J. Burrows
Sequencing for RNA modifications with the nanopore direct RNA sequencing platform provides ionic current levels, helicase dwell times, and base call data that differentiate the modifications from the canonical form. Herein, model RNAs were synthesized with site-specific uridine (U) base modifications that enable the study of increasing an alkyl group size, halogen identity, or a change in base acidity to impact the nanopore data. The analysis concluded that increases in alkyl size trend with greater current blockage but a similar change in base-call error was not found. The addition of a halogen series to C5 of U revealed that the current levels recorded a trend with the water-octanol partition coefficient of the base, as well as the base call error. Studies with U modifications that are deprotonated (i. e., anionic) under the sequencing conditions gave broad current levels that influenced the base call error. Some modifications led to helicase dwell time changes. These insights provide design parameters for modification-specific chemical reagents that can shift nanopore signatures to minimize false positive reads, a known issue with this sequencing approach.
利益冲突A.M.F. 和 C. J.B. 拥有电子生物科学公司的纳米孔测序专利许可。
{"title":"Nanopore Direct RNA Sequencing for Modified Uridine Nucleotides Yields Signals Dependent on the Physical Properties of the Modified Base","authors":"Prof. Aaron M. Fleming, Justin C. Dingman, Yizhou Wu, Spencer S. Hoon, Prof. Cynthia J. Burrows","doi":"10.1002/ijch.202300177","DOIUrl":"10.1002/ijch.202300177","url":null,"abstract":"<p>Sequencing for RNA modifications with the nanopore direct RNA sequencing platform provides ionic current levels, helicase dwell times, and base call data that differentiate the modifications from the canonical form. Herein, model RNAs were synthesized with site-specific uridine (U) base modifications that enable the study of increasing an alkyl group size, halogen identity, or a change in base acidity to impact the nanopore data. The analysis concluded that increases in alkyl size trend with greater current blockage but a similar change in base-call error was not found. The addition of a halogen series to C5 of U revealed that the current levels recorded a trend with the water-octanol partition coefficient of the base, as well as the base call error. Studies with U modifications that are deprotonated (i. e., anionic) under the sequencing conditions gave broad current levels that influenced the base call error. Some modifications led to helicase dwell time changes. These insights provide design parameters for modification-specific chemical reagents that can shift nanopore signatures to minimize false positive reads, a known issue with this sequencing approach.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Variants in the genes encoding gamma-aminobutyric acid type A (GABAA) receptor subunits are associated with epilepsy. To date, over 1000 clinical variants have been identified in these genes. However, the majority of these variants lack functional studies and their clinical significance is uncertain although accumulating evidence indicates that proteostasis deficiency is the major disease-causing mechanism. Here, we apply two state-of-the-art modeling tools, namely AlphaMissense and Rhapsody to predict the pathogenicity of saturating missense variants in genes that encode the major subunits of GABAA receptors in the central nervous system, including GABRA1, GABRB2, GABRB3, and GABRG2. We demonstrate that the predicted pathogenicity correlates well between AlphaMissense and Rhapsody. In addition, AlphaMissense pathogenicity score correlates modestly with plasma membrane expression, peak current amplitude, and GABA potency of the variants that have available experimental data. Furthermore, almost all annotated pathogenic variants in the ClinVar database are successfully identified from the prediction, whereas uncertain variants from ClinVar partially due to the lack of experimental data are differentiated into different pathogenicity groups. The pathogenicity prediction of GABAA receptor missense variants provides a resource to the community as well as guidance for future experimental and clinical investigations.
{"title":"Pathogenicity Prediction of GABAA Receptor Missense Variants","authors":"Ya-Juan Wang, Giang H. Vu, Ting-Wei Mu","doi":"10.1002/ijch.202300161","DOIUrl":"10.1002/ijch.202300161","url":null,"abstract":"<p>Variants in the genes encoding gamma-aminobutyric acid type A (GABA<sub>A</sub>) receptor subunits are associated with epilepsy. To date, over 1000 clinical variants have been identified in these genes. However, the majority of these variants lack functional studies and their clinical significance is uncertain although accumulating evidence indicates that proteostasis deficiency is the major disease-causing mechanism. Here, we apply two state-of-the-art modeling tools, namely AlphaMissense and Rhapsody to predict the pathogenicity of saturating missense variants in genes that encode the major subunits of GABA<sub>A</sub> receptors in the central nervous system, including <i>GABRA1</i>, <i>GABRB2</i>, <i>GABRB3</i>, and <i>GABRG2</i>. We demonstrate that the predicted pathogenicity correlates well between AlphaMissense and Rhapsody. In addition, AlphaMissense pathogenicity score correlates modestly with plasma membrane expression, peak current amplitude, and GABA potency of the variants that have available experimental data. Furthermore, almost all annotated pathogenic variants in the ClinVar database are successfully identified from the prediction, whereas uncertain variants from ClinVar partially due to the lack of experimental data are differentiated into different pathogenicity groups. The pathogenicity prediction of GABA<sub>A</sub> receptor missense variants provides a resource to the community as well as guidance for future experimental and clinical investigations.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cystic Fibrosis (CF) is a genetic disorder resulting from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to a faulty CFTR protein. Dysfunctional CFTR causes chloride ion imbalance, resulting in dense mucus accumulation in various organs, particularly the lungs. CF treatments focus on symptom management and addressing CFTR′s functional defects. Notably, development of CFTR modulator therapies has significantly advanced CF treatment. These drugs target CFTR protein structural defects induced by mutations, restoring its function and improving CF symptoms. VX-770, a CFTR potentiator, and CFTR correctors like VX-809, VX-661, and VX-445, have gained FDA approval and widespread clinical use, greatly enhancing the health and survival of many CF patients. However, some CFTR mutations lack effective targeted therapies, leaving approximately 6 % of CF patients without suitable options. CFTR modulator therapies have proven essential for combating the underlying causes of protein misfolding diseases, serving as a blueprint for similar treatments in other membrane protein misfolding diseases. This review explores current and future CFTR modulator therapies, and applications of established paradigms to membrane protein misfolding diseases. Ongoing research and innovation hold the potential for further improvements in CF management and the treatment of protein misfolding diseases.
