Shusheng Jiang, Miao Wang, Yahao Huang, Jinglan Wen, Peng Hu
Plastic pollution poses a significant challenge to environmental conservation. Efficient recycling of plastic is a key strategy to address this issue. Polyethylene terephthalate (PET), commonly found in plastic bottles, represents a substantial portion of plastic waste. Consequently, the efficient degradation and recycling of PET is crucial for the sustainable development of society. However, the implementation of methods for PET depolymerization and recycling typically necessitates alkaline/acidic pre-treatment and significant energy input for heating. Here, we propose a gentle, and highly efficient photocatalysis approach for selectively degrading PET plastic waste into terephthalic acid (TPA) in high yield (up to 99%) using cost-effective iron salts. Notably, this method achieved excellent selectivity with high TON and TOF values, applying oxygen or air as environmentally friendly oxidants. In addition, the solvent can be recycled without compromising the TPA yield, and large-scale reactions can be performed smoothly.
塑料污染对环境保护构成了重大挑战。高效回收塑料是解决这一问题的关键策略。塑料瓶中常见的聚对苯二甲酸乙二醇酯(PET)占塑料垃圾的很大一部分。因此,有效降解和回收 PET 对社会的可持续发展至关重要。然而,PET 解聚和回收方法的实施通常需要碱/酸预处理和大量的加热能源投入。在此,我们提出了一种温和、高效的光催化方法,利用具有成本效益的铁盐选择性地将 PET 塑料废料高产率(高达 99%)降解为对苯二甲酸(TPA)。值得注意的是,这种方法在使用氧气或空气作为环保氧化剂的情况下,实现了极佳的选择性和较高的 TON 值和 TOF 值。此外,溶剂可以循环使用,而不会影响 TPA 收率,大规模反应也能顺利进行。
{"title":"Selective Degradation of Polyethylene Terephthalate Plastic Waste Using Iron Salt Photocatalysts.","authors":"Shusheng Jiang, Miao Wang, Yahao Huang, Jinglan Wen, Peng Hu","doi":"10.1002/cssc.202401920","DOIUrl":"https://doi.org/10.1002/cssc.202401920","url":null,"abstract":"<p><p>Plastic pollution poses a significant challenge to environmental conservation. Efficient recycling of plastic is a key strategy to address this issue. Polyethylene terephthalate (PET), commonly found in plastic bottles, represents a substantial portion of plastic waste. Consequently, the efficient degradation and recycling of PET is crucial for the sustainable development of society. However, the implementation of methods for PET depolymerization and recycling typically necessitates alkaline/acidic pre-treatment and significant energy input for heating. Here, we propose a gentle, and highly efficient photocatalysis approach for selectively degrading PET plastic waste into terephthalic acid (TPA) in high yield (up to 99%) using cost-effective iron salts. Notably, this method achieved excellent selectivity with high TON and TOF values, applying oxygen or air as environmentally friendly oxidants. In addition, the solvent can be recycled without compromising the TPA yield, and large-scale reactions can be performed smoothly.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the quest for sustainable hydrogen production, the use of biomass-derived feedstock is gaining importance. Acceptorless Dehydrogenation (AD) in the presence of efficient and selective catalysts has been explored worldwide as a suitable method to produce hydrogen from hydrogen-rich simple organic molecules. Among these, glycerol and sugars have the advantage of being cheap, abundant, and obtainable from fatty acid basic hydrolysis (biodiesel industry) and from biomass by biochemical and thermochemical processing, respectively. Although heterogeneous catalysts are more widely used for hydrogen production from biomass-based feedstock, the harsh reaction conditions applied limit applicability due to deactivation of active sites due to coking of carbonaceous materials. Moreover, heterogeneous catalyst are more difficult to fine-tune than homogeneous counterparts, and the latter also allow for high process selectivities under milder conditions. The present Concept article summarizes the main features of the most active homogeneous catalysts reported for glycerol and monosaccharides AD. In order to directly compare hydrogen production efficiencies, the choice of literature works was limited to reports where hydrogen was clearly quantified by yields and turnover numbers (TONs). The types of transition metals and ligands is discussed, together with a perspective view on future challenges of homogeneous AD reactions for practical applications.
