F- ions (fluoride ions) are crucial in various chemical waste and environmental safety contexts. However, excessive fluoride exposure can pose a threat to human well-being. In this study, a simple 4-substituted pyrene derivative known as 4-hydroxypyrene (4-PyOH) was designed as a colorimetric probe for detecting F- through the formation of hydrogen bonds between F- and a hydroxyl group. The probe 4-PyOH exhibited exceptional sensitivity and selectivity towards F- ions and was successfully utilized as test strips for detecting F- ions in organic solvents. The detection limit reached an impressively low level of 3.06 × 10-7 M in the organic solvent. The recognition mechanism was confirmed through 1H NMR titration.
{"title":"Colorimetric and Fluorometric Determination of Fluoride in Tetrahydrofuran and Dimethyl Sulfoxide Using a 4-Hydroxypyrene Probe.","authors":"Yue Sun, Yunchen Long, Wenhao Sun, Yibo Zhang, Qianhui Tang, Chan Li, Sihua Li, Jing Nie","doi":"10.1155/2024/5566082","DOIUrl":"10.1155/2024/5566082","url":null,"abstract":"<p><p>F<sup>-</sup> ions (fluoride ions) are crucial in various chemical waste and environmental safety contexts. However, excessive fluoride exposure can pose a threat to human well-being. In this study, a simple 4-substituted pyrene derivative known as 4-hydroxypyrene (<b>4-PyOH</b>) was designed as a colorimetric probe for detecting F<sup>-</sup> through the formation of hydrogen bonds between F<sup>-</sup> and a hydroxyl group. The probe <b>4-PyOH</b> exhibited exceptional sensitivity and selectivity towards F<sup>-</sup> ions and was successfully utilized as test strips for detecting F<sup>-</sup> ions in organic solvents. The detection limit reached an impressively low level of 3.06 × 10<sup>-7</sup> M in the organic solvent. The recognition mechanism was confirmed through <sup>1</sup>H NMR titration.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental pollution resulting from the use of pesticides such as fenuron poses significant health risks due to the carcinogenic and teratogenic properties of these compounds. There is an urgent need to develop rapid and cost-effective detection methods for quantifying fenuron. In this study, an inorganic-organic composite material was obtained by intercalating sodium dioctylsulfosuccinate (DSS) within the interlayer space of a nickel-aluminum-layered double hydroxide (NiAl-LDH). The pristine and modified LDHs (NiAl-LDH) were characterized using Fourier transform infrared, X-ray diffraction, and thermogravimetric analysis, confirming the successful intercalation of DSS in the mineral structure. The modified LDH was used to elaborate a sensor for detecting fenuron herbicide via differential pulse voltammetry (DPV) employing a carbon paste electrode (CPE). The electrochemical procedure for fenuron analysis consisted of immersing the working electrode in an electrolytic solution containing the appropriate amount of fenuron, followed by voltammetry detection without any preconcentration step. Compared to CPE modified by pristine LDH, the peak current obtained on the organo-LDH-modified CPE was twice as high. The increase in the fenuron signal was attributed to the high organophilic feature of this composite material induced by DSS modification. To optimize the sensitivity of the organo-LDH modified electrode, the effects of several experimental parameters such as pH of the medium and proportion of the modifier in the paste on the stripping response were examined. Linear calibration curves were obtained for the fenuron concentrations ranging from 0.5 × 10-6 to 1 × 10-6 mol.L-1 and 1 × 10-6 to 5 × 10-6 mol.L-1. The limit of detection (LOD) calculated on the basis of a signal-to-noise ratio of 3 was found to be 1.8 × 10-8 mol.L-1 for the low concentration range with a limit of quantification (LOQ) which was 6 × 10-8 mol.L-1. Furthermore, the interference effect of several inorganic ions and other pesticides potentially affecting fenuron stripping was explored, and the method's applicability was confirmed by determining fenuron levels in a river sample taken from down-town Yaoundé.
