首页 > 最新文献

ChemSusChem最新文献

英文 中文
Application of Hydroxyaromatic Aldehydes in Ultra-Efficient and Metal-Free Photocatalytic E→Z Isomerization of Olefin. 羟基芳醛在超高效无金属光催化 E→Z 烯烃异构化中的应用。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-05 DOI: 10.1002/cssc.202401387
Chun-Xiu Liu, Yao Yao, Zi-Wen Zhou, Song Qin, Zhi-Peng Yu, Fei-Yan Tao, Wen-Dian Li, Xiao-Qi Yu, Na Wang

The strategy of photocatalyzed E→Z isomerization of olefins to access thermodynamically less stable Z-alkenes has recently received considerable attention. Here, we have discovered a sensitizer of hydroxyaromatic aldehyde that can rapidly achieve olefin E→Z isomerization under blue light irradiation. Notably, 2-hydroxybenzene-1,3,5-tricarbaldehyde, when assisted by blue light, can achieve efficient and selective conversion within just 5 minutes (Z/E=92 : 8). The reaction can be successfully scaled up to gram scale, and exhibits remarkable reactivity toward various derivatives of ethyl cinnamate (27 examples) and other olefins. Furthermore, the former can be directly cyclized by a hydroxyl derivative to produce 4-substituted coumarin. The prominent preponderance of this method includes being metal-free, efficient, convenient, no by-products and achieving high selectivity. Correlation of sensitizer triplet energy (ET) and preliminary mechanistic experiments indicate that the accomplishment of this reaction is based on the selective excitation mechanism.

最近,光催化烯烃 E→Z 异构化以获得热力学稳定性较低的 Z-烯烃的策略受到了广泛关注。在这里,我们发现了一种羟基芳香醛敏化剂,它能在蓝光照射下快速实现烯烃的 E→Z 异构化。值得注意的是,2-羟基苯-1,3,5-三甲醛在蓝光辅助下可在短短 5 分钟内实现高效和选择性转化(Z/E=92:8)。该反应可成功放大到克级,并对肉桂酸乙酯的各种衍生物(27 个实例)和其他烯烃具有显著的反应活性。此外,前者可直接通过羟基衍生物环化生成 4-取代香豆素。这种方法具有无金属、高效、方便、无副产物和高选择性等突出优点。敏化剂三重态能量(ET)的相关性和初步的机理实验表明,该反应的完成是基于选择性激发机制。
{"title":"Application of Hydroxyaromatic Aldehydes in Ultra-Efficient and Metal-Free Photocatalytic E→Z Isomerization of Olefin.","authors":"Chun-Xiu Liu, Yao Yao, Zi-Wen Zhou, Song Qin, Zhi-Peng Yu, Fei-Yan Tao, Wen-Dian Li, Xiao-Qi Yu, Na Wang","doi":"10.1002/cssc.202401387","DOIUrl":"https://doi.org/10.1002/cssc.202401387","url":null,"abstract":"<p><p>The strategy of photocatalyzed E→Z isomerization of olefins to access thermodynamically less stable Z-alkenes has recently received considerable attention. Here, we have discovered a sensitizer of hydroxyaromatic aldehyde that can rapidly achieve olefin E→Z isomerization under blue light irradiation. Notably, 2-hydroxybenzene-1,3,5-tricarbaldehyde, when assisted by blue light, can achieve efficient and selective conversion within just 5 minutes (Z/E=92 : 8). The reaction can be successfully scaled up to gram scale, and exhibits remarkable reactivity toward various derivatives of ethyl cinnamate (27 examples) and other olefins. Furthermore, the former can be directly cyclized by a hydroxyl derivative to produce 4-substituted coumarin. The prominent preponderance of this method includes being metal-free, efficient, convenient, no by-products and achieving high selectivity. Correlation of sensitizer triplet energy (E<sub>T</sub>) and preliminary mechanistic experiments indicate that the accomplishment of this reaction is based on the selective excitation mechanism.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic Insights on Coverage-Dependent Selectivity Limitations in Vinyl Acetate Synthesis. 乙酸乙烯酯合成中覆盖层选择性限制的机理认识。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-03 DOI: 10.1002/cssc.202401911
Gregory L Novotny, Prashant Deshlahra

