首页 > 最新文献

ChemSusChem最新文献

英文 中文
Determination of pKa values of C-H bonds in polar fluorinated arenes referred to a new CF3SO2-substituted anchor compound. 测定极性氟化烷中 C-H 键的 pKa 值,涉及一种新的 CF3SO2 取代锚化合物。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-20 DOI: 10.1002/cssc.202402041
Xiangmei Kong, Yunfei Liang, Zhenbo Guo, Tianxing Lin, Shan Liu, Zhiyi Liu, Tianfei Liu, Jin-Pei Cheng

pKa values of C-H bonds remain unreported and challenging in fluorous solvents because of these solvents' unique physicochemical properties, although they have been measured, theorized and predicted successfully in water and common organic solvents. Herein, a new CF3SO2-substituted anchor compound designed for matching the physicochemical properties of polar fluorinated arenes is synthesized. Its self-dissociation constants in these solvents are used as bases for experimentally determining the pKa values of 36 C-H compounds in them. These experimentally determined pKa values exhibit excellent linear free-energy relationships and correlate well with their corresponding DFT-calculated values. These data indicate that the polar fluorinated arenes are thermodynamically more favorable for deprotonation of ketone derivatives than acetonitrile as reaction media, resulting in enhanced deprotonation-promoted CO2 fixation. The pKa values determined in this work can be used as an important guidance tool for reactions involving the formation and cleavage of C-H bonds in polar fluorinated arenes.

尽管在水和常见有机溶剂中 C-H 键的 pKa 值已被成功测量、理论化和预测,但由于这些溶剂的独特理化性质,在氟溶剂中 C-H 键的 pKa 值仍未被报道,且具有挑战性。本文合成了一种新的 CF3SO2 取代锚化合物,旨在匹配极性氟化炔的理化性质。以该化合物在这些溶剂中的自解离常数为基础,通过实验确定了 36 种 C-H 化合物在这些溶剂中的 pKa 值。这些实验测定的 pKa 值呈现出极佳的线性自由能关系,并与相应的 DFT 计算值密切相关。这些数据表明,极性氟化炔在热力学上比作为反应介质的乙腈更有利于酮衍生物的去质子化,从而增强了去质子化促进的二氧化碳固定作用。这项工作中确定的 pKa 值可用作极性含氟烷烃中 C-H 键形成和裂解反应的重要指导工具。
{"title":"Determination of pKa values of C-H bonds in polar fluorinated arenes referred to a new CF3SO2-substituted anchor compound.","authors":"Xiangmei Kong, Yunfei Liang, Zhenbo Guo, Tianxing Lin, Shan Liu, Zhiyi Liu, Tianfei Liu, Jin-Pei Cheng","doi":"10.1002/cssc.202402041","DOIUrl":"https://doi.org/10.1002/cssc.202402041","url":null,"abstract":"<p><p>pKa values of C-H bonds remain unreported and challenging in fluorous solvents because of these solvents' unique physicochemical properties, although they have been measured, theorized and predicted successfully in water and common organic solvents. Herein, a new CF3SO2-substituted anchor compound designed for matching the physicochemical properties of polar fluorinated arenes is synthesized. Its self-dissociation constants in these solvents are used as bases for experimentally determining the pKa values of 36 C-H compounds in them. These experimentally determined pKa values exhibit excellent linear free-energy relationships and correlate well with their corresponding DFT-calculated values. These data indicate that the polar fluorinated arenes are thermodynamically more favorable for deprotonation of ketone derivatives than acetonitrile as reaction media, resulting in enhanced deprotonation-promoted CO2 fixation. The pKa values determined in this work can be used as an important guidance tool for reactions involving the formation and cleavage of C-H bonds in polar fluorinated arenes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402041"},"PeriodicalIF":7.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling. 从生物质废弃物中提取的 Ni/PiNe 异构催化剂:低负载、无配体的 Suzukii-Miyaura 交叉偶联。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-19 DOI: 10.1002/cssc.202402011
Luigi Vaccaro, Federica Valentini, Shaomin Chen, Giulia Brufani, Yanlong Gu

An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93%, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.

