C-type natriuretic peptide (CNP) is known to promote chondrocyte proliferation and bone formation; however, CNP's extremely short half-life necessitates continuous intravascular administration to achieve bone-lengthening effects. Vosoritide, a CNP analog designed for resistance to neutral endopeptidase, allows for once-daily administration. Nonetheless, it distributes systemically rather than localizing to target tissues, which may result in adverse effects such as hypotension. To enhance local drug delivery and therapeutic efficacy, we developed a potentially novel synthetic protein by fusing a collagen-binding domain (CBD) to CNP, termed CBD-CNP. This fusion protein exhibited stability under heat conditions and retained the collagen-binding ability and bioactivity as CNP. CBD-CNP localized to articular cartilage in fetal murine tibiae and promoted bone elongation. Spatial transcriptomic analysis revealed that the upregulation of chondromodulin expression may contribute to its therapeutic effects. Treatment of CBD-CNP mixed with collagen powder to a fracture site of a mouse model increased bone mineral content and bone volume compared with CNP-22. Intraarticular injection of CBD-CNP to a mouse model of knee osteoarthritis suppressed subchondral bone thickening. By addressing the limitations of CNP's rapid degeneration, CBD-CNP leverages its collagen-binding capacity to achieve targeted, sustained delivery in collagen-rich tissues, offering a promising strategy for enhancing chondrogenesis and osteogenesis.
{"title":"Collagen-binding C-type natriuretic peptide enhances chondrogenesis and osteogenesis.","authors":"Kenta Hirai, Kenta Sawamura, Ryusaku Esaki, Ryusuke Sawada, Yuka Okusha, Eriko Aoyama, Hiroki Saito, Kentaro Uchida, Takehiko Mima, Satoshi Kubota, Hirokazu Tsukahara, Shiro Imagama, Masaki Matsushita, Osamu Matsushita, Yasuyuki Hosono","doi":"10.1172/jci.insight.198959","DOIUrl":"10.1172/jci.insight.198959","url":null,"abstract":"<p><p>C-type natriuretic peptide (CNP) is known to promote chondrocyte proliferation and bone formation; however, CNP's extremely short half-life necessitates continuous intravascular administration to achieve bone-lengthening effects. Vosoritide, a CNP analog designed for resistance to neutral endopeptidase, allows for once-daily administration. Nonetheless, it distributes systemically rather than localizing to target tissues, which may result in adverse effects such as hypotension. To enhance local drug delivery and therapeutic efficacy, we developed a potentially novel synthetic protein by fusing a collagen-binding domain (CBD) to CNP, termed CBD-CNP. This fusion protein exhibited stability under heat conditions and retained the collagen-binding ability and bioactivity as CNP. CBD-CNP localized to articular cartilage in fetal murine tibiae and promoted bone elongation. Spatial transcriptomic analysis revealed that the upregulation of chondromodulin expression may contribute to its therapeutic effects. Treatment of CBD-CNP mixed with collagen powder to a fracture site of a mouse model increased bone mineral content and bone volume compared with CNP-22. Intraarticular injection of CBD-CNP to a mouse model of knee osteoarthritis suppressed subchondral bone thickening. By addressing the limitations of CNP's rapid degeneration, CBD-CNP leverages its collagen-binding capacity to achieve targeted, sustained delivery in collagen-rich tissues, offering a promising strategy for enhancing chondrogenesis and osteogenesis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145819268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.193164
Deepthi Ashok, Ting Liu, Misato Nakanishi-Koakutsu, Joseph Criscione, Meghana Prakash, Alexis Tensfeldt, Byunggik Kim, Bryan Ho, Julian Chow, Morgan Craney, Mark J Ranek, Brian L Lin, Kyriakos Papanicolaou, Agnieszka Sidor, D Brian Foster, Hee Cheol Cho, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O'Rourke
Cardiac arrhythmias increase during acute SARS-CoV-2 infection and in long COVID syndrome, by unknown mechanisms. This study explored the acute and long-term effects of COVID-19 on cardiac electrophysiology and the cardiac conduction system (CCS) in a hamster model. Electrocardiograms and subpleural pressures were recorded by telemetry for 4 weeks after SARS-CoV-2 infection, and interferon-stimulated gene expression and macrophage infiltration of the CCS were assessed at 4 days and 4 weeks postinfection. COVID-19 induced pronounced tachypnea and cardiac arrhythmias, including bradycardia and persistent atrioventricular block, though no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped, indicating persistent CCS injury. COVID-19 induced cardiac cytokine expression, connexin mislocalization, and CCS macrophage remodeling. Interestingly, sterile innate immune activation by direct cardiac injection of polyinosinic:polycytidylic acid (PIC) induced arrhythmias similar to those of COVID-19. PIC strongly induced cytokine secretion and interferon signaling in hearts, human induced pluripotent stem cell-derived cardiomyocytes, and engineered heart tissues, accompanied by alterations in excitation-contraction coupling. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by JAK/STAT inhibition or a mitochondrially targeted antioxidant, indicating that SARS-CoV-2 infection indirectly leads to arrhythmias by innate immune activation and redox stress, which could have implications for long COVID syndrome.