Developing improved catalysts for sustainable chemical processes often involves understanding atomistic origins of catalytic activity, selectivity, and stability. Using density functional theory and steady-state kinetic analyses, we probe the elementary steps that form decomposition products that limit selectivity in vinyl acetate (VA) synthesis on Pd surfaces covered with acetate species. Acetate formation and coupling with ethylene control the VA formation catalytic cycle and steady-state coverage, but acetate and ethylene can separately decompose to form CO2. Both decompositions involve initial C-H activations at acetate vacancies, followed by additional C-H activations and eventual C-O formations and C-C cleavages involving reactions with molecular oxygen. Acetate decomposition paths with non-oxidative kinetically-relevant steps exhibit similar free energy barriers to oxidative paths. In contrast, the non-oxidative ethylene path involving an ethylidyne intermediate exhibits a much lower barrier than paths with oxidative kinetically-relevant steps. Ethylene decomposition is very facile at low coverages but is more coverage-sensitive, leading to similar decomposition and VA formation barriers at coverages accessible at steady state, which is consistent with moderate VA selectivity in measurements and ethylene vs. acetate decomposition contributions assessed from regressed kinetic parameters. These insights provide a detailed framework for describing VA synthesis rates and selectivity on metallic catalyst surfaces.

为可持续化学过程开发改良催化剂通常需要了解催化活性、选择性和稳定性的原子起源。利用密度泛函理论和稳态动力学分析,我们探究了醋酸乙烯(VA)在覆盖醋酸酯物种的钯表面合成时形成限制选择性的分解产物的基本步骤。醋酸酯的形成以及与乙烯的耦合控制着醋酸乙烯酯形成的催化循环和稳态覆盖率,但醋酸酯和乙烯可分别分解形成二氧化碳。这两种分解都涉及醋酸空位的初始 C-H 活化,随后是额外的 C-H 活化以及最终的 C-O 形成和涉及与分子氧反应的 C-C 裂解。具有非氧化动力学相关步骤的醋酸盐分解路径显示出与氧化路径相似的自由能障。相比之下,涉及乙炔中间体的非氧化乙烯分解路径所表现出的自由能垒要比具有氧化动力学相关步骤的路径低得多。乙烯分解在低覆盖率下非常容易,但对覆盖率更为敏感,导致在稳态下可接触到的覆盖率下,乙烯分解和醋酸乙烯酯形成障碍相似,这与测量中适度的醋酸乙烯酯选择性以及根据回归动力学参数评估的乙烯与醋酸乙烯酯分解贡献是一致的。这些见解为描述金属催化剂表面的醋酸乙烯酯合成速率和选择性提供了一个详细的框架。
{"title":"Mechanistic Insights on Coverage-Dependent Selectivity Limitations in Vinyl Acetate Synthesis.","authors":"Gregory L Novotny, Prashant Deshlahra","doi":"10.1002/cssc.202401911","DOIUrl":"https://doi.org/10.1002/cssc.202401911","url":null,"abstract":"<p><p>Developing improved catalysts for sustainable chemical processes often involves understanding atomistic origins of catalytic activity, selectivity, and stability. Using density functional theory and steady-state kinetic analyses, we probe the elementary steps that form decomposition products that limit selectivity in vinyl acetate (VA) synthesis on Pd surfaces covered with acetate species. Acetate formation and coupling with ethylene control the VA formation catalytic cycle and steady-state coverage, but acetate and ethylene can separately decompose to form CO2. Both decompositions involve initial C-H activations at acetate vacancies, followed by additional C-H activations and eventual C-O formations and C-C cleavages involving reactions with molecular oxygen. Acetate decomposition paths with non-oxidative kinetically-relevant steps exhibit similar free energy barriers to oxidative paths. In contrast, the non-oxidative ethylene path involving an ethylidyne intermediate exhibits a much lower barrier than paths with oxidative kinetically-relevant steps. Ethylene decomposition is very facile at low coverages but is more coverage-sensitive, leading to similar decomposition and VA formation barriers at coverages accessible at steady state, which is consistent with moderate VA selectivity in measurements and ethylene vs. acetate decomposition contributions assessed from regressed kinetic parameters. These insights provide a detailed framework for describing VA synthesis rates and selectivity on metallic catalyst surfaces.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Simple Regeneration Process Using a CO2-Switchable-Polarity Solvent for Cellulose Hydrogels. 使用二氧化碳可切换极性溶剂的纤维素水凝胶简易再生工艺。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-02 DOI: 10.1002/cssc.202401848
Arata Matsui, Deandra Ayu Putri, Morgan L Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita

Cellulose is one of the main components of plant cell walls, abundant on earth, and can be acquired at a low cost. Furthermore, there has been increasing interest in its use in environmentally friendly, carbon-neutral, sustainable materials. It is expected that the applications of cellulose will expand with the development of a simple processing method. In this study, we dissolved cellulose in aqueous N-butyl-N-methylpyrrolidinium hydroxide solution ([C4mpyr][OH]/H2O) and investigated the cellulose regeneration process based on changes in solubility upon application of CO2 gas. We investigated the effect of transformation of the anion chemical structure on cellulose solubility by flowing CO2 gas into [C4mpyr][OH]/H2O and conducted pH, FT-IR, and 13C NMR measurements. We observed that the changes in anion structure allowed for the modulation of cellulose solubility in [C4mpyr][OH]/H2O, thus establishing a simple and safe cellulose regeneration process. This regeneration process was also applied to enable the production of cellulose hydrogels. The hydrogel formed using this method was revealed to have higher mechanical strength than an analogous hydrogel produced using the same dissolution solvent with the addition of a cross-linker. The ability to produce cellulose-based hydrogels of different mechanical properties is expected to expand the possible applications.