在寻求可持续制氢的过程中,生物质原料的使用正变得越来越重要。在高效和选择性催化剂的作用下,无受体脱氢(AD)作为一种从富氢简单有机分子制氢的合适方法,已在全球范围内得到探索。其中,甘油和糖具有廉价、丰富的优势,可分别从脂肪酸基础水解(生物柴油工业)和生物质中通过生化和热化学处理获得。虽然异相催化剂更广泛地用于以生物质为原料制氢,但由于碳质材料结焦导致活性位点失活,因此苛刻的反应条件限制了其适用性。此外,与均相催化剂相比,异相催化剂更难进行微调,而均相催化剂还能在较温和的条件下实现较高的工艺选择性。本概念文章总结了已报道的用于甘油和单糖 AD 的最活跃均相催化剂的主要特点。为了直接比较制氢效率,对文献作品的选择仅限于通过产率和周转次数(TONs)对氢进行明确量化的报告。本文讨论了过渡金属和配体的类型,并展望了均相 AD 反应在实际应用中的未来挑战。
{"title":"Sustainable Hydrogen Production by Glycerol and Monosaccharides Catalytic Acceptorless Dehydrogenation (AD) in Homogeneous Phase.","authors":"Sylwia Kostera, Luca Gonsalvi","doi":"10.1002/cssc.202400639","DOIUrl":"https://doi.org/10.1002/cssc.202400639","url":null,"abstract":"<p><p>In the quest for sustainable hydrogen production, the use of biomass-derived feedstock is gaining importance. Acceptorless Dehydrogenation (AD) in the presence of efficient and selective catalysts has been explored worldwide as a suitable method to produce hydrogen from hydrogen-rich simple organic molecules. Among these, glycerol and sugars have the advantage of being cheap, abundant, and obtainable from fatty acid basic hydrolysis (biodiesel industry) and from biomass by biochemical and thermochemical processing, respectively. Although heterogeneous catalysts are more widely used for hydrogen production from biomass-based feedstock, the harsh reaction conditions applied limit applicability due to deactivation of active sites due to coking of carbonaceous materials. Moreover, heterogeneous catalyst are more difficult to fine-tune than homogeneous counterparts, and the latter also allow for high process selectivities under milder conditions. The present Concept article summarizes the main features of the most active homogeneous catalysts reported for glycerol and monosaccharides AD. In order to directly compare hydrogen production efficiencies, the choice of literature works was limited to reports where hydrogen was clearly quantified by yields and turnover numbers (TONs). The types of transition metals and ligands is discussed, together with a perspective view on future challenges of homogeneous AD reactions for practical applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CORRIGENDUM: Correction to Solid State Zinc and Aluminum Ion Batteries: Challenges and Opportunities.","authors":"","doi":"10.1002/cssc.202401926","DOIUrl":"https://doi.org/10.1002/cssc.202401926","url":null,"abstract":"","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emir Ardalı, Hadi Jahangiri, Navid Solati, Ugur Yahsi, Cumali Tav, Alphan Sennaroglu, Sarp Kaya
In this study, the ultrafast transport dynamics of the valence band hole states in CuBi2O4 (CBO) photocathodes were investigated by varying the atomic composition and manipulating their p-type character. As a comprehensive ultrafast optical transient absorption spectroscopy (TAS) investigation of compositionally manipulated CBO that combines both ex situ and in situ TAS experiments with photoelectrochemical (PEC) performance tests, the study reveals the polaron formation tendencies of the valence band (VB) holes at cationic vacancy sites. Therefore, it draws a complete picture of the ultrafast hole transport dynamics and provides valuable insights into the hindrance of the photocurrent generated in CBO.