{"title":"Dioctylsulfosuccinate Functionalized NiAl-Layered Double Hydroxide for Sensitive Fenuron Electroanalysis Using a Carbon Paste Electrode.","authors":"Aude Peggy Kameni Wendji, Herve Leclerc Tcheumi, Ignas Kenfack Tonle, Emmanuel Ngameni","doi":"10.1155/2024/9237309","DOIUrl":"https://doi.org/10.1155/2024/9237309","url":null,"abstract":"<p><p>Environmental pollution resulting from the use of pesticides such as fenuron poses significant health risks due to the carcinogenic and teratogenic properties of these compounds. There is an urgent need to develop rapid and cost-effective detection methods for quantifying fenuron. In this study, an inorganic-organic composite material was obtained by intercalating sodium dioctylsulfosuccinate (DSS) within the interlayer space of a nickel-aluminum-layered double hydroxide (NiAl-LDH). The pristine and modified LDHs (NiAl-LDH) were characterized using Fourier transform infrared, X-ray diffraction, and thermogravimetric analysis, confirming the successful intercalation of DSS in the mineral structure. The modified LDH was used to elaborate a sensor for detecting fenuron herbicide via differential pulse voltammetry (DPV) employing a carbon paste electrode (CPE). The electrochemical procedure for fenuron analysis consisted of immersing the working electrode in an electrolytic solution containing the appropriate amount of fenuron, followed by voltammetry detection without any preconcentration step. Compared to CPE modified by pristine LDH, the peak current obtained on the organo-LDH-modified CPE was twice as high. The increase in the fenuron signal was attributed to the high organophilic feature of this composite material induced by DSS modification. To optimize the sensitivity of the organo-LDH modified electrode, the effects of several experimental parameters such as pH of the medium and proportion of the modifier in the paste on the stripping response were examined. Linear calibration curves were obtained for the fenuron concentrations ranging from 0.5 × 10<sup>-6</sup> to 1 × 10<sup>-6</sup> mol.L<sup>-1</sup> and 1 × 10<sup>-6</sup> to 5 × 10<sup>-6</sup> mol.L<sup>-1</sup>. The limit of detection (LOD) calculated on the basis of a signal-to-noise ratio of 3 was found to be 1.8 × 10<sup>-8</sup> mol.L<sup>-1</sup> for the low concentration range with a limit of quantification (LOQ) which was 6 × 10<sup>-8</sup> mol.L<sup>-1</sup>. Furthermore, the interference effect of several inorganic ions and other pesticides potentially affecting fenuron stripping was explored, and the method's applicability was confirmed by determining fenuron levels in a river sample taken from down-town Yaoundé.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16eCollection Date: 2024-01-01DOI: 10.1155/2024/5652559
Minh Truong Ngoc, Quang Trung Nguyen, Van Thinh Pham, Le Tuan Anh Hoang, Viet Anh Le, Van Nhan Le, Ha Minh Duc Tran, Tien Dat Nguyen
Vodka constitutes a significant sector of Vietnam's alcohol industry, including both domestic and imported varieties. However, this diversity faces challenges from illegal imports and adulterated products, threatening consumer health and brand integrity. This study employs Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma mass spectrometry (ICP-MS) to analyze 300 vodka samples from five brands collected across Hanoi. Significant variations were found in elemental compositions, with sodium concentrations ranging from 205.67 μg/L to 1269.24 μg/L and magnesium levels from 65.57 μg/L to 1453.34 μg/L. Principal Component Analysis (PCA) of the FTIR and ICP-MS data effectively differentiated the samples, with the first two principal components explaining 84.78% and 73.02% of the total variance, respectively. The PCA plots revealed distinct chemical profiles, notably isolating Rocket Vodka. These findings enhance food safety enforcement, protect consumer rights, and preserve brand reputations. The study underscores the importance of advanced analytical tools in combating beverage adulteration, ensuring public health, and maintaining market integrity, offering a replicable model for similar research in other regions.