纤维素是植物细胞壁的主要成分之一,在地球上含量丰富,而且获取成本低廉。此外,人们对其在环保、碳中性和可持续材料中的应用越来越感兴趣。随着简单加工方法的开发,纤维素的应用范围有望扩大。在本研究中,我们将纤维素溶解在 N-丁基-N-甲基吡咯烷氢氧化物水溶液([C4mpyr][OH]/H2O)中,并根据加入二氧化碳气体后溶解度的变化研究了纤维素的再生过程。我们通过向[C4mpyr][OH]/H2O 中通入二氧化碳气体,研究了阴离子化学结构的变化对纤维素溶解度的影响,并进行了 pH 值、傅立叶变换红外光谱和 13C NMR 测量。我们观察到,阴离子结构的变化可以调节纤维素在 [C4mpyr][OH]/H2O 中的溶解度,从而建立了一种简单安全的纤维素再生工艺。这种再生工艺还可用于生产纤维素水凝胶。与使用相同溶解溶剂并添加交联剂生产的类似水凝胶相比,使用该方法生产的水凝胶具有更高的机械强度。生产具有不同机械性能的纤维素水凝胶的能力有望扩大其可能的应用范围。
{"title":"A Simple Regeneration Process Using a CO2-Switchable-Polarity Solvent for Cellulose Hydrogels.","authors":"Arata Matsui, Deandra Ayu Putri, Morgan L Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita","doi":"10.1002/cssc.202401848","DOIUrl":"https://doi.org/10.1002/cssc.202401848","url":null,"abstract":"<p><p>Cellulose is one of the main components of plant cell walls, abundant on earth, and can be acquired at a low cost. Furthermore, there has been increasing interest in its use in environmentally friendly, carbon-neutral, sustainable materials. It is expected that the applications of cellulose will expand with the development of a simple processing method. In this study, we dissolved cellulose in aqueous N-butyl-N-methylpyrrolidinium hydroxide solution ([C4mpyr][OH]/H2O) and investigated the cellulose regeneration process based on changes in solubility upon application of CO2 gas. We investigated the effect of transformation of the anion chemical structure on cellulose solubility by flowing CO2 gas into [C4mpyr][OH]/H2O and conducted pH, FT-IR, and 13C NMR measurements. We observed that the changes in anion structure allowed for the modulation of cellulose solubility in [C4mpyr][OH]/H2O, thus establishing a simple and safe cellulose regeneration process. This regeneration process was also applied to enable the production of cellulose hydrogels. The hydrogel formed using this method was revealed to have higher mechanical strength than an analogous hydrogel produced using the same dissolution solvent with the addition of a cross-linker. The ability to produce cellulose-based hydrogels of different mechanical properties is expected to expand the possible applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing Non-Radiative Energy Losses in Non-fullerene Organic Solar Cells. 减少非富勒烯有机太阳能电池中的非辐射能量损耗。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1002/cssc.202402169
Nan Wei, Yawen Guo, Haoming Song, Yahui Liu, Hao Lu, Zhishan Bo

With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20% threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (Voc) of OSCs is constrained by substantial non-radiative energy losses (ΔEnr), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQEEL) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔEnr. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔEnr.