本研究通过改变 CuBi2O4(CBO)光电阴极的原子成分并操纵其 p 型特性,研究了其价带空穴态的超快传输动力学。该研究结合了原位和非原位瞬态吸收光谱实验以及光电化学(PEC)性能测试,是对经过成分处理的 CBO 进行的一次全面的超快光学瞬态吸收光谱(TAS)研究,揭示了阳离子空位处价带(VB)空穴的极子形成趋势。因此,它描绘了超快空穴传输动力学的全貌,并为了解 CBO 中产生的光电流的阻碍因素提供了宝贵的见解。
{"title":"Cation Vacancy-Mediated Ultrafast Hole Transport in CuBi2O4 Photocathodes.","authors":"Emir Ardalı, Hadi Jahangiri, Navid Solati, Ugur Yahsi, Cumali Tav, Alphan Sennaroglu, Sarp Kaya","doi":"10.1002/cssc.202401345","DOIUrl":"https://doi.org/10.1002/cssc.202401345","url":null,"abstract":"<p><p>In this study, the ultrafast transport dynamics of the valence band hole states in CuBi2O4 (CBO) photocathodes were investigated by varying the atomic composition and manipulating their p-type character. As a comprehensive ultrafast optical transient absorption spectroscopy (TAS) investigation of compositionally manipulated CBO that combines both ex situ and in situ TAS experiments with photoelectrochemical (PEC) performance tests, the study reveals the polaron formation tendencies of the valence band (VB) holes at cationic vacancy sites. Therefore, it draws a complete picture of the ultrafast hole transport dynamics and provides valuable insights into the hindrance of the photocurrent generated in CBO.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Heinks, Katrin Hofmann, Simon Last, Igor Gamm, Luise Blach, Ren Wei, Uwe T Bornscheuer, Christof Hamel, Jan von Langermann
Over the past years, enzymatic depolymerization of PET, one of the most widely used plastics worldwide, has become very efficient leading to the end products terephthalic acid (TPA) and ethylene glycol (EG) used for PET re-synthesis. Potent alternatives to these monomers are the intermediates BHET and MHET, the mono- and di-esters of TPA and EG which avoid total hydrolysis and can serve as single starting materials for direct re-polymerization. This study therefore aimed to selectively prepare those intermediates through reaction medium engineering during the biocatalytic hydrolysis of PET. After a comparative pre-screening of 12 PET-hydrolyzing enzymes, two of them (LCCICCG, IsPETasewt) were chosen for detailed investigations. Depending on the reaction conditions, MHET and BHET are predominantly obtainable: (i) MHET was produced in a better ratio and high concentrations at the beginning of the reaction when IsPETasewt and 10% EG was used; (ii) BHET was produced as predominant product when LCCICCG and 25% EG was used. TPA itself was nearly the single product at pH 9.0 after 24 h due to the self-hydrolysis of MHET and BHET under basic conditions. Using medium engineering in biocatalytic PET-hydrolysis, the product profile can be adjusted so that TPA, MHET or BHET is predominantly produced.
{"title":"Selective Modification of the Product Profile of Biocatalytic Hydrolyzed PET via Product-specific Medium Engineering.","authors":"Tobias Heinks, Katrin Hofmann, Simon Last, Igor Gamm, Luise Blach, Ren Wei, Uwe T Bornscheuer, Christof Hamel, Jan von Langermann","doi":"10.1002/cssc.202401759","DOIUrl":"https://doi.org/10.1002/cssc.202401759","url":null,"abstract":"<p><p>Over the past years, enzymatic depolymerization of PET, one of the most widely used plastics worldwide, has become very efficient leading to the end products terephthalic acid (TPA) and ethylene glycol (EG) used for PET re-synthesis. Potent alternatives to these monomers are the intermediates BHET and MHET, the mono- and di-esters of TPA and EG which avoid total hydrolysis and can serve as single starting materials for direct re-polymerization. This study therefore aimed to selectively prepare those intermediates through reaction medium engineering during the biocatalytic hydrolysis of PET. After a comparative pre-screening of 12 PET-hydrolyzing enzymes, two of them (LCCICCG, IsPETasewt) were chosen for detailed investigations. Depending on the reaction conditions, MHET and BHET are predominantly obtainable: (i) MHET was produced in a better ratio and high concentrations at the beginning of the reaction when IsPETasewt and 10% EG was used; (ii) BHET was produced as predominant product when LCCICCG and 25% EG was used. TPA itself was nearly the single product at pH 9.0 after 24 h due to the self-hydrolysis of MHET and BHET under basic conditions. Using medium engineering in biocatalytic PET-hydrolysis, the product profile can be adjusted so that TPA, MHET or BHET is predominantly produced.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Yuan, Hong Li, Xindi Gu, Yalei Zheng, Xiaodong Wu, Yihe Zhao, Jiejie Zhou, Sheng Cui
Hydrogen peroxide (H2O2) is a widely used strong oxidant, and its traditional preparation methods, anthraquinone method, and direct synthesis method, have many drawbacks. The method of producing H2O2 by two-electron oxygen reduction reaction (2e- ORR) is considered an alternative strategy for the traditional anthraquinone method due to its high efficiency, energy saving, and environmental friendliness, but it remains a big challenge. In this review, we have described the mechanism of ORR and the principle of electrocatalytic performance testing, and have summarized the standard performance evaluation techniques for electrocatalysts to produce H2O2. Secondly, according to the theoretical calculation and experimental results, several kinds of efficient electrocatalysts are introduced. It is concluded that noble metal-based materials, carbon-based materials, non-noble metal composites, and single-atom catalysts are the preferred catalyst materials for the preparation of H2O2 by 2e- ORR. Finally, the advantages and novelty of 2e- ORR compared with traditional methods for H2O2 production, as well as the advantages and disadvantages of the above-mentioned high-efficiency catalysts, are summarized. The application prospect and development direction of high-efficiency catalysts for H2O2 production by 2e- ORR has been prospected, which is of great significance for promoting the electrochemical yield of H2O2 and developing green chemical production.