{"title":"Assessing Vodka Authenticity and Origin in Vietnam's Market: An Analytical Approach Using FTIR and ICP-MS with Multivariate Statistics.","authors":"Minh Truong Ngoc, Quang Trung Nguyen, Van Thinh Pham, Le Tuan Anh Hoang, Viet Anh Le, Van Nhan Le, Ha Minh Duc Tran, Tien Dat Nguyen","doi":"10.1155/2024/5652559","DOIUrl":"10.1155/2024/5652559","url":null,"abstract":"<p><p>Vodka constitutes a significant sector of Vietnam's alcohol industry, including both domestic and imported varieties. However, this diversity faces challenges from illegal imports and adulterated products, threatening consumer health and brand integrity. This study employs Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma mass spectrometry (ICP-MS) to analyze 300 vodka samples from five brands collected across Hanoi. Significant variations were found in elemental compositions, with sodium concentrations ranging from 205.67 <i>μ</i>g/L to 1269.24 <i>μ</i>g/L and magnesium levels from 65.57 <i>μ</i>g/L to 1453.34 <i>μ</i>g/L. Principal Component Analysis (PCA) of the FTIR and ICP-MS data effectively differentiated the samples, with the first two principal components explaining 84.78% and 73.02% of the total variance, respectively. The PCA plots revealed distinct chemical profiles, notably isolating Rocket Vodka. These findings enhance food safety enforcement, protect consumer rights, and preserve brand reputations. The study underscores the importance of advanced analytical tools in combating beverage adulteration, ensuring public health, and maintaining market integrity, offering a replicable model for similar research in other regions.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12eCollection Date: 2024-01-01DOI: 10.1155/2024/5135565
Abdessamad Ettouil, Asmaa Oubihi, Hamada Imtara, Khadija Atfaoui, Ramzi A Mothana, Omar M Noman, Mahmoud Tarayrah, Mohammed Ouhssine
The extraction of gum from natural raw materials is of increasing importance in various industries, including food, pharmaceuticals, and cosmetics, particularly due to their emulsifying properties and potential applications as stabilizers and thickeners. This study presents an insight on the influence of changing parameters like reagents and operating condition on yield and some properties of the flax (Linum usitatissimum L.) seed gum. The extraction conditions were meticulously examined using a full factorial design, highlighting the significant impact of pretreatment, seed preparation, and solvent selection on the extraction yield. A response surface methodology (RSM) was then applied to optimize the water/benzoic acid ratio of the pretreatment step, the ethyl alcohol/water ratio, and the medium pH of the extraction method, resulting in a maximum yield of 14.47%. Furthermore, detailed analyses of the chemical and emulsifying properties of the gum were conducted showing emulsifying capacities over 94%, offering promising application prospects, particularly in the food industry.
{"title":"Optimizing the Extraction Efficiency of Flaxseed Gum Using a Response Surface Methodology Approach.","authors":"Abdessamad Ettouil, Asmaa Oubihi, Hamada Imtara, Khadija Atfaoui, Ramzi A Mothana, Omar M Noman, Mahmoud Tarayrah, Mohammed Ouhssine","doi":"10.1155/2024/5135565","DOIUrl":"10.1155/2024/5135565","url":null,"abstract":"<p><p>The extraction of gum from natural raw materials is of increasing importance in various industries, including food, pharmaceuticals, and cosmetics, particularly due to their emulsifying properties and potential applications as stabilizers and thickeners. This study presents an insight on the influence of changing parameters like reagents and operating condition on yield and some properties of the flax (<i>Linum usitatissimum</i> L.) seed gum. The extraction conditions were meticulously examined using a full factorial design, highlighting the significant impact of pretreatment, seed preparation, and solvent selection on the extraction yield. A response surface methodology (RSM) was then applied to optimize the water/benzoic acid ratio of the pretreatment step, the ethyl alcohol/water ratio, and the medium pH of the extraction method, resulting in a maximum yield of 14.47%. Furthermore, detailed analyses of the chemical and emulsifying properties of the gum were conducted showing emulsifying capacities over 94%, offering promising application prospects, particularly in the food industry.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Zeng, Lu Zhao, Meng Hao, Mirzat Maimaiti, Zhi Li, Minghui Zhang, Xuan Ma