{"title":"Innate immune activation and mitochondrial ROS induce acute and persistent cardiac conduction system dysfunction after COVID-19.","authors":"Deepthi Ashok, Ting Liu, Misato Nakanishi-Koakutsu, Joseph Criscione, Meghana Prakash, Alexis Tensfeldt, Byunggik Kim, Bryan Ho, Julian Chow, Morgan Craney, Mark J Ranek, Brian L Lin, Kyriakos Papanicolaou, Agnieszka Sidor, D Brian Foster, Hee Cheol Cho, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O'Rourke","doi":"10.1172/jci.insight.193164","DOIUrl":"10.1172/jci.insight.193164","url":null,"abstract":"<p><p>Cardiac arrhythmias increase during acute SARS-CoV-2 infection and in long COVID syndrome, by unknown mechanisms. This study explored the acute and long-term effects of COVID-19 on cardiac electrophysiology and the cardiac conduction system (CCS) in a hamster model. Electrocardiograms and subpleural pressures were recorded by telemetry for 4 weeks after SARS-CoV-2 infection, and interferon-stimulated gene expression and macrophage infiltration of the CCS were assessed at 4 days and 4 weeks postinfection. COVID-19 induced pronounced tachypnea and cardiac arrhythmias, including bradycardia and persistent atrioventricular block, though no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped, indicating persistent CCS injury. COVID-19 induced cardiac cytokine expression, connexin mislocalization, and CCS macrophage remodeling. Interestingly, sterile innate immune activation by direct cardiac injection of polyinosinic:polycytidylic acid (PIC) induced arrhythmias similar to those of COVID-19. PIC strongly induced cytokine secretion and interferon signaling in hearts, human induced pluripotent stem cell-derived cardiomyocytes, and engineered heart tissues, accompanied by alterations in excitation-contraction coupling. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by JAK/STAT inhibition or a mitochondrially targeted antioxidant, indicating that SARS-CoV-2 infection indirectly leads to arrhythmias by innate immune activation and redox stress, which could have implications for long COVID syndrome.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.197359
Jennifer Stoddard, Hye Sun Kuehn, Ravichandra Tagirasa, Marita Bosticardo, Francesca Pala, Julie E Niemela, Agustin A Gil Silva, Kayla Amini, Eduardo Anaya, Mario Framil Seoane, Carolina Bouso, Dimana Dimitrova, Jennifer A Kanakry, Laia Alsina, Matias Oleastro, Steven M Holland, Thomas A Fleisher, Richard L Wasserman, Luigi D Notarangelo, Sergio D Rosenzweig
The transcription factor IKAROS, encoded by IKZF1, is crucial for lymphocyte development and differentiation. Germline heterozygous IKZF1 mutations cause B cell immunodeficiency, but also affect T cells. Patients with IKZF1 haploinsufficiency (HI) or dimerization-defective (DD) variants show reduced naive and increased memory T cells, while dominant-negative (DN) mutations result in the opposite phenotype. Gain-of-function patients display variable patterns. To investigate IKAROS's role in shaping the human naive/memory T cell phenotype, we performed IKAROS immunomodulation and knockdown experiments and analyzed early T cell development in an artificial thymic organoid (ATO) system using CD34+ cells from patients with representative IKZF1 variants. IKAROS inhibition by lenalidomide or silencing by small hairpin RNA directly altered expression of HNRNPLL, the master regulator of CD45 isoform splicing that defines CD45RA+/naive and CD45RO+/memory phenotypes. In the ATO system, IKAROS-DN precursor cells were blocked at the CD4-CD8-/double-negative stage and retained a CD45RA+ phenotype, whereas IKAROS-HI cells inefficiently reached the CD4+CD8+/double-positive stage and partially transitioned from CD45RA to CD45RO. Analysis of public gene expression data showed high HNRNPLL expression in double-positive thymic cells, beyond the stages affected by IKZF1 DN and HI mutations. Collectively, these findings indicate that IKAROS regulates early and late T cell development by mechanisms, including HNRNPLL modulation.