随着非富勒烯受体(NFAs)的快速发展,有机太阳能电池(OSCs)的功率转换效率(PCE)已经超过了 20% 的临界值,凸显了其作为下一代能源转换设备的巨大潜力。与无机或过氧化物太阳能电池相比,有机太阳能电池的开路电压(Voc)受到大量非辐射能量损失(ΔEnr)的限制,导致其值明显低于肖克利-奎塞尔极限所预期的值。在 OSC 中,非辐射能量损失与电荷转移态的电致发光量子效率 (EQEEL) 密切相关,而 EQEEL 又直接受到受体材料的光致发光量子产率 (PLQY) 的影响。因此,提高低带隙受体材料的 PLQY 已成为有效降低 ΔEnr 的关键策略。 这篇综述文章从受体材料设计的角度深入探讨了分子结构与 PLQY 之间的内在联系。文章进一步探讨了设计具有高 PLQY 的受体材料的方法,最终目标是实现兼具高效率和最小 ΔEnr 的 OSC。
{"title":"Reducing Non-Radiative Energy Losses in Non-fullerene Organic Solar Cells.","authors":"Nan Wei, Yawen Guo, Haoming Song, Yahui Liu, Hao Lu, Zhishan Bo","doi":"10.1002/cssc.202402169","DOIUrl":"https://doi.org/10.1002/cssc.202402169","url":null,"abstract":"<p><p>With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20% threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (Voc) of OSCs is constrained by substantial non-radiative energy losses (ΔEnr), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQEEL) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔEnr. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔEnr.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylose Acetals - a New Class of Sustainable Solvents and Their Application in Enzymatic Polycondensation. 木糖乙缩醛--一类新型可持续溶剂及其在酶促缩聚中的应用。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1002/cssc.202401877
Anastasia O Komarova, Cicely M Warne, Hugo Pétremand, Laura König-Mattern, Johannes Stöckelmaier, Chris Oostenbrink, Georg M Guebitz, Jeremy Luterbacher, Alessandro Pellis

The use of organic solvents in academic research and industry applications is facing increasing regulatory pressure due to environmental and health concerns. Consequently, there is a growing demand for sustainable solvents, particularly in the enzymatic synthesis and processing of polyesters. Biocatalysts offer a sustainable method for producing these materials; however, achieving high molecular weights often necessitates use of solvents. In this work, we introduce a new class of alternative aprotic solvents with medium polarity produced directly from agricultural waste biomass in up to 83 mol% yield (on xylan basis). The new solvents have a largely unmodified xylose core and acetal functionality, yet they show no peroxide formation and provide reduced flammability risk. We also demonstrate their successful application in enzymatic polycondensation reactions with Candida antarctica lipase B (CaLB). In particular, the solvent dibutylxylose (DBX) outperformed the hazardous solvent diphenyl ether and facilitated polycondensation of the lignin-derived diester pyridine-2,4-dicarboxylate, yielding polyesters with a Mn of >15 kDa. Computational modelling studies provided further insight into the molecular structure and dynamics of CaLB in the presence of new solvents. Lastly, up to 98 wt% of the new xylose acetals were successfully recovered and recycled, further contributing to the sustainability of the overall process.

出于对环境和健康的考虑,学术研究和工业应用中有机溶剂的使用正面临着越来越大的监管压力。因此,对可持续溶剂的需求日益增长,尤其是在聚酯的酶法合成和加工过程中。生物催化剂为生产这些材料提供了一种可持续的方法;然而,要达到高分子量往往需要使用溶剂。在这项工作中,我们介绍了一类新的中等极性替代钝化溶剂,它们直接从农业废弃生物质中生产,收率高达 83 摩尔%(以木聚糖为基础)。这种新型溶剂的木糖核心和缩醛官能团基本未经改性,不会形成过氧化物,降低了易燃性风险。我们还展示了它们在与白色念珠菌脂肪酶 B(CaLB)的酶缩聚反应中的成功应用。特别是,二丁基木糖(DBX)溶剂的性能优于危险溶剂二苯醚,可促进木质素衍生二酯吡啶-2,4-二甲酸酯的缩聚反应,产生 Mn >15 kDa 的聚酯。计算建模研究进一步揭示了 CaLB 在新溶剂存在下的分子结构和动力学。最后,高达 98% 的新木糖乙醛被成功回收和循环利用,进一步促进了整个工艺的可持续性。
{"title":"Xylose Acetals - a New Class of Sustainable Solvents and Their Application in Enzymatic Polycondensation.","authors":"Anastasia O Komarova, Cicely M Warne, Hugo Pétremand, Laura König-Mattern, Johannes Stöckelmaier, Chris Oostenbrink, Georg M Guebitz, Jeremy Luterbacher, Alessandro Pellis","doi":"10.1002/cssc.202401877","DOIUrl":"10.1002/cssc.202401877","url":null,"abstract":"<p><p>The use of organic solvents in academic research and industry applications is facing increasing regulatory pressure due to environmental and health concerns. Consequently, there is a growing demand for sustainable solvents, particularly in the enzymatic synthesis and processing of polyesters. Biocatalysts offer a sustainable method for producing these materials; however, achieving high molecular weights often necessitates use of solvents. In this work, we introduce a new class of alternative aprotic solvents with medium polarity produced directly from agricultural waste biomass in up to 83 mol% yield (on xylan basis). The new solvents have a largely unmodified xylose core and acetal functionality, yet they show no peroxide formation and provide reduced flammability risk. We also demonstrate their successful application in enzymatic polycondensation reactions with Candida antarctica lipase B (CaLB). In particular, the solvent dibutylxylose (DBX) outperformed the hazardous solvent diphenyl ether and facilitated polycondensation of the lignin-derived diester pyridine-2,4-dicarboxylate, yielding polyesters with a Mn of >15 kDa. Computational modelling studies provided further insight into the molecular structure and dynamics of CaLB in the presence of new solvents. Lastly, up to 98 wt% of the new xylose acetals were successfully recovered and recycled, further contributing to the sustainability of the overall process.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-Dependent Kinetics of Plasma-Based CO2 Conversion: Interplay of Electron-Driven and Thermal-Driven Chemistry. 等离子体转化二氧化碳的温度动力学:电子驱动化学与热力驱动化学的相互作用。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1002/cssc.202401526
Aswath Mohanan, Ramses Snoeckx, Min Suk Cha