{"title":"Electrocatalysts for the Formation of Hydrogen Peroxide by Oxygen Reduction Reaction.","authors":"Ke Yuan, Hong Li, Xindi Gu, Yalei Zheng, Xiaodong Wu, Yihe Zhao, Jiejie Zhou, Sheng Cui","doi":"10.1002/cssc.202401952","DOIUrl":"10.1002/cssc.202401952","url":null,"abstract":"<p><p>Hydrogen peroxide (H2O2) is a widely used strong oxidant, and its traditional preparation methods, anthraquinone method, and direct synthesis method, have many drawbacks. The method of producing H2O2 by two-electron oxygen reduction reaction (2e- ORR) is considered an alternative strategy for the traditional anthraquinone method due to its high efficiency, energy saving, and environmental friendliness, but it remains a big challenge. In this review, we have described the mechanism of ORR and the principle of electrocatalytic performance testing, and have summarized the standard performance evaluation techniques for electrocatalysts to produce H2O2. Secondly, according to the theoretical calculation and experimental results, several kinds of efficient electrocatalysts are introduced. It is concluded that noble metal-based materials, carbon-based materials, non-noble metal composites, and single-atom catalysts are the preferred catalyst materials for the preparation of H2O2 by 2e- ORR. Finally, the advantages and novelty of 2e- ORR compared with traditional methods for H2O2 production, as well as the advantages and disadvantages of the above-mentioned high-efficiency catalysts, are summarized. The application prospect and development direction of high-efficiency catalysts for H2O2 production by 2e- ORR has been prospected, which is of great significance for promoting the electrochemical yield of H2O2 and developing green chemical production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Zhao, Li Kang, Jilan Long, Keyu Chen, Simeng Ding
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes at the cathode of zinc-air batteries. Developing highly efficient and durable electrocatalysts at the air cathode is significant for the practical application of rechargeable zinc-air batteries. Herein, N-doped layered MX containing Co2P/Ni2P nanoparticles is synthesized by growing CoNi-ZIF on the surface and interlayers of the two-dimensional material MXene (Ti2C3) followed by phosphating calcination. The growth of CoNi-ZIF on the surface of MXene results in the attenuation of high-temperature structural damage of MXene, which in turn leads to the formation of Co2P/Ni2P@MX with a hierarchical configuration, higher electron conductivity, and abundant active sites. The optimized Co2P/Ni2P@MX achieves a half-wave potential of 0.85 V for the ORR and an overpotential of 345 mV for the OER. In addition, DFT calculations were adopted to investigate the mechanism at the atomic and molecular levels. The liquid zinc-air battery with Co2P/Ni2P@MX as the cathode exhibits a specific capacity of 783.7 mAh g-1 and exceeds 280 h (840 cycles) cycle stability, superior to zinc-air batteries constructed by the cathode of commercial Pt/C+RuO2 and other previous works. Furthermore, a solid-state battery synthesized with Co2P/Ni2P@MX as the cathode exhibits stable cycle performance (154 h/462 cycles).