The current quality control method for Turkish gall (TG) is limited to assessing total tannin or gallic acid (GA), which offers a basic level of quality control but does not fully capture the true quality of TG. Therefore, it is essential to establish a comprehensive method that utilizes multiple indicators to assess the intrinsic quality of TG. This research utilized UPLC-Q-TOF-MS/MS technology to qualitatively analyze the chemical composition of TG. Subsequently, the potential main active ingredients, targets, and pathways of TG in treating recurrent aphthous ulcers (RAU) were explored and analyzed using network pharmacology technology. Quantitative analysis of multicomponents by single marker (QAMS) was then employed to quantify the primary pharmacodynamic components in TG. Finally, chemometrics analysis was utilized to interpret the measured results and identify the markers of scavenging quality. The study identified 36 chemical components in TG, highlighting ellagic acid (EA), GA, and so on as key components in treating RAU. A method for simultaneously determining GA, EA, 1,2,3,6-tetra-O-galloyl-β-D-glucose (TEGG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PEGG) in TG was established. Statistical analysis revealed significant differences in the content of these 4 components across 14 batches of TG, with GA and PEGG identified as the primary contributors to the variations. This study determined a quality index for TG, providing a reference for quality evaluation and introducing a cost-effective and efficient quality control method. Furthermore, it addressed the challenge of developing new Chinese medicine by overcoming the lack of reference substances.
{"title":"Analysis of an Aqueous Extract from Turkish Galls Based on Multicomponent Qualitative and Quantitative Analysis Combined with Network Pharmacology and Chemometric Analysis","authors":"Ya Zeng, Lu Zhao, Meng Hao, Mirzat Maimaiti, Zhi Li, Minghui Zhang, Xuan Ma","doi":"10.1155/2024/9962574","DOIUrl":"https://doi.org/10.1155/2024/9962574","url":null,"abstract":"The current quality control method for Turkish gall (TG) is limited to assessing total tannin or gallic acid (GA), which offers a basic level of quality control but does not fully capture the true quality of TG. Therefore, it is essential to establish a comprehensive method that utilizes multiple indicators to assess the intrinsic quality of TG. This research utilized UPLC-Q-TOF-MS/MS technology to qualitatively analyze the chemical composition of TG. Subsequently, the potential main active ingredients, targets, and pathways of TG in treating recurrent aphthous ulcers (RAU) were explored and analyzed using network pharmacology technology. Quantitative analysis of multicomponents by single marker (QAMS) was then employed to quantify the primary pharmacodynamic components in TG. Finally, chemometrics analysis was utilized to interpret the measured results and identify the markers of scavenging quality. The study identified 36 chemical components in TG, highlighting ellagic acid (EA), GA, and so on as key components in treating RAU. A method for simultaneously determining GA, EA, 1,2,3,6-tetra-O-galloyl-β-D-glucose (TEGG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PEGG) in TG was established. Statistical analysis revealed significant differences in the content of these 4 components across 14 batches of TG, with GA and PEGG identified as the primary contributors to the variations. This study determined a quality index for TG, providing a reference for quality evaluation and introducing a cost-effective and efficient quality control method. Furthermore, it addressed the challenge of developing new Chinese medicine by overcoming the lack of reference substances.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wan-Ru Dong, Xue Gao, Chen-Xue Li, Yan Song, J. Chai, Jun Liang
We previously conducted a systematic study on the metabolic process and products of hederasaponin B in rats. We hypothesized that the sugar chain structures play a key role in the metabolism of triterpenoid saponins. To verify this hypothesis, we conducted metabolic research on ciwujianoside B ascribed to the same sugar chains and a distinct aglycone and compared it with hederasaponin B. Specifically, we collected feces, urine, and plasma of rats after gavage with ciwujianoside B and identified 42 metabolites by UPLC-Fusion Lumos Orbitrap mass spectrometry. Finally, ciwujianoside B metabolism and hederasaponin B metabolism were compared, reaching the following conclusions: (i) more than 40 metabolites were identified in both, with the majority of metabolites identified in feces; (ii) the corresponding metabolic pathways in vivo were basically similar, including deglycosylation, acetylation, hydroxylation, glucuronidation, oxidation, and glycosylation; and (iii) deglycosylation was considered the main metabolic reaction, and its metabolites accounted for approximately 50% of all metabolites. Overall, this study provides a foundation for further research on the metabolism of triterpenoid saponins.