采用资源循环利用策略,从松针中设计并开发了一种高效的镍基异相催化剂。对 Ni/PiNe 催化剂进行了全面表征,并在微波辐照下进行了铃木-宫浦偶联测试。虽然镍是替代钯基催化体系的理想候选催化剂,但通常需要较高的催化剂用量,并需要利用配体和添加剂来提高反应速率。相反,使用我们的新型 Ni/PiNe 催化剂,只需极低的催化剂用量,在不使用配体的情况下,就能高效合成 30 种不同的产品,分离产率高达 93%。此外,Ni/PiNe 催化剂还显示出良好的连续循环耐久性和令人印象深刻的吨值 (1140)。除了在短反应时间内的催化效率以及在兆瓦级辐照下的稳定性和耐久性之外,Ni/PiNe 催化剂还可以进一步优化,实现较低的 E 因子值(14.0),从而凸显了进一步减少废物和降低相关工艺成本的潜力。
{"title":"Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling.","authors":"Luigi Vaccaro, Federica Valentini, Shaomin Chen, Giulia Brufani, Yanlong Gu","doi":"10.1002/cssc.202402011","DOIUrl":"10.1002/cssc.202402011","url":null,"abstract":"<p><p>An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93%, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402011"},"PeriodicalIF":7.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating 'Transfer-Lithiation' from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging. 阐明复合阳极在预锂化和常规充电过程中从石墨到硅的 "转移锂化"。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-19 DOI: 10.1002/cssc.202401290
Lars Frankenstein, Pascal Jan Glomb, Marvin Mohrhardt, Steffen Böckmann, Leon Focks, Aurora Gomez-Martin, Tobias Placke, Michael Ryan Hansen, Martin Winter, Johannes Kasnatscheew

Si-based anodes can increase specific energy and energy density of Li ion batteries. However, the volume-induced material stress and capacity loss necessitates only a partial Si utilization within composite anodes, typically with state-of-the-art graphite, so called Si/Gr composites. In this work, various Si nanowires (SiNWs), a promising Si architecture for these composites, are investigated and modified via pre-lithiation. Though, charged pre-lithiated anodes show potentials below 0 V vs. Li|Li+ in the initial cycles, they do not show indications for metallic Li, which is likely a hint for a triggered surface Li depletion in course of a continuous "transfer-lithiation" from lithiated Gr to Si, which is indicated by decreasing LiC6 and increasing LixSiy signals via nuclear magnetic resonance (NMR), X-ray diffraction (XRD) as well as shifts in capacities of respective voltage plateaus during discharge after storage. A relevant contribution of self-discharge is unlikely as shown by a stable open-circuit-voltage during storage in charged state and similar subsequent discharge capacities, being consequently also a hint for an intra-electrode capacity shift. The process of transfer lithiation is finally validated via solid-state 7Li NMR for varied Si morphology, i.e., amorphous and crystalline, as well as during pre-lithiation with passivated lithium metal powder (PLMP).

硅基阳极可以提高锂离子电池的比能量和能量密度。然而,由于体积引起的材料应力和容量损失,复合阳极中只能部分利用硅,通常与最先进的石墨一起使用,即所谓的硅/铬复合材料。在这项工作中,我们研究了各种硅纳米线(SiNWs),它们是这些复合材料中一种很有前景的硅结构,并通过预石墨化对其进行了改性。虽然带电的预石墨化阳极在初始循环中对 Li|Li+ 的电位低于 0 V,但它们并没有显示出金属锂的迹象,这很可能暗示了在从石墨化的 Gr 到 Si 的持续 "转移石墨化 "过程中引发的表面锂耗竭,通过核磁共振 (NMR)、X 射线衍射 (XRD) 和存储后放电过程中各自电压平台的容量变化,可以看出 LiC6 信号减少,LixSiy 信号增加。在带电状态下储存期间,开路电压稳定,随后的放电容量也相似,这表明不太可能存在自放电。最后,通过固态 7Li NMR,对不同硅形态(即无定形和结晶)以及钝化锂金属粉末(PLMP)预锂化过程中的转移锂化过程进行了验证。
{"title":"Elucidating 'Transfer-Lithiation' from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging.","authors":"Lars Frankenstein, Pascal Jan Glomb, Marvin Mohrhardt, Steffen Böckmann, Leon Focks, Aurora Gomez-Martin, Tobias Placke, Michael Ryan Hansen, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/cssc.202401290","DOIUrl":"10.1002/cssc.202401290","url":null,"abstract":"<p><p>Si-based anodes can increase specific energy and energy density of Li ion batteries. However, the volume-induced material stress and capacity loss necessitates only a partial Si utilization within composite anodes, typically with state-of-the-art graphite, so called Si/Gr composites. In this work, various Si nanowires (SiNWs), a promising Si architecture for these composites, are investigated and modified via pre-lithiation. Though, charged pre-lithiated anodes show potentials below 0 V vs. Li|Li+ in the initial cycles, they do not show indications for metallic Li, which is likely a hint for a triggered surface Li depletion in course of a continuous \"transfer-lithiation\" from lithiated Gr to Si, which is indicated by decreasing LiC6 and increasing LixSiy signals via nuclear magnetic resonance (NMR), X-ray diffraction (XRD) as well as shifts in capacities of respective voltage plateaus during discharge after storage. A relevant contribution of self-discharge is unlikely as shown by a stable open-circuit-voltage during storage in charged state and similar subsequent discharge capacities, being consequently also a hint for an intra-electrode capacity shift. The process of transfer lithiation is finally validated via solid-state 7Li NMR for varied Si morphology, i.e., amorphous and crystalline, as well as during pre-lithiation with passivated lithium metal powder (PLMP).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401290"},"PeriodicalIF":7.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptualizing Surface-Like Diffusion for Ultrafast Ionic Conduction in Solid-State Materials. 固态材料中超高速离子传导的类表面扩散概念化。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-19 DOI: 10.1002/cssc.202401886
Jingxi Zhang, Yanhao Dong, Chang-An Wang