{"title":"An Efficient Cathode Catalyst for Rechargeable Zinc-air Batteries based on the Derivatives of MXene@ZIFs.","authors":"Fei Zhao, Li Kang, Jilan Long, Keyu Chen, Simeng Ding","doi":"10.1002/cssc.202401200","DOIUrl":"https://doi.org/10.1002/cssc.202401200","url":null,"abstract":"<p><p>Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes at the cathode of zinc-air batteries. Developing highly efficient and durable electrocatalysts at the air cathode is significant for the practical application of rechargeable zinc-air batteries. Herein, N-doped layered MX containing Co<sub>2</sub>P/Ni<sub>2</sub>P nanoparticles is synthesized by growing CoNi-ZIF on the surface and interlayers of the two-dimensional material MXene (Ti<sub>2</sub>C<sub>3</sub>) followed by phosphating calcination. The growth of CoNi-ZIF on the surface of MXene results in the attenuation of high-temperature structural damage of MXene, which in turn leads to the formation of Co<sub>2</sub>P/Ni<sub>2</sub>P@MX with a hierarchical configuration, higher electron conductivity, and abundant active sites. The optimized Co<sub>2</sub>P/Ni<sub>2</sub>P@MX achieves a half-wave potential of 0.85 V for the ORR and an overpotential of 345 mV for the OER. In addition, DFT calculations were adopted to investigate the mechanism at the atomic and molecular levels. The liquid zinc-air battery with Co<sub>2</sub>P/Ni<sub>2</sub>P@MX as the cathode exhibits a specific capacity of 783.7 mAh g<sup>-1</sup> and exceeds 280 h (840 cycles) cycle stability, superior to zinc-air batteries constructed by the cathode of commercial Pt/C+RuO<sub>2</sub> and other previous works. Furthermore, a solid-state battery synthesized with Co<sub>2</sub>P/Ni<sub>2</sub>P@MX as the cathode exhibits stable cycle performance (154 h/462 cycles).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the conversion of furfural using non-noble metal catalysts, preferential cleavage of the C2-O bond followed by hydrogenation of the C=C bond facilitates selective access to valuable 1,5-pentanediol (1,5-Ped). Herein, we developed CeO₂ loaded core-shell CoO@Co nanoparticle catalysts. Adjusting Co loading, Fe doping, and reduction temperature improved reaction efficiency. 7Co-0.2Fe/CeO₂ catalysts reduced at 500 °C demonstrated optimal performance. 1,5-Ped produced at 54.76 mmol/g(Co)/h, representing the top activity levels among the reported catalysts. H₂-TPR, XRD, HAADF-STEM, FT-IR, XPS, and XANES were employed to investigate the catalyst structure-activity relationship. Co²⁺ cleaves furan ring C-O bond, Co⁰ promotes double-bond hydrogenation. The CoO@Co structure favors the desired 1,5-Ped production route. Trace Fe species optimize the Co²⁺/Co⁰ ratio, enhance the substrate adsorption, and inhibit the furan ring saturation. These findings emphasize the importance of fine-tuning catalyst structure and composition for selectivity improvement.
{"title":"Trace Iron-Modified CeO₂-supported Core-shell CoO@Co Catalyst for Selective Conversion of Furfural to 1,5-Pentanediol.","authors":"Shenyu Wang, Junjie Zhang, Ying Zhang","doi":"10.1002/cssc.202401938","DOIUrl":"https://doi.org/10.1002/cssc.202401938","url":null,"abstract":"<p><p>In the conversion of furfural using non-noble metal catalysts, preferential cleavage of the C2-O bond followed by hydrogenation of the C=C bond facilitates selective access to valuable 1,5-pentanediol (1,5-Ped). Herein, we developed CeO₂ loaded core-shell CoO@Co nanoparticle catalysts. Adjusting Co loading, Fe doping, and reduction temperature improved reaction efficiency. 7Co-0.2Fe/CeO₂ catalysts reduced at 500 °C demonstrated optimal performance. 1,5-Ped produced at 54.76 mmol/g(Co)/h, representing the top activity levels among the reported catalysts. H₂-TPR, XRD, HAADF-STEM, FT-IR, XPS, and XANES were employed to investigate the catalyst structure-activity relationship. Co²⁺ cleaves furan ring C-O bond, Co⁰ promotes double-bond hydrogenation. The CoO@Co structure favors the desired 1,5-Ped production route. Trace Fe species optimize the Co²⁺/Co⁰ ratio, enhance the substrate adsorption, and inhibit the furan ring saturation. These findings emphasize the importance of fine-tuning catalyst structure and composition for selectivity improvement.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recycling of lithium batteries is essential for a sustainable energy transition. However, impurities in the products obtained from the black mass can lower their market value. In this work, lithium carbonate, which has the highest market share among lithium-based products, is purified using distilled water at controlled temperature, time and stirring speed. The purification process involves dissolving lithium carbonate in distilled water at low temperatures (between 0 and 10°C), followed by crystallization through water evaporation. Optimal conditions yielded lithium carbonate with a purity of 99.66% after two stages of purification. The dependence of the variables on the final purity was deeply analyzed and the thermodynamics of the reaction was studied, confirming the exothermic nature the dissolution reaction.