The transformation of CO2 into chemical building blocks for various industries is considered a key technology in a net-zero energy future. To realize this, plasma discharges are one of the most promising approaches thanks to their electron-driven reactions and high operational flexibility. Most studies focused on room-temperature and vibrationally-excited discharges, however, lately, the importance of thermal reactions is considered. Therefore, we developed a temperature-dependent plasma-chemical reaction mechanism to investigate the temperature dependence of plasma-based CO2 conversion. Here, we present the various effects of thermally-driven reactions on the CO2 conversion as a function of the gas temperature and specific energy input. Our analysis pinpointed the key reactions controlling the plasma-based CO2 conversion, shifting from an electron-driven to a thermal-driven regime. Additionally, we used the mechanism to verify the theoretical upper boundary of the process' energy efficiency, and discussed how our findings could lead to the further development and optimization of plasma discharges for efficient CO₂ conversion in the future.

将二氧化碳转化为各行各业所需的化学成分被认为是未来实现净零能耗的关键技术。要实现这一目标,等离子体放电因其电子驱动反应和高度的操作灵活性而成为最有前途的方法之一。大多数研究都集中在室温放电和振动激励放电上,但最近,人们开始考虑热反应的重要性。因此,我们开发了一种温度依赖性等离子体化学反应机制,以研究基于等离子体的二氧化碳转化的温度依赖性。在此,我们介绍了热驱动反应对二氧化碳转化率的各种影响,这些影响是气体温度和比能量输入的函数。我们的分析精确定位了控制等离子体二氧化碳转化的关键反应,并将其从电子驱动机制转变为热驱动机制。此外,我们还利用该机制验证了该过程能效的理论上限,并讨论了我们的发现如何在未来进一步开发和优化等离子体放电以实现二氧化碳的高效转化。
{"title":"Temperature-Dependent Kinetics of Plasma-Based CO2 Conversion: Interplay of Electron-Driven and Thermal-Driven Chemistry.","authors":"Aswath Mohanan, Ramses Snoeckx, Min Suk Cha","doi":"10.1002/cssc.202401526","DOIUrl":"10.1002/cssc.202401526","url":null,"abstract":"<p><p>The transformation of CO2 into chemical building blocks for various industries is considered a key technology in a net-zero energy future. To realize this, plasma discharges are one of the most promising approaches thanks to their electron-driven reactions and high operational flexibility. Most studies focused on room-temperature and vibrationally-excited discharges, however, lately, the importance of thermal reactions is considered. Therefore, we developed a temperature-dependent plasma-chemical reaction mechanism to investigate the temperature dependence of plasma-based CO2 conversion. Here, we present the various effects of thermally-driven reactions on the CO2 conversion as a function of the gas temperature and specific energy input. Our analysis pinpointed the key reactions controlling the plasma-based CO2 conversion, shifting from an electron-driven to a thermal-driven regime. Additionally, we used the mechanism to verify the theoretical upper boundary of the process' energy efficiency, and discussed how our findings could lead to the further development and optimization of plasma discharges for efficient CO₂ conversion in the future.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic Hydrogenation and Deuteration of Unsaturated C-N Bonds to Amines with Vacancy-rich Cu3P Nanowires as Catalysts in Aqueous Solution. 以富含空位的 Cu3P 纳米线为催化剂在水溶液中对不饱和 C-N 键到胺的氢化和氘化进行电催化。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1002/cssc.202401601
Peili Zhang, Zhiyong Fang, Yunxuan Ding, Song Yuan, Linqin Wang, Mei Wang, Fusheng Li, Xiujuan Wu, Licheng Sun

Renewable energy driven electrochemically hydrogenation of unsaturated C-N bonds with water as a hydrogen source provides an eco-friendly route for amine production. However, the potential commercial applications of this strategy were limited by the lack of relevant extended research. Here we demonstrate an efficient electrochemical hydrogenation system for the formation of amines from nitriles by a vacancy-rich copper phosphide catalyst. The catalytic system achieves a yield of 99% and a Faraday efficiency of 99% for the hydrogenation of benzonitrile. Mechanism study shows that benzonitrile is spontaneously adsorbed on the electrode surface and the electrogenerated active adsorbed hydrogen is the key reactive intermediate for hydrogenation. Theoretical calculation results show that vacancy-induced active sites chemisorb the N atom, thus accelerating C≡N bond activation for hydrogenation. Encouragingly, good yields of amines (≥99%) are obtained when benzonitrile is replaced by a series of aromatic nitriles, heterocyclic nitriles, aliphatic nitriles, and imines. These results show the general applicability of this method for the synthesis of various amines.