Surface-like diffusion is a recently proposed concept to explain the mechanism of ultrafast ionic conduction in high-rate oxide (e. g., niobium oxides and their alloys with TiO2 and WO3) and framework materials (e. g., Prussian blue analogs). This perspective seeks to illustrate the structural origin, theoretical foundation, and experimental evidences of surface-like diffusion. Unlike classical lattice diffusion, which typically involves ionic hopping between adjacent interstitial sites in solids, surface-like diffusion occurs when ions-that are significantly smaller than the interstitials-migrate along the off-center path in the diffusion channel. This mechanism results in an exceptionally low activation energy (Ea) down to 0.2 eV, which is crucial for achieving high-rate performance in electrochemical devices such as lithium-ion and sodium-ion batteries. This concept review also discusses the criteria to identify materials with potential surface-like diffusion and outlines theoretical and experimental tools to capture such phenomenon. Several candidates for further investigation are proposed based on the current understanding of the mechanism.

类表面扩散是最近提出的一个概念,用于解释高速率氧化物(如铌氧化物及其与 TiO2 和 WO3 的合金)和框架材料(如普鲁士蓝类似物)中的超快离子传导机制。这一视角旨在说明类表面扩散的结构起源、理论基础和实验证据。经典的晶格扩散通常涉及固体中相邻间隙位点之间的离子跳跃,与之不同的是,当离子(比间隙小得多)沿着扩散通道中的偏离中心路径迁移时,就会发生类表面扩散。这种机制可使活化能(Ea)低至 0.2 eV,这对实现锂离子和钠离子电池等电化学设备的高速率性能至关重要。本概念综述还讨论了识别具有潜在表面样扩散的材料的标准,并概述了捕捉这种现象的理论和实验工具。根据目前对该机制的理解,提出了几种供进一步研究的候选材料。
{"title":"Conceptualizing Surface-Like Diffusion for Ultrafast Ionic Conduction in Solid-State Materials.","authors":"Jingxi Zhang, Yanhao Dong, Chang-An Wang","doi":"10.1002/cssc.202401886","DOIUrl":"10.1002/cssc.202401886","url":null,"abstract":"<p><p>Surface-like diffusion is a recently proposed concept to explain the mechanism of ultrafast ionic conduction in high-rate oxide (e. g., niobium oxides and their alloys with TiO<sub>2</sub> and WO<sub>3</sub>) and framework materials (e. g., Prussian blue analogs). This perspective seeks to illustrate the structural origin, theoretical foundation, and experimental evidences of surface-like diffusion. Unlike classical lattice diffusion, which typically involves ionic hopping between adjacent interstitial sites in solids, surface-like diffusion occurs when ions-that are significantly smaller than the interstitials-migrate along the off-center path in the diffusion channel. This mechanism results in an exceptionally low activation energy (E<sub>a</sub>) down to 0.2 eV, which is crucial for achieving high-rate performance in electrochemical devices such as lithium-ion and sodium-ion batteries. This concept review also discusses the criteria to identify materials with potential surface-like diffusion and outlines theoretical and experimental tools to capture such phenomenon. Several candidates for further investigation are proposed based on the current understanding of the mechanism.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401886"},"PeriodicalIF":7.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron doping induced strong anchor effect between bimetal NiCo alloy and carbon support for efficient electrocatalytic nitrate reduction to ammonia. 硼掺杂诱导双金属镍钴合金与碳支撑之间产生强烈的锚定效应,从而实现高效电催化硝酸盐还原成氨。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202401979
Meng Zhang, Xuetao Cheng, Yun Duan, Junxiang Cheng, Yan-Qin Wang