{"title":"IKAROS regulates human T cell phenotype at a thymic and postthymic level.","authors":"Jennifer Stoddard, Hye Sun Kuehn, Ravichandra Tagirasa, Marita Bosticardo, Francesca Pala, Julie E Niemela, Agustin A Gil Silva, Kayla Amini, Eduardo Anaya, Mario Framil Seoane, Carolina Bouso, Dimana Dimitrova, Jennifer A Kanakry, Laia Alsina, Matias Oleastro, Steven M Holland, Thomas A Fleisher, Richard L Wasserman, Luigi D Notarangelo, Sergio D Rosenzweig","doi":"10.1172/jci.insight.197359","DOIUrl":"https://doi.org/10.1172/jci.insight.197359","url":null,"abstract":"<p><p>The transcription factor IKAROS, encoded by IKZF1, is crucial for lymphocyte development and differentiation. Germline heterozygous IKZF1 mutations cause B cell immunodeficiency, but also affect T cells. Patients with IKZF1 haploinsufficiency (HI) or dimerization-defective (DD) variants show reduced naive and increased memory T cells, while dominant-negative (DN) mutations result in the opposite phenotype. Gain-of-function patients display variable patterns. To investigate IKAROS's role in shaping the human naive/memory T cell phenotype, we performed IKAROS immunomodulation and knockdown experiments and analyzed early T cell development in an artificial thymic organoid (ATO) system using CD34+ cells from patients with representative IKZF1 variants. IKAROS inhibition by lenalidomide or silencing by small hairpin RNA directly altered expression of HNRNPLL, the master regulator of CD45 isoform splicing that defines CD45RA+/naive and CD45RO+/memory phenotypes. In the ATO system, IKAROS-DN precursor cells were blocked at the CD4-CD8-/double-negative stage and retained a CD45RA+ phenotype, whereas IKAROS-HI cells inefficiently reached the CD4+CD8+/double-positive stage and partially transitioned from CD45RA to CD45RO. Analysis of public gene expression data showed high HNRNPLL expression in double-positive thymic cells, beyond the stages affected by IKZF1 DN and HI mutations. Collectively, these findings indicate that IKAROS regulates early and late T cell development by mechanisms, including HNRNPLL modulation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tumor microenvironment plays a key role in cancer progression and therapy resistance, with cancer-associated fibroblasts (CAFs) contributing to desmoplasia, extracellular matrix (ECM) remodeling, and elevated interstitial fluid pressure, all of which hinder drug delivery. We investigated fibroblast activation protein-targeted (FAP-targeted) near-infrared photoimmunotherapy (NIR-PIT) as a strategy to improve drug penetration in CAF-rich tumors. In clinical esophageal cancer samples, FAP expression strongly correlated with increased collagen I, hyaluronic acid, and microvascular collapse. CAF-rich 3D spheroids demonstrated elevated ECM deposition and significantly impaired drug uptake compared with CAF-poor models. FAP-targeted NIR-PIT selectively reduced CAFs, reduced ECM components, and restored drug permeability. In vivo, FAP-targeted NIR-PIT enhanced the accumulation of panitumumab and Abraxane in CAF-rich tumors and improved antitumor efficacy when combined with chemotherapy. These findings highlight FAP-targeted NIR-PIT as a promising therapeutic approach to remodel the tumor stroma and overcome drug resistance in desmoplastic solid tumors.
{"title":"Enhancement of drug delivery through fibroblast activation protein-targeted near-infrared photoimmunotherapy.","authors":"Seitaro Nishimura, Kazuhiro Noma, Tasuku Matsumoto, Yasushige Takeda, Tatsuya Takahashi, Hijiri Matsumoto, Kento Kawasaki, Hotaka Kawai, Tomoyoshi Kunitomo, Masaaki Akai, Teruki Kobayashi, Noriyuki Nishiwaki, Hajime Kashima, Takuya Kato, Satoru Kikuchi, Shunsuke Tanabe, Toshiaki Ohara, Hiroshi Tazawa, Yasuhiro Shirakawa, Peter L Choyke, Hisataka Kobayashi, Toshiyoshi Fujiwara","doi":"10.1172/jci.insight.195776","DOIUrl":"https://doi.org/10.1172/jci.insight.195776","url":null,"abstract":"<p><p>The tumor microenvironment plays a key role in cancer progression and therapy resistance, with cancer-associated fibroblasts (CAFs) contributing to desmoplasia, extracellular matrix (ECM) remodeling, and elevated interstitial fluid pressure, all of which hinder drug delivery. We investigated fibroblast activation protein-targeted (FAP-targeted) near-infrared photoimmunotherapy (NIR-PIT) as a strategy to improve drug penetration in CAF-rich tumors. In clinical esophageal cancer samples, FAP expression strongly correlated with increased collagen I, hyaluronic acid, and microvascular collapse. CAF-rich 3D spheroids demonstrated elevated ECM deposition and significantly impaired drug uptake compared with CAF-poor models. FAP-targeted NIR-PIT selectively reduced CAFs, reduced ECM components, and restored drug permeability. In vivo, FAP-targeted NIR-PIT enhanced the accumulation of panitumumab and Abraxane in CAF-rich tumors and improved antitumor efficacy when combined with chemotherapy. These findings highlight FAP-targeted NIR-PIT as a promising therapeutic approach to remodel the tumor stroma and overcome drug resistance in desmoplastic solid tumors.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.183998
Jackie Trink, Ifeanyi Kennedy Nmecha, Katrine Pilely, Renzhong Li, Zi Yang, Sydney Kwiecien, Melissa MacDonald, Bo Gao, Mariam A Mamai, Chao Lu, Urooj F Bajwa, Nikhil Uppal, James C Fredenburgh, Masao Kakoki, Salvatore V Pizzo, Anthony F Rullo, Matthew B Lanktree, Jeffrey I Weitz, Yaseelan Palarasah, Joan C Krepinsky
We recently showed that cell surface translocation of the endoplasmic reticulum-resident protein GRP78, when bound by activated α 2-macroglobulin (α2M*), induces pro-fibrotic responses in glomerular mesangial cells in response to high glucose and regulates activation of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1), implicating a pathogenic role in glomerulosclerosis. Interstitial fibrosis, largely mediated by proximal tubular epithelial cells (PTEC) and renal fibroblasts, develops later in kidney disease and correlates with functional decline. Here we investigated whether interstitial fibrosis was mediated by cell surface GRP78 (csGRP78)/α2M*. High glucose and TGF-β1 increased csGRP78 and α2M* in PTEC and renal fibroblasts, and their inhibition prevented fibrotic protein production. Interestingly, for TGF-β1, this depended on inhibition of noncanonical signaling through YAP/TAZ, with Smad3 activation unaffected. In vivo, type 1 diabetic Akita mice overexpressing TGF-β1 were treated with either a neutralizing antibody for csGRP78 (C38) or α2M* (Fα2M) or an inhibitory peptide blocking csGRP78/α2M* interaction, and mice with unilateral ureteral obstruction were treated with Fα2M or inhibitory peptide. Consistently, inhibition by antibody or peptide attenuated fibrosis and pro-fibrotic signaling. These findings show an important role for csGRP78/α2M* in mediating tubulointerstitial fibrosis in both diabetic and nondiabetic kidney disease and support their inhibition as a potential antifibrotic therapeutic intervention.