此前,我们对大鼠体内七叶皂苷 B 的代谢过程和产物进行了系统研究。我们假设糖链结构在三萜皂苷的代谢过程中起着关键作用。为了验证这一假设,我们对具有相同糖链和不同苷元的刺五加皂苷 B 进行了代谢研究,并将其与红豆杉皂苷 B 进行了比较。具体而言,我们收集了大鼠灌胃刺五加皂苷 B 后的粪便、尿液和血浆,并通过 UPLC-Fusion Lumos Orbitrap 质谱法鉴定了 42 种代谢产物。最后,将刺五加皂苷 B 的代谢与海达皂苷 B 的代谢进行了比较,得出以下结论:(i)两者均鉴定出 40 多种代谢物,其中大部分代谢物在粪便中鉴定出;(ii)体内相应的代谢途径基本相似,包括脱糖基化、乙酰化、羟基化、葡萄糖醛酸化、氧化和糖基化;(iii)脱糖基化被认为是主要的代谢反应,其代谢物约占所有代谢物的 50%。总之,这项研究为进一步研究三萜类皂苷的代谢提供了基础。
{"title":"Detection and Characterization of the Metabolites of Ciwujianoside B in Rats Based on UPLC-Fusion Lumos Orbitrap Mass Spectrometry","authors":"Wan-Ru Dong, Xue Gao, Chen-Xue Li, Yan Song, J. Chai, Jun Liang","doi":"10.1155/2024/3187511","DOIUrl":"https://doi.org/10.1155/2024/3187511","url":null,"abstract":"We previously conducted a systematic study on the metabolic process and products of hederasaponin B in rats. We hypothesized that the sugar chain structures play a key role in the metabolism of triterpenoid saponins. To verify this hypothesis, we conducted metabolic research on ciwujianoside B ascribed to the same sugar chains and a distinct aglycone and compared it with hederasaponin B. Specifically, we collected feces, urine, and plasma of rats after gavage with ciwujianoside B and identified 42 metabolites by UPLC-Fusion Lumos Orbitrap mass spectrometry. Finally, ciwujianoside B metabolism and hederasaponin B metabolism were compared, reaching the following conclusions: (i) more than 40 metabolites were identified in both, with the majority of metabolites identified in feces; (ii) the corresponding metabolic pathways in vivo were basically similar, including deglycosylation, acetylation, hydroxylation, glucuronidation, oxidation, and glycosylation; and (iii) deglycosylation was considered the main metabolic reaction, and its metabolites accounted for approximately 50% of all metabolites. Overall, this study provides a foundation for further research on the metabolism of triterpenoid saponins.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.