以水为氢源的不饱和 C-N 键的可再生能源驱动电化学氢化为胺的生产提供了一条生态友好型途径。然而,由于缺乏相关的扩展研究,这一策略的潜在商业应用受到了限制。在此,我们展示了一种利用富空位磷化铜催化剂从腈形成胺的高效电化学氢化系统。在苯甲腈的氢化过程中,该催化系统的产率达到 99%,法拉第效率达到 99%。机理研究表明,苯腈自发吸附在电极表面,电生活性吸附氢是氢化的关键反应中间体。理论计算的结果表明,空位诱导的活性位点与 N 原子发生化学吸附,从而加速了 C≡N 键活化以实现氢化。令人鼓舞的是,当苯甲腈被一系列芳香族腈、杂环腈、脂肪族腈和亚胺取代时,胺的产量很高(≥99%)。这些结果表明这种方法普遍适用于合成各种胺。
{"title":"Electrocatalytic Hydrogenation and Deuteration of Unsaturated C-N Bonds to Amines with Vacancy-rich Cu3P Nanowires as Catalysts in Aqueous Solution.","authors":"Peili Zhang, Zhiyong Fang, Yunxuan Ding, Song Yuan, Linqin Wang, Mei Wang, Fusheng Li, Xiujuan Wu, Licheng Sun","doi":"10.1002/cssc.202401601","DOIUrl":"https://doi.org/10.1002/cssc.202401601","url":null,"abstract":"<p><p>Renewable energy driven electrochemically hydrogenation of unsaturated C-N bonds with water as a hydrogen source provides an eco-friendly route for amine production. However, the potential commercial applications of this strategy were limited by the lack of relevant extended research. Here we demonstrate an efficient electrochemical hydrogenation system for the formation of amines from nitriles by a vacancy-rich copper phosphide catalyst. The catalytic system achieves a yield of 99% and a Faraday efficiency of 99% for the hydrogenation of benzonitrile. Mechanism study shows that benzonitrile is spontaneously adsorbed on the electrode surface and the electrogenerated active adsorbed hydrogen is the key reactive intermediate for hydrogenation. Theoretical calculation results show that vacancy-induced active sites chemisorb the N atom, thus accelerating C≡N bond activation for hydrogenation. Encouragingly, good yields of amines (≥99%) are obtained when benzonitrile is replaced by a series of aromatic nitriles, heterocyclic nitriles, aliphatic nitriles, and imines. These results show the general applicability of this method for the synthesis of various amines.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Carbon be Used as an Anode for Water Splitting? 碳可以用作水分离的阳极吗?
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1002/cssc.202401340
Jiali Sun, Yuying Dang, Xiaoyan Sun, Saskia Heumann, Yuxiao Ding

Carbon materials, whose structural and electronic properties can be fine-tuned, are promising material solutions for many energy-related systems. However, due to the lack of fundamental understanding of the carbon surface chemistry, especially when they are used in electrolytes, the rapid development of carbon as electrodes has led to many widely accepted misunderstandings. Focusing on the case of carbon-based electrode for water splitting, this Viewpoint tries to highlight the main problems of the area and demonstrates/presents the dynamic carbon surface chemistry in the application. The role of carbon as an anode for water splitting is revealed and if it can be practically used in water splitting is discussed.