{"title":"Purification of Li2CO3 obtained through pyrometallurgical treatment of NMC black mass from electric vehicle batteries.","authors":"Rosso Laura, Alcaraz Lorena, Rodríguez-Largo Olga, Félix López","doi":"10.1002/cssc.202401722","DOIUrl":"https://doi.org/10.1002/cssc.202401722","url":null,"abstract":"<p><p>The recycling of lithium batteries is essential for a sustainable energy transition. However, impurities in the products obtained from the black mass can lower their market value. In this work, lithium carbonate, which has the highest market share among lithium-based products, is purified using distilled water at controlled temperature, time and stirring speed. The purification process involves dissolving lithium carbonate in distilled water at low temperatures (between 0 and 10°C), followed by crystallization through water evaporation. Optimal conditions yielded lithium carbonate with a purity of 99.66% after two stages of purification. The dependence of the variables on the final purity was deeply analyzed and the thermodynamics of the reaction was studied, confirming the exothermic nature the dissolution reaction.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The urgent need to mitigate water pollution and achieve Sustainable Development Goal 14 (SDG 14)-Life below water, necessitates developing efficient and eco-friendly wastewater treatment technologies. This research addresses this challenge by photocatalytic degradation of terephthalic acid, a precursor for PET bottles using environment-friendly and biocompatible photocatalysts. The 1D/2D nanocomposite comprising zinc oxide (ZnO) nanorods and functionalized graphitic carbon nitride (Zn-TG) nanosheets were synthesized and thoroughly characterized. The nanocomposite effectively mitigated the individual drawbacks of Zn-TG agglomeration and the wide band gap of ZnO as confirmed through zeta potential and Tauc's plot studies, respectively. The synthesized nanocomposite achieved ~100 % degradation within 60 minutes, exhibiting superior kinetics (~2.5 times) compared to pristine samples. The enhanced degradation efficiency was elucidated by efficient charge carrier transfer (~5 times faster) and separation (~2 times improved) as confirmed through electrochemical impedance spectroscopy and time-resolved photoluminescence studies. The proposed Z-scheme pathway provides mechanistic insights. This proposed mechanism is supported by extensive electron paramagnetic resonance (EPR) and scavenger studies. The liquid chromatography-mass spectrometry (LC-MS) analysis confirms the formation of less toxic byproducts for ensuring that the wastewater treatment process is efficient and environmentally friendly. This research helps in developing a highly effective and sustainable wastewater treatment technology.
{"title":"Z-Scheme Enabled 1D/2D Nanocomposite of ZnO Nanorods and Functionalized g-C3 N4 Nanosheets for Sustainable Degradation of Terephthalic Acid.","authors":"Honey Mittal, Arun Kumar, Diksha Sharma, Manika Khanuja","doi":"10.1002/cssc.202401408","DOIUrl":"https://doi.org/10.1002/cssc.202401408","url":null,"abstract":"<p><p>The urgent need to mitigate water pollution and achieve Sustainable Development Goal 14 (SDG 14)-Life below water, necessitates developing efficient and eco-friendly wastewater treatment technologies. This research addresses this challenge by photocatalytic degradation of terephthalic acid, a precursor for PET bottles using environment-friendly and biocompatible photocatalysts. The 1D/2D nanocomposite comprising zinc oxide (ZnO) nanorods and functionalized graphitic carbon nitride (Zn-TG) nanosheets were synthesized and thoroughly characterized. The nanocomposite effectively mitigated the individual drawbacks of Zn-TG agglomeration and the wide band gap of ZnO as confirmed through zeta potential and Tauc's plot studies, respectively. The synthesized nanocomposite achieved ~100 % degradation within 60 minutes, exhibiting superior kinetics (~2.5 times) compared to pristine samples. The enhanced degradation efficiency was elucidated by efficient charge carrier transfer (~5 times faster) and separation (~2 times improved) as confirmed through electrochemical impedance spectroscopy and time-resolved photoluminescence studies. The proposed Z-scheme pathway provides mechanistic insights. This proposed mechanism is supported by extensive electron paramagnetic resonance (EPR) and scavenger studies. The liquid chromatography-mass spectrometry (LC-MS) analysis confirms the formation of less toxic byproducts for ensuring that the wastewater treatment process is efficient and environmentally friendly. This research helps in developing a highly effective and sustainable wastewater treatment technology.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}