{"title":"Preliminary Exploration of Potential Active Ingredients and Molecular Mechanisms of Yanggan Yishui Granules for Treating Hypertensive Nephropathy Using UPLC-Q-TOF/MS Coupled with Network Pharmacology and Molecular Docking Strategy","authors":"Fan Yang, Kailun Zhang, Xiaohua Dai, Weimin Jiang","doi":"10.1155/2024/7967999","DOIUrl":"https://doi.org/10.1155/2024/7967999","url":null,"abstract":"Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyu Yang, Shihan Liu, Wenfang Jin, Zengyi Qu, Baolei Fan
To isolate gastrodin (GAS), 4-hydroxybenzyl alcohol (4-HBA), and phenolic compounds from Chinese medicine Gastrodia elata Blume, and to explore the binding mode of fatty acid binding protein 4 (FABP4/aP2) that is closely related to macrophage inflammation, we study their anti-inflammatory targets. After the ultrasonic extraction of the main active components with 70% ethanol, three resins and three eluents were selected, and eight phenolic monomers with similar structures, such as gastrodin and 4-hydroxybenzyl alcohol, were isolated from Gastrodia elata by AB-8 macroporous resin and silica gel column chromatography and eluted with the CHCl3-MeOH gradient. Their structures were identified by HPLC and nuclear magnetic resonance (NMR). The FABP4 protein was added to GAS and 4-HBA, and the NMR experiment was performed to observe ligand binding. Finally, according to the spectral information of STD-NMR and molecular docking technology, the interaction between ligands and protein was studied. The fluorescence competition experiment confirmed that both GAS and 4-HBA were in the binding cavity of FABP4. Moreover, 3-phenoxy-2-phenylbenzoic acid (PPA) is a possible inhibitor of FABP4, reducing macrophage-related inflammation and endoplasmic reticulum stress. This work provides a new basis for the anti-inflammatory mechanism of Gastrodia elata, paving the way for the research and development of FABP4 inhibitor drugs.
{"title":"The Molecular Mechanism of FABP4 Inhibition Effects of GAS and 4-HBA in Gastrodia elata Blume Was Discussed Based on NMR and Molecular Docking","authors":"Yuyu Yang, Shihan Liu, Wenfang Jin, Zengyi Qu, Baolei Fan","doi":"10.1155/2024/6599029","DOIUrl":"https://doi.org/10.1155/2024/6599029","url":null,"abstract":"To isolate gastrodin (GAS), 4-hydroxybenzyl alcohol (4-HBA), and phenolic compounds from Chinese medicine <i>Gastrodia elata</i> Blume, and to explore the binding mode of fatty acid binding protein 4 (FABP4/aP2) that is closely related to macrophage inflammation, we study their anti-inflammatory targets. After the ultrasonic extraction of the main active components with 70% ethanol, three resins and three eluents were selected, and eight phenolic monomers with similar structures, such as gastrodin and 4-hydroxybenzyl alcohol, were isolated from <i>Gastrodia elata</i> by AB-8 macroporous resin and silica gel column chromatography and eluted with the CHCl<sub>3</sub>-MeOH gradient. Their structures were identified by HPLC and nuclear magnetic resonance (NMR). The FABP4 protein was added to GAS and 4-HBA, and the NMR experiment was performed to observe ligand binding. Finally, according to the spectral information of STD-NMR and molecular docking technology, the interaction between ligands and protein was studied. The fluorescence competition experiment confirmed that both GAS and 4-HBA were in the binding cavity of FABP4. Moreover, 3-phenoxy-2-phenylbenzoic acid (PPA) is a possible inhibitor of FABP4, reducing macrophage-related inflammation and endoplasmic reticulum stress. This work provides a new basis for the anti-inflammatory mechanism of <i>Gastrodia elata</i>, paving the way for the research and development of FABP4 inhibitor drugs.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Chen, Shunjun Ma, Runrun Wang, Dizhong Chen, Congcong Wen, Xianqin Wang, Tao Hu, Xiuwei Shen
SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 μm) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1–2000 ng/mL with an r value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.