{"title":"Inhibition of cell surface GRP78 and activated α2M interaction attenuates kidney fibrosis.","authors":"Jackie Trink, Ifeanyi Kennedy Nmecha, Katrine Pilely, Renzhong Li, Zi Yang, Sydney Kwiecien, Melissa MacDonald, Bo Gao, Mariam A Mamai, Chao Lu, Urooj F Bajwa, Nikhil Uppal, James C Fredenburgh, Masao Kakoki, Salvatore V Pizzo, Anthony F Rullo, Matthew B Lanktree, Jeffrey I Weitz, Yaseelan Palarasah, Joan C Krepinsky","doi":"10.1172/jci.insight.183998","DOIUrl":"https://doi.org/10.1172/jci.insight.183998","url":null,"abstract":"<p><p>We recently showed that cell surface translocation of the endoplasmic reticulum-resident protein GRP78, when bound by activated α 2-macroglobulin (α2M*), induces pro-fibrotic responses in glomerular mesangial cells in response to high glucose and regulates activation of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1), implicating a pathogenic role in glomerulosclerosis. Interstitial fibrosis, largely mediated by proximal tubular epithelial cells (PTEC) and renal fibroblasts, develops later in kidney disease and correlates with functional decline. Here we investigated whether interstitial fibrosis was mediated by cell surface GRP78 (csGRP78)/α2M*. High glucose and TGF-β1 increased csGRP78 and α2M* in PTEC and renal fibroblasts, and their inhibition prevented fibrotic protein production. Interestingly, for TGF-β1, this depended on inhibition of noncanonical signaling through YAP/TAZ, with Smad3 activation unaffected. In vivo, type 1 diabetic Akita mice overexpressing TGF-β1 were treated with either a neutralizing antibody for csGRP78 (C38) or α2M* (Fα2M) or an inhibitory peptide blocking csGRP78/α2M* interaction, and mice with unilateral ureteral obstruction were treated with Fα2M or inhibitory peptide. Consistently, inhibition by antibody or peptide attenuated fibrosis and pro-fibrotic signaling. These findings show an important role for csGRP78/α2M* in mediating tubulointerstitial fibrosis in both diabetic and nondiabetic kidney disease and support their inhibition as a potential antifibrotic therapeutic intervention.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.193563
David Strawn, James G Krueger, Robert Bissonnette, Kilian Eyerich, Laura K Ferris, Amy S Paller, Andreas Pinter, Dylan Richards, Elizabeth Y Chen, Kate Paget, Daniel Horowitz, Roohid Parast, Joshua J Rusbuldt, Jocelyn Sendecki, Sunita Bhagat, Lynn P Tomsho, Ching-Heng Chou, Marta E Polak, Brice E Keyes, Emily Bozenhardt, Yuan Xiong, Wangda Zhou, Cynthia DeKlotz, Paul Newbold, Dawn M Waterworth, Megan Miller, Takayuki Ota, Ya-Wen Yang, Monica Wl Leung, Lloyd S Miller, Carolyn A Cuff, Bradford McRae, Darren Ruane, Arun K Kannan
BACKGROUNDIcotrokinra is the first and only targeted oral peptide that selectively binds the IL-23 receptor with high affinity to precisely inhibit IL-23 signaling. Icotrokinra demonstrated high rates of complete skin clearance and durable disease control in the phase IIb trial, FRONTIER-1, and its long-term extension, FRONTIER-2, in participants with moderate-to-severe plaque psoriasis. This study evaluated systemic and skin pharmacodynamic response of icotrokinra and its relationship to clinical response in FRONTIER participants.METHODSFRONTIER-1 participants received icotrokinra or placebo for 16 weeks. FRONTIER-2 followed participants for up to 1 year of treatment; placebo participants transitioned to icotrokinra after week 16. Systemic pharmacodynamic changes were assessed in serum through week 52. Skin pharmacodynamic changes were assessed using transcriptomic analysis of skin biopsies and protein quantification in tape-strip samples through week 16.RESULTSIcotrokinra dose-dependently reduced serum levels of the IL-23/IL-17 axis and psoriasis disease biomarkers through week 52, with maximal reductions observed with the highest 100 mg twice-daily dose. Proteomic analyses showed icotrokinra selectively blocked IL-23-driven inflammation without broader impacts on circulating proteins, including serum IL-23 levels. Sixteen weeks of icotrokinra, but not placebo, reduced expression of psoriasis-associated genes in lesional skin. Icotrokinra treatment also reduced psoriasis-relevant proteins in week 16 lesional skin tape-strips to levels comparable to nonlesional samples.CONCLUSIONIcotrokinra induced a dose-dependent pharmacodynamic response, with early (week 4) and sustained (week 52) reductions in biomarkers of IL-23 pathway activation and psoriasis disease severity, which correlated with clinical response.TRIAL REGISTRATIONClinicalTrials.gov: NCT05223868, NCT05364554.FUNDINGJohnson & Johnson.
