Objective: Mobile health (mHealth) applications are scarce for children and adolescents with chronic pulmonary diseases (CPDs). This study aimed to map and describe the contents of the mHealth apps available for use in children and adolescents with CPDs.
Methods: We performed a systematic mapping review of published scientific literature in PubMed, Scopus, and Cochrane Library by February of 2023, using relevant keywords. Inclusion criteria were as follows: children aged < 18 years with CPDs; and studies published in English on mHealth apps.
Results: A total number of 353 studies were found, 9 of which met the inclusion criteria. These studies described seven mHealth apps for Android and iOS, designed either for asthma (n = 5) or for cystic fibrosis (n = 2). Five content areas were identified: education/information; pharmacological treatment; emergency; support; and non-pharmacological treatment. The studies (4, 2, and 3, respectively) showed consistent findings using qualitative, quantitative, and mixed methodologies.
Conclusions: This mapping review provided a guided selection of the most appropriate mHealth apps for use in children and adolescents with CPDs based on the needs of each target population. However, these mHealth apps have limited capabilities to reinforce disease self-management and provide information related to treatment compliance.
Objective: To compare patients with chronic hypersensitivity pneumonitis (cHP) and controls with normal spirometry in terms of their sleep characteristics, as well as to establish the prevalence of obstructive sleep apnea (OSA) and nocturnal hypoxemia. Secondary objectives were to identify factors associated with OSA and nocturnal hypoxemia; to correlate nocturnal hypoxemia with the apnea-hypopnea index (AHI) and lung function, as well as with resting SpO2, awake SpO2, and SpO2 during exercise; and to evaluate the discriminatory power of sleep questionnaires to predict OSA.
Methods: A total of 40 patients with cHP (cases) were matched for sex, age, and BMI with 80 controls, the ratio of controls to cases therefore being = 2:1. The STOP-Bang questionnaire, the Epworth Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index, the Berlin questionnaire and the Neck circumference, obesity, Snoring, Age, and Sex (NoSAS) score were applied to all cases, and both groups underwent full-night polysomnography.
Results: The patients with cHP had longer sleep latency, lower sleep efficiency, a lower AHI, a lower respiratory disturbance index, fewer central apneas, fewer mixed apneas, and fewer hypopneas than did the controls. The patients with cHP had significantly lower nocturnal SpO2 values, the percentage of total sleep time spent below an SpO2 of 90% being higher than in controls (median = 4.2; IQR, 0.4-32.1 vs. median = 1.0; IQR, 0.1-5.8; p = 0.01). There were no significant differences between cases with and without OSA regarding the STOP-Bang questionnaire, NoSAS, and ESS scores.
Conclusions: The prevalence of OSA in cHP patients (cases) was high, although not higher than that in controls with normal spirometry. In addition, cases had more hypoxemia during sleep than did controls. Our results suggest that sleep questionnaires do not have sufficient discriminatory power to identify OSA in cHP patients.