利益冲突无冲突可申报。
{"title":"Cystic Fibrosis Modulator Therapies: Bridging Insights from CF to other Membrane Protein Misfolding Diseases","authors":"Minsoo Kim, Lars Plate","doi":"10.1002/ijch.202300152","DOIUrl":"10.1002/ijch.202300152","url":null,"abstract":"<p>Cystic Fibrosis (CF) is a genetic disorder resulting from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to a faulty CFTR protein. Dysfunctional CFTR causes chloride ion imbalance, resulting in dense mucus accumulation in various organs, particularly the lungs. CF treatments focus on symptom management and addressing CFTR′s functional defects. Notably, development of CFTR modulator therapies has significantly advanced CF treatment. These drugs target CFTR protein structural defects induced by mutations, restoring its function and improving CF symptoms. VX-770, a CFTR potentiator, and CFTR correctors like VX-809, VX-661, and VX-445, have gained FDA approval and widespread clinical use, greatly enhancing the health and survival of many CF patients. However, some CFTR mutations lack effective targeted therapies, leaving approximately 6 % of CF patients without suitable options. CFTR modulator therapies have proven essential for combating the underlying causes of protein misfolding diseases, serving as a blueprint for similar treatments in other membrane protein misfolding diseases. This review explores current and future CFTR modulator therapies, and applications of established paradigms to membrane protein misfolding diseases. Ongoing research and innovation hold the potential for further improvements in CF management and the treatment of protein misfolding diseases.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetically encoded peptide libraries are at the forefront of de novo drug discovery. The RaPID (Random Nonstandard Peptides Integrated Discovery) platform stands out due to the unique combination of flexible in vitro translation (FIT) and mRNA display. This enables the incorporation of non-canonical amino acids, improving chemical diversity and allowing macrocyclisation of the peptide library. The resulting constrained peptides are valued for their strong binding affinity and stability, especially in the context of protein-protein interactions. In response to SARS-CoV-2, the causative agent of the COVID-19 pandemic, the RaPID system proved valuable in identifying high-affinity ligands of viral proteins. Among many peptide ligands of SARS-CoV-2 spike and main protease (Mpro), several macrocycles stand out for their exceptional binding affinities. Structural data showcases distinct binding modes in complex with the receptor-binding domain (RBD) of the spike glycoprotein or the catalytic active site of Mpro. However, translating these in vitro findings into clinical applications remains challenging, especially due to insufficient cell permeability.
{"title":"A RaPID Response to SARS-CoV-2","authors":"Sven Ullrich, Assoc. Prof. Christoph Nitsche","doi":"10.1002/ijch.202300170","DOIUrl":"10.1002/ijch.202300170","url":null,"abstract":"<p>Genetically encoded peptide libraries are at the forefront of <i>de novo</i> drug discovery. The RaPID (Random Nonstandard Peptides Integrated Discovery) platform stands out due to the unique combination of flexible <i>in vitro</i> translation (FIT) and mRNA display. This enables the incorporation of non-canonical amino acids, improving chemical diversity and allowing macrocyclisation of the peptide library. The resulting constrained peptides are valued for their strong binding affinity and stability, especially in the context of protein-protein interactions. In response to SARS-CoV-2, the causative agent of the COVID-19 pandemic, the RaPID system proved valuable in identifying high-affinity ligands of viral proteins. Among many peptide ligands of SARS-CoV-2 spike and main protease (M<sup>pro</sup>), several macrocycles stand out for their exceptional binding affinities. Structural data showcases distinct binding modes in complex with the receptor-binding domain (RBD) of the spike glycoprotein or the catalytic active site of M<sup>pro</sup>. However, translating these <i>in vitro</i> findings into clinical applications remains challenging, especially due to insufficient cell permeability.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 8-9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}