{"title":"Icotrokinra induces early and sustained pharmacodynamic responses in phase IIb study of patients with moderate-to-severe psoriasis.","authors":"David Strawn, James G Krueger, Robert Bissonnette, Kilian Eyerich, Laura K Ferris, Amy S Paller, Andreas Pinter, Dylan Richards, Elizabeth Y Chen, Kate Paget, Daniel Horowitz, Roohid Parast, Joshua J Rusbuldt, Jocelyn Sendecki, Sunita Bhagat, Lynn P Tomsho, Ching-Heng Chou, Marta E Polak, Brice E Keyes, Emily Bozenhardt, Yuan Xiong, Wangda Zhou, Cynthia DeKlotz, Paul Newbold, Dawn M Waterworth, Megan Miller, Takayuki Ota, Ya-Wen Yang, Monica Wl Leung, Lloyd S Miller, Carolyn A Cuff, Bradford McRae, Darren Ruane, Arun K Kannan","doi":"10.1172/jci.insight.193563","DOIUrl":"10.1172/jci.insight.193563","url":null,"abstract":"<p><p>BACKGROUNDIcotrokinra is the first and only targeted oral peptide that selectively binds the IL-23 receptor with high affinity to precisely inhibit IL-23 signaling. Icotrokinra demonstrated high rates of complete skin clearance and durable disease control in the phase IIb trial, FRONTIER-1, and its long-term extension, FRONTIER-2, in participants with moderate-to-severe plaque psoriasis. This study evaluated systemic and skin pharmacodynamic response of icotrokinra and its relationship to clinical response in FRONTIER participants.METHODSFRONTIER-1 participants received icotrokinra or placebo for 16 weeks. FRONTIER-2 followed participants for up to 1 year of treatment; placebo participants transitioned to icotrokinra after week 16. Systemic pharmacodynamic changes were assessed in serum through week 52. Skin pharmacodynamic changes were assessed using transcriptomic analysis of skin biopsies and protein quantification in tape-strip samples through week 16.RESULTSIcotrokinra dose-dependently reduced serum levels of the IL-23/IL-17 axis and psoriasis disease biomarkers through week 52, with maximal reductions observed with the highest 100 mg twice-daily dose. Proteomic analyses showed icotrokinra selectively blocked IL-23-driven inflammation without broader impacts on circulating proteins, including serum IL-23 levels. Sixteen weeks of icotrokinra, but not placebo, reduced expression of psoriasis-associated genes in lesional skin. Icotrokinra treatment also reduced psoriasis-relevant proteins in week 16 lesional skin tape-strips to levels comparable to nonlesional samples.CONCLUSIONIcotrokinra induced a dose-dependent pharmacodynamic response, with early (week 4) and sustained (week 52) reductions in biomarkers of IL-23 pathway activation and psoriasis disease severity, which correlated with clinical response.TRIAL REGISTRATIONClinicalTrials.gov: NCT05223868, NCT05364554.FUNDINGJohnson & Johnson.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.195824
Antonia Beitzen-Heineke, Matthew A Muller, Yuhe Xia, Elliot Luttrell-Williams, Florencia Schlamp, Deepak Voora, Kelly V Ruggles, Michael S Garshick, Tessa J Barrett, Jeffrey S Berger
BACKGROUNDPlatelets are increasingly recognized as active participants in immune signaling and systemic inflammation. Upon activation, platelets form monocyte platelet aggregates (MPA) representing the crossroads of thrombosis and inflammation. We hypothesized that platelet transcriptomics could capture this thromboinflammatory axis and identify individuals at elevated cardiovascular risk.METHODS: MPA levels, defined as CD14+CD61+ cells, were measured using flow cytometry at 2 time points, 4 weeks apart, in healthy individualsPlatelets were isolated and sequenced. Individuals were categorized as MPAhi or MPAlo based on consistently high or low MPA levels across time points.RESULTSAmong 149 participants (median age 52 years, 57% female, 50% non-White), MPAhi individuals exhibited increased expression of platelet activation markers P-selectin (P < 0.001), PAC-1 (P = 0.021), and CD40L (P < 0.001) and enriched immune signaling pathways. Informed by MPA levels and derived from the platelet transcriptome, we developed a 42-gene thromboinflammation platelet signature (TIPS), which correlated with MPA levels in multiple cohorts and was reproducible over time. TIPS was elevated in patients with COVID-19 (P = 0.0002) and myocardial infarction (Padj = 0.008), and as in predicted future cardiovascular events in patients who underwent lower extremity revascularization after a median follow-up of 18 months (adjusted for age, sex, race, and ethnicity [adjHR] 1.55, P = 0.006). Notably, TIPS was modifiable by ticagrelor (P = 0.002) but not aspirin.CONCLUSIONThese findings establish MPA as a biomarker of thromboinflammation and introduce TIPS, a platelet RNA signature, that captures thromboinflammation and provides a promising tool for cardiovascular risk stratification and a potential therapeutic target.TRIAL REGISTRATIONNCT04369664FUNDINGNIH R35HL144993, NIH R01HL139909, and AHA 16SFRN2873002 to JSB, DFG Walter-Benjamin-Programme 537070747 to AB.