{"title":"Advanced UPLC-MS/MS Method for the Quantification of SIPI6398 in Rat Plasma and Its Pharmacokinetic Characterization","authors":"Fan Chen, Shunjun Ma, Runrun Wang, Dizhong Chen, Congcong Wen, Xianqin Wang, Tao Hu, Xiuwei Shen","doi":"10.1155/2024/9811466","DOIUrl":"https://doi.org/10.1155/2024/9811466","url":null,"abstract":"SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 <i>μ</i>m) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1–2000 ng/mL with an <i>r</i> value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Li, Jing Wen, Yuyang Deng, Juan Yang, Yue Yuan, Yi Shen, Guoce Liu, Yonghong Tian, Dean Lei
The accurate determination of the free nicotine content in cigarette smoke is crucial for assessing cigarette quality, studying harm and addiction, and reducing tar levels. Currently, the determination of free nicotine in tobacco products primarily relies on methods such as pH calculation, nuclear magnetic resonance (NMR) spectroscopy, headspace solid-phase microextraction (HS-SPME), and traditional solvent extraction. However, these methods have limitations that restrict their widespread application. In this study, the free nicotine in cigarette smoke was directly extracted by using cyclohexane according to the traditional solvent extraction method and detected via gas chromatography-mass spectrometry. Compared with the traditional two-phase solvent extraction, our experimental method is easy to execute and eliminates the influence of aqueous solutions on the original distribution of nicotine in cigarette smoke particulate matter. Furthermore, the presence of protonated nicotine in tobacco does not affect the determination. Compared with HS-SPME and NMR spectroscopy, our approach, which involves solvent extraction followed by chromatographic separation and instrumental detection, offers simplicity, improved precision, better detection limits, and reduced interference during the instrumental detection stage. The standard addition recoveries in the conducted experiment ranged from 96.2% to 102.5%. The limit of detection was 2.8 μg/cig, and the correlation coefficient for the quadratic regression of the standard curve exceeded 0.999. The relative standard deviation for parallel samples was between 1.7% and 3.4% (n = 5), fully meeting the requirements for the determination of free nicotine in cigarette smoke. Analysis of cigarette samples from 38 commercially available brands revealed that the content of free nicotine ranged from 0.376 to 0.716 mg/cig, with an average of 0.540 mg/cig, and free nicotine accounted for 39.1%–88.8% of the total nicotine content.
{"title":"Direct Extraction and Determination of Free Nicotine in Cigarette Smoke","authors":"Li Li, Jing Wen, Yuyang Deng, Juan Yang, Yue Yuan, Yi Shen, Guoce Liu, Yonghong Tian, Dean Lei","doi":"10.1155/2024/9273705","DOIUrl":"https://doi.org/10.1155/2024/9273705","url":null,"abstract":"The accurate determination of the free nicotine content in cigarette smoke is crucial for assessing cigarette quality, studying harm and addiction, and reducing tar levels. Currently, the determination of free nicotine in tobacco products primarily relies on methods such as pH calculation, nuclear magnetic resonance (NMR) spectroscopy, headspace solid-phase microextraction (HS-SPME), and traditional solvent extraction. However, these methods have limitations that restrict their widespread application. In this study, the free nicotine in cigarette smoke was directly extracted by using cyclohexane according to the traditional solvent extraction method and detected via gas chromatography-mass spectrometry. Compared with the traditional two-phase solvent extraction, our experimental method is easy to execute and eliminates the influence of aqueous solutions on the original distribution of nicotine in cigarette smoke particulate matter. Furthermore, the presence of protonated nicotine in tobacco does not affect the determination. Compared with HS-SPME and NMR spectroscopy, our approach, which involves solvent extraction followed by chromatographic separation and instrumental detection, offers simplicity, improved precision, better detection limits, and reduced interference during the instrumental detection stage. The standard addition recoveries in the conducted experiment ranged from 96.2% to 102.5%. The limit of detection was 2.8 <i>μ</i>g/cig, and the correlation coefficient <svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 22.2574 13.8595\" width=\"22.2574pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.649,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.596,0)\"></path></g></svg> for the quadratic regression of the standard curve exceeded 0.999. The relative standard deviation for parallel samples was between 1.7% and 3.4% (<i>n</i> = 5), fully meeting the requirements for the determination of free nicotine in cigarette smoke. Analysis of cigarette samples from 38 commercially available brands revealed that the content of free nicotine ranged from 0.376 to 0.716 mg/cig, with an average of 0.540 mg/cig, and free nicotine accounted for 39.1%–88.8% of the total nicotine content.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}