碳材料的结构和电子特性可以进行微调,是许多能源相关系统的有前途的材料解决方案。然而,由于缺乏对碳表面化学性质的基本了解,特别是当它们用于电解质时,碳作为电极的快速发展导致了许多广为接受的误解。本视点以用于水分离的碳基电极为例,试图强调该领域的主要问题,并展示/介绍应用中的动态碳表面化学。揭示了碳作为阳极在水分离中的作用,并讨论了碳是否可实际用于水分离。
{"title":"Can Carbon be Used as an Anode for Water Splitting?","authors":"Jiali Sun, Yuying Dang, Xiaoyan Sun, Saskia Heumann, Yuxiao Ding","doi":"10.1002/cssc.202401340","DOIUrl":"https://doi.org/10.1002/cssc.202401340","url":null,"abstract":"<p><p>Carbon materials, whose structural and electronic properties can be fine-tuned, are promising material solutions for many energy-related systems. However, due to the lack of fundamental understanding of the carbon surface chemistry, especially when they are used in electrolytes, the rapid development of carbon as electrodes has led to many widely accepted misunderstandings. Focusing on the case of carbon-based electrode for water splitting, this Viewpoint tries to highlight the main problems of the area and demonstrates/presents the dynamic carbon surface chemistry in the application. The role of carbon as an anode for water splitting is revealed and if it can be practically used in water splitting is discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource-efficient electrodes with metallized woven-glass-grid current collectors for lithium-ion batteries. 用于锂离子电池的具有金属化玻璃编织栅集流器的资源节约型电极。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1002/cssc.202402233
Yen-Ming Li, Mohammadjafar Momeni, Huy Nguyen Dang Duc, Suvi von Bahder, Friedrich Roth, Wolfram Münchgesang, Manfred Danziger, Winfried Voitus, Dominik Nuss, Cornelia Sennewald, Tilmann Leisegang

A novel class of resource-efficient, woven-glass-grid current collectors (CCs) for Li-ion batteries is introduced. These CCs are based on ultra-light multifilament glass threads, woven to a grid and surrounded with a thin metal layer (equivalent to a 1 µm-thick metal foil) in a roll-to-roll physical vapor deposition process. This saves > 90% of the required Cu and Al metals and reduces the mass of the CCs by > 80%. At the same time, the gravimetric capacity of anodes with graphite and cathodes with LiCoO2 active material increases by 48% and 14%, respectively, while full cells are characterized by an increase of 26%. Thus, the specific energy can be improved by 25%. A complete anode and cathode fabrication process from preparing the CCs and electrodes to cells is described and demonstrated in coin cell format. Coin cells with woven-glass-grid CCs achieved 300 cycles with a capacity retention of 93%, a Coulombic efficiency of > 99.9%, and a higher rate capability until a C-rate of 3C. This technology opens up new possibilities for designing ultralight CCs with dedicated surface properties for Li and beyond Li batteries.

本文介绍了一类新型的资源节约型锂离子电池用玻璃编织栅集流器(CC)。这些 CC 以超轻多丝玻璃丝为基础,通过卷对卷物理气相沉积工艺编织成栅格,并在其周围镀上一层薄金属(相当于 1 µm 厚的金属箔)。这样可以节省 > 90% 所需的铜和铝金属,并将 CC 的质量减少 > 80%。同时,使用石墨的阳极和使用钴酸锂活性材料的阴极的重力容量分别增加了 48% 和 14%,而完整电池的重力容量增加了 26%。因此,比能量可提高 25%。本文介绍了从制备 CC 和电极到电池的完整阳极和阴极制造工艺,并以纽扣电池的形式进行了演示。采用玻璃编织栅 CC 的纽扣电池在循环 300 次后,容量保持率达到 93%,库仑效率大于 99.9%,并具有更高的速率能力,直到 C 速率达到 3C。这项技术为设计具有锂电池和超锂电池专用表面特性的超轻 CC 提供了新的可能性。
{"title":"Resource-efficient electrodes with metallized woven-glass-grid current collectors for lithium-ion batteries.","authors":"Yen-Ming Li, Mohammadjafar Momeni, Huy Nguyen Dang Duc, Suvi von Bahder, Friedrich Roth, Wolfram Münchgesang, Manfred Danziger, Winfried Voitus, Dominik Nuss, Cornelia Sennewald, Tilmann Leisegang","doi":"10.1002/cssc.202402233","DOIUrl":"https://doi.org/10.1002/cssc.202402233","url":null,"abstract":"<p><p>A novel class of resource-efficient, woven-glass-grid current collectors (CCs) for Li-ion batteries is introduced. These CCs are based on ultra-light multifilament glass threads, woven to a grid and surrounded with a thin metal layer (equivalent to a 1 µm-thick metal foil) in a roll-to-roll physical vapor deposition process. This saves > 90% of the required Cu and Al metals and reduces the mass of the CCs by > 80%. At the same time, the gravimetric capacity of anodes with graphite and cathodes with LiCoO2 active material increases by 48% and 14%, respectively, while full cells are characterized by an increase of 26%. Thus, the specific energy can be improved by 25%. A complete anode and cathode fabrication process from preparing the CCs and electrodes to cells is described and demonstrated in coin cell format. Coin cells with woven-glass-grid CCs achieved 300 cycles with a capacity retention of 93%, a Coulombic efficiency of > 99.9%, and a higher rate capability until a C-rate of 3C. This technology opens up new possibilities for designing ultralight CCs with dedicated surface properties for Li and beyond Li batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox Biocatalysis in Lidocaine-based Hydrophobic Deep Eutectic Solvents: Non-conventional Media Outperform Aqueous Conditions. 基于利多卡因的疏水性深共晶溶剂中的氧化还原生物催化:非常规介质优于水溶液条件。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1002/cssc.202402075
Ningning Zhang, Viktoria Lahmann, Jan Philipp Bittner, Pablo Domínguez de María, Sven Jakobtorweihen, Irina Smirnova, Selin Kara