{"title":"A platelet transcriptomic signature of thromboinflammation predicts cardiovascular risk.","authors":"Antonia Beitzen-Heineke, Matthew A Muller, Yuhe Xia, Elliot Luttrell-Williams, Florencia Schlamp, Deepak Voora, Kelly V Ruggles, Michael S Garshick, Tessa J Barrett, Jeffrey S Berger","doi":"10.1172/jci.insight.195824","DOIUrl":"https://doi.org/10.1172/jci.insight.195824","url":null,"abstract":"<p><p>BACKGROUNDPlatelets are increasingly recognized as active participants in immune signaling and systemic inflammation. Upon activation, platelets form monocyte platelet aggregates (MPA) representing the crossroads of thrombosis and inflammation. We hypothesized that platelet transcriptomics could capture this thromboinflammatory axis and identify individuals at elevated cardiovascular risk.METHODS: MPA levels, defined as CD14+CD61+ cells, were measured using flow cytometry at 2 time points, 4 weeks apart, in healthy individualsPlatelets were isolated and sequenced. Individuals were categorized as MPAhi or MPAlo based on consistently high or low MPA levels across time points.RESULTSAmong 149 participants (median age 52 years, 57% female, 50% non-White), MPAhi individuals exhibited increased expression of platelet activation markers P-selectin (P < 0.001), PAC-1 (P = 0.021), and CD40L (P < 0.001) and enriched immune signaling pathways. Informed by MPA levels and derived from the platelet transcriptome, we developed a 42-gene thromboinflammation platelet signature (TIPS), which correlated with MPA levels in multiple cohorts and was reproducible over time. TIPS was elevated in patients with COVID-19 (P = 0.0002) and myocardial infarction (Padj = 0.008), and as in predicted future cardiovascular events in patients who underwent lower extremity revascularization after a median follow-up of 18 months (adjusted for age, sex, race, and ethnicity [adjHR] 1.55, P = 0.006). Notably, TIPS was modifiable by ticagrelor (P = 0.002) but not aspirin.CONCLUSIONThese findings establish MPA as a biomarker of thromboinflammation and introduce TIPS, a platelet RNA signature, that captures thromboinflammation and provides a promising tool for cardiovascular risk stratification and a potential therapeutic target.TRIAL REGISTRATIONNCT04369664FUNDINGNIH R35HL144993, NIH R01HL139909, and AHA 16SFRN2873002 to JSB, DFG Walter-Benjamin-Programme 537070747 to AB.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.188496
Ananth Aditya Jupudi, Michelle L Joachims, Christina Lawrence, Charmaine Lopez-Davis, Bhuwan Khatri, Astrid Rasmussen, Kiely Grundahl, R Hal Scofield, Judith A James, Joel M Guthridge, Christopher J Lessard, Linda F Thompson, A Darise Farris
CD4+ T cells predominate lymphocytic foci found in the salivary glands (SGs) of Sjögren's disease (SjD) cases. Yet little is known about T cell receptor (TCR) repertoire features that distinguish cases from healthy controls (HCs), the relationship between SG and peripheral blood (PB) repertoires of cases, and antigens recognized by pathogenic T cell clones. We performed deep sequencing of bulk-sorted CD4+CD45RA- PB T cells from SjD cases and matched HCs, and single-cell TCR sequencing of the same T cell population from labial SG biopsies of these cases. We found that clonally expanded SG CD4+ T cells expressed complementarity-determining region 3 (CDR3) sequences that were also detected in multiple copies in the blood of the same individuals with SjD. SjD cases displayed a "private" and restricted PB TCR repertoire with reduced clonotype diversity. We identified SjD-associated TCR motifs with the same putative antigen specificity shared between SGs and PB of cases. Their abundances in PB correlated with reduced salivary flow, linking these T cells with pathogenic disease features. Finally, we discovered 2 Ro60 epitopes eliciting an HLA-restricted immune response from expanded SG T cell clones. The comprehensive characterization of SjD TCR repertoires enables the discovery of target antigens and therapeutic strategies.