Redox biocatalysis is an important pillar of the chemical industry. Yet, the enzymes' nature restricts most reactions to aqueous conditions, where the limited substrate solubility leads to unsustainable diluted biotranformations. Non-aqueous media represent a strategic solution to conduct intensified biocatalytic routes. Deep eutectic solvents (DESs) are designable solvents that can be customized to meet specific application needs. Within the large design space of combining DES components (and ratios), hydrophobic DESs hold the potential to be both enzyme-compatible - keeping the enzymes' hydration -, and solubilizers for hydrophobic reactants. We explored two hydrophobic DESs, lidocaine/oleic acid, and lidocaine/decanoic acid, as reaction media for carbonyl reduction catalyzed by horse liver alcohol dehydrogenase, focusing on the effect of water contents and on maximizing substrate loadings. Enzymes remained highly active and stable in the DESs with 20 wt.% buffer, whereas the reaction performance in DESs outperformed the pure buffer system with hydrophobic substrates (e.g., cinnamaldehyde to form the industrially relevant cinnamyl alcohol), with a 2-fold higher specific activity. Notably, the cinnamaldehyde reduction was for the first time performed at 800 mM (~100 g[[EQUATION]]L-1) with full conversion, which opens up new avenues to industrial applications of hydrophobic DESs for enzyme catalysis.

氧化还原生物催化是化学工业的重要支柱。然而,酶的特性限制了大多数反应在水性条件下进行,而水性条件下有限的底物溶解度会导致不可持续的稀释生物转化。非水介质是进行强化生物催化路线的战略解决方案。深共晶溶剂(DES)是一种可设计的溶剂,可根据具体应用需求进行定制。在结合 DES 成分(和比率)的巨大设计空间内,疏水性 DES 有可能既与酶兼容(保持酶的水合作用),又是疏水性反应物的增溶剂。我们探索了两种疏水性 DES(利多卡因/油酸和利多卡因/癸酸)作为马肝醇脱氢酶催化羰基还原的反应介质,重点研究了含水量的影响和底物负载的最大化。酶在含20 wt.%缓冲液的DES中保持高活性和稳定性,而在DES中的反应性能优于含疏水底物(如肉桂醛形成工业相关的肉桂醇)的纯缓冲液体系,比活性高出2倍。值得注意的是,肉桂醛还原首次在800 mM(约100 g[[方程]]L-1)的条件下实现了完全转化,这为疏水性DES在酶催化方面的工业应用开辟了新途径。
{"title":"Redox Biocatalysis in Lidocaine-based Hydrophobic Deep Eutectic Solvents: Non-conventional Media Outperform Aqueous Conditions.","authors":"Ningning Zhang, Viktoria Lahmann, Jan Philipp Bittner, Pablo Domínguez de María, Sven Jakobtorweihen, Irina Smirnova, Selin Kara","doi":"10.1002/cssc.202402075","DOIUrl":"https://doi.org/10.1002/cssc.202402075","url":null,"abstract":"<p><p>Redox biocatalysis is an important pillar of the chemical industry. Yet, the enzymes' nature restricts most reactions to aqueous conditions, where the limited substrate solubility leads to unsustainable diluted biotranformations. Non-aqueous media represent a strategic solution to conduct intensified biocatalytic routes. Deep eutectic solvents (DESs) are designable solvents that can be customized to meet specific application needs. Within the large design space of combining DES components (and ratios), hydrophobic DESs hold the potential to be both enzyme-compatible - keeping the enzymes' hydration -, and solubilizers for hydrophobic reactants. We explored two hydrophobic DESs, lidocaine/oleic acid, and lidocaine/decanoic acid, as reaction media for carbonyl reduction catalyzed by horse liver alcohol dehydrogenase, focusing on the effect of water contents and on maximizing substrate loadings. Enzymes remained highly active and stable in the DESs with 20 wt.% buffer, whereas the reaction performance in DESs outperformed the pure buffer system with hydrophobic substrates (e.g., cinnamaldehyde to form the industrially relevant cinnamyl alcohol), with a 2-fold higher specific activity. Notably, the cinnamaldehyde reduction was for the first time performed at 800 mM (~100 g[[EQUATION]]L-1) with full conversion, which opens up new avenues to industrial applications of hydrophobic DESs for enzyme catalysis.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemSusChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1