{"title":"Identification of Sjögren's disease-associated T cell receptor motifs through deep sequencing.","authors":"Ananth Aditya Jupudi, Michelle L Joachims, Christina Lawrence, Charmaine Lopez-Davis, Bhuwan Khatri, Astrid Rasmussen, Kiely Grundahl, R Hal Scofield, Judith A James, Joel M Guthridge, Christopher J Lessard, Linda F Thompson, A Darise Farris","doi":"10.1172/jci.insight.188496","DOIUrl":"https://doi.org/10.1172/jci.insight.188496","url":null,"abstract":"<p><p>CD4+ T cells predominate lymphocytic foci found in the salivary glands (SGs) of Sjögren's disease (SjD) cases. Yet little is known about T cell receptor (TCR) repertoire features that distinguish cases from healthy controls (HCs), the relationship between SG and peripheral blood (PB) repertoires of cases, and antigens recognized by pathogenic T cell clones. We performed deep sequencing of bulk-sorted CD4+CD45RA- PB T cells from SjD cases and matched HCs, and single-cell TCR sequencing of the same T cell population from labial SG biopsies of these cases. We found that clonally expanded SG CD4+ T cells expressed complementarity-determining region 3 (CDR3) sequences that were also detected in multiple copies in the blood of the same individuals with SjD. SjD cases displayed a \"private\" and restricted PB TCR repertoire with reduced clonotype diversity. We identified SjD-associated TCR motifs with the same putative antigen specificity shared between SGs and PB of cases. Their abundances in PB correlated with reduced salivary flow, linking these T cells with pathogenic disease features. Finally, we discovered 2 Ro60 epitopes eliciting an HLA-restricted immune response from expanded SG T cell clones. The comprehensive characterization of SjD TCR repertoires enables the discovery of target antigens and therapeutic strategies.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.196144
Bridget N Alexander, Soojin Kim, Kristen L Wells, Maya J Hunter, Kevin P Toole, Scott M Wemlinger, Daniel P Regan, Andrew Getahun, Mia J Smith
Autoimmunity arises when self-reactive B and T cells target the body's own tissues, with B cells contributing through antigen presentation as well as production of autoantibodies and proinflammatory cytokines. Genome wide association studies (GWAS) and recent identification of loss-of-function gene variants in individuals with young-onset autoimmunity have highlighted a role for protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in development of autoimmunity. While prior studies have focused on the mechanism of Ptpn2 in T cells and other cell types, its function in B cells has not been explored. To test the B cell-intrinsic roles of Ptpn2, we generated a B cell-specific deletion of Ptpn2 in mice (Mb1-Cre;Ptpn2fl/fl). We found that loss of Ptpn2 in B cells promoted organ inflammation, increased the frequency of age/autoimmune-associated B cells (ABCs) and plasmablasts in the periphery, and increased circulating autoantibodies. Moreover, we found that Ptpn2 acted as a negative regulator of the JAK/STAT and TLR7 pathways in B cells. In line with this, treatment of B cells from Mb1-Cre;Ptpn2fl/fl mice with IFN-γ and TLR7 agonist lead to enhanced differentiation into ABCs. These findings highlight the critical roles of Ptpn2 in B cell function and its potential as a key regulator in preventing B cell associated autoimmunity.
{"title":"Deletion of Ptpn2 in B cells promotes autoimmunity via TLR and JAK/STAT signaling.","authors":"Bridget N Alexander, Soojin Kim, Kristen L Wells, Maya J Hunter, Kevin P Toole, Scott M Wemlinger, Daniel P Regan, Andrew Getahun, Mia J Smith","doi":"10.1172/jci.insight.196144","DOIUrl":"https://doi.org/10.1172/jci.insight.196144","url":null,"abstract":"<p><p>Autoimmunity arises when self-reactive B and T cells target the body's own tissues, with B cells contributing through antigen presentation as well as production of autoantibodies and proinflammatory cytokines. Genome wide association studies (GWAS) and recent identification of loss-of-function gene variants in individuals with young-onset autoimmunity have highlighted a role for protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in development of autoimmunity. While prior studies have focused on the mechanism of Ptpn2 in T cells and other cell types, its function in B cells has not been explored. To test the B cell-intrinsic roles of Ptpn2, we generated a B cell-specific deletion of Ptpn2 in mice (Mb1-Cre;Ptpn2fl/fl). We found that loss of Ptpn2 in B cells promoted organ inflammation, increased the frequency of age/autoimmune-associated B cells (ABCs) and plasmablasts in the periphery, and increased circulating autoantibodies. Moreover, we found that Ptpn2 acted as a negative regulator of the JAK/STAT and TLR7 pathways in B cells. In line with this, treatment of B cells from Mb1-Cre;Ptpn2fl/fl mice with IFN-γ and TLR7 agonist lead to enhanced differentiation into ABCs. These findings highlight the critical roles of Ptpn2 in B cell function and its potential as a key regulator in preventing B cell associated autoimmunity.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1172/jci.insight.189156
Brian Wu, Starlee S Lively, Shabana Vohra, Noah Fine, Chiara Pastrello, Anca Maglaviceanu, Osvaldo Espin-Garcia, Evan Pollock-Tahiri, Sayaka Nakamura, Paramvir Kaur, Keemo Delos Santos, Jason S Rockel, Pratibha Potla, Himanshi Gupta, Poulami Datta, Laura Tang, Jacob Kwon, Akihiro Nakamura, Matthew B Buechler, Rajiv Gandhi, Jiangping Wu, Boris Hinz, Igor Jurisica, Mohit Kapoor
Pulmonary fibrosis (PF) is a pathology associated with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). Fibrosis promotes continual secretion of extracellular matrix (ECM), producing nonfunctional scar tissue and causing organ failure. This study investigated the tyrosine kinase receptor Ephrin type-B receptor 4 (EphB4) as a mediator of PF. To this end, we generated mice with conditional Col1a2-driven deletion of Ephb4 and used a preclinical mouse model of PF, total and single nuclei RNA (snRNA) sequencing, NanoString, previously published single-cell data, computational analysis, and functional assays of mouse and human healthy control and IPF lung fibroblasts. Col1a2-CreERT-driven Ephb4 deletion, or EphB4 inhibition via NVP-BHG712, markedly protected against bleomycin-induced PF. Total RNA-Seq of fibroblasts isolated from Ephb4-deficient fibrotic mouse lungs exhibited reduced expression of ECM, ER Cargo, and protein trafficking-related genes. NVP-BHG712 reduced expression of these identified genes in mouse lung fibroblasts under fibrotic conditions in vitro. snRNA-Seq of mouse lungs treated with NVP-BHG712 identified transcriptomic changes of ECM genes in specific fibroblast subpopulations. RNA-Seq, computational, and functional assays using mouse and human IPF fibroblasts identified elastin as a key mediator involved in EphB4 signaling. Combined, our data show that EphB4 is a crucial mediator of PF.
肺纤维化(PF)是一种与间质性肺疾病(ILDs)相关的病理,包括特发性肺纤维化(IPF)。纤维化促进细胞外基质(ECM)的持续分泌,产生无功能的瘢痕组织并引起器官衰竭。本研究研究了酪氨酸激酶受体Ephrin - b型受体4 (EphB4)作为PF的介质,为此,我们制造了条件col1a2驱动的EphB4缺失小鼠,并使用临床前小鼠PF模型,总核和单核RNA (snRNA)测序,NanoString,先前发表的单细胞数据,计算分析和小鼠和人类健康对照和IPF肺成纤维细胞的功能分析。col1a2 - creert驱动的Ephb4缺失,或通过NVP-BHG712抑制Ephb4,可显著防止博莱霉素诱导的PF。从Ephb4缺陷纤维化小鼠肺中分离的成纤维细胞的总RNA-Seq显示ECM, ER Cargo和蛋白运输相关基因的表达降低。NVP-BHG712在体外纤维化条件下降低小鼠肺成纤维细胞中这些鉴定基因的表达。NVP-BHG712处理小鼠肺的snRNA-Seq鉴定了特定成纤维细胞亚群中ECM基因的转录组变化。利用小鼠和人IPF成纤维细胞进行的RNA-Seq、计算和功能分析发现弹性蛋白是参与EphB4信号传导的关键介质。综上所述,我们的数据表明EphB4是PF的重要中介。
{"title":"Identification of Ephrin type-B receptor 4 as a critical mediator of tissue fibrosis.","authors":"Brian Wu, Starlee S Lively, Shabana Vohra, Noah Fine, Chiara Pastrello, Anca Maglaviceanu, Osvaldo Espin-Garcia, Evan Pollock-Tahiri, Sayaka Nakamura, Paramvir Kaur, Keemo Delos Santos, Jason S Rockel, Pratibha Potla, Himanshi Gupta, Poulami Datta, Laura Tang, Jacob Kwon, Akihiro Nakamura, Matthew B Buechler, Rajiv Gandhi, Jiangping Wu, Boris Hinz, Igor Jurisica, Mohit Kapoor","doi":"10.1172/jci.insight.189156","DOIUrl":"https://doi.org/10.1172/jci.insight.189156","url":null,"abstract":"<p><p>Pulmonary fibrosis (PF) is a pathology associated with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). Fibrosis promotes continual secretion of extracellular matrix (ECM), producing nonfunctional scar tissue and causing organ failure. This study investigated the tyrosine kinase receptor Ephrin type-B receptor 4 (EphB4) as a mediator of PF. To this end, we generated mice with conditional Col1a2-driven deletion of Ephb4 and used a preclinical mouse model of PF, total and single nuclei RNA (snRNA) sequencing, NanoString, previously published single-cell data, computational analysis, and functional assays of mouse and human healthy control and IPF lung fibroblasts. Col1a2-CreERT-driven Ephb4 deletion, or EphB4 inhibition via NVP-BHG712, markedly protected against bleomycin-induced PF. Total RNA-Seq of fibroblasts isolated from Ephb4-deficient fibrotic mouse lungs exhibited reduced expression of ECM, ER Cargo, and protein trafficking-related genes. NVP-BHG712 reduced expression of these identified genes in mouse lung fibroblasts under fibrotic conditions in vitro. snRNA-Seq of mouse lungs treated with NVP-BHG712 identified transcriptomic changes of ECM genes in specific fibroblast subpopulations. RNA-Seq, computational, and functional assays using mouse and human IPF fibroblasts identified elastin as a key mediator involved in EphB4 signaling. Combined, our data show that EphB4 is a crucial mediator of PF.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 24","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145804622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}