The electrochemical reduction of nitrate to ammonia presents a promising alternative to the conventional Haber-Bosch process. In this study, a bimetallic NiCo alloy embedded in metal-organic framework derived carbon layer with B doping electrocatalyst NiCo@BC was first successfully developed, which exhibits excellent electrochemical nitrate reduction to ammonia (ENO3RR) performance. In-depth in situ experiments and a machine-learning potential (MLP)-based simulation reveal that B doping within the carbon layer has a crucial anchor effect that induces strong binding between bimetal NiCo alloy and carbon support. Moreover, B doping leads to a decrease in the coordination numbers around the metals, which results in a reduction of the excessively strong intermediates adsorption in the ENO3RR process, thereby significantly enhancing catalytic activity. The fabrication strategy of this electrocatalyst provides a new avenue on ENO3RR research.

通过电化学方法将硝酸盐还原成氨是传统哈伯-博施工艺的一种很有前景的替代方法。本研究首次成功开发了一种嵌入金属有机框架衍生碳层的双金属镍钴合金,其掺杂硼的电催化剂 NiCo@BC,表现出优异的电化学硝酸盐还原成氨(ENO3RR)性能。深入的原位实验和基于机器学习电位(MLP)的模拟显示,碳层中的硼掺杂具有关键的锚定效应,可诱导双金属镍钴合金与碳支撑之间的强结合。此外,掺杂硼还会导致金属周围的配位数减少,从而减少 ENO3RR 过程中过强的中间产物吸附,从而显著提高催化活性。这种电催化剂的制备策略为 ENO3RR 研究提供了一条新途径。
{"title":"Boron doping induced strong anchor effect between bimetal NiCo alloy and carbon support for efficient electrocatalytic nitrate reduction to ammonia.","authors":"Meng Zhang, Xuetao Cheng, Yun Duan, Junxiang Cheng, Yan-Qin Wang","doi":"10.1002/cssc.202401979","DOIUrl":"https://doi.org/10.1002/cssc.202401979","url":null,"abstract":"<p><p>The electrochemical reduction of nitrate to ammonia presents a promising alternative to the conventional Haber-Bosch process. In this study, a bimetallic NiCo alloy embedded in metal-organic framework derived carbon layer with B doping electrocatalyst NiCo@BC was first successfully developed, which exhibits excellent electrochemical nitrate reduction to ammonia (ENO3RR) performance. In-depth in situ experiments and a machine-learning potential (MLP)-based simulation reveal that B doping within the carbon layer has a crucial anchor effect that induces strong binding between bimetal NiCo alloy and carbon support. Moreover, B doping leads to a decrease in the coordination numbers around the metals, which results in a reduction of the excessively strong intermediates adsorption in the ENO3RR process, thereby significantly enhancing catalytic activity. The fabrication strategy of this electrocatalyst provides a new avenue on ENO3RR research.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401979"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis. 甲醇活化:在可持续有机合成中利用甲醇作为 C1 构件的策略。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202401974
Hung-Vu Tran, Tuan Thanh Dang, Nguyen Hoang Nguyen, Huyen Thu Tran, Dung Tien Nguyen, Dang Van Do, Thanh Son Le, Thuong Hanh Ngo, Yawa K E Late, Prince Nana Amaniampong, Eugene Fletcher, Tran Quang Hung, Yuran Cheng, Tuan Khoa Nguyen, Tuan Sang Tran, Jun Zhang, Hongjie An, Nam-Trung Nguyen, Quang Thang Trinh

The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.

目前,开发使用更环保试剂和溶剂的高效、可持续化学工艺在研究中发挥着重要作用。甲醇是化学工业中一种廉价且易于获得的资源,可通过过渡金属催化剂进行活化。本综述重点介绍最近五年的文献,系统总结了甲醇活化策略及其在有机化学中的应用。在这些策略的基础上,人们开发了许多新的合成方法,将甲醇用作甲基化、氢甲基化、氨甲基化、甲酰化反应以及脲衍生物和杂环合成中的 C1 构件。本综述介绍了甲醇活化方法的成就、合成应用、局限性、一些先进方法和未来展望。
{"title":"Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis.","authors":"Hung-Vu Tran, Tuan Thanh Dang, Nguyen Hoang Nguyen, Huyen Thu Tran, Dung Tien Nguyen, Dang Van Do, Thanh Son Le, Thuong Hanh Ngo, Yawa K E Late, Prince Nana Amaniampong, Eugene Fletcher, Tran Quang Hung, Yuran Cheng, Tuan Khoa Nguyen, Tuan Sang Tran, Jun Zhang, Hongjie An, Nam-Trung Nguyen, Quang Thang Trinh","doi":"10.1002/cssc.202401974","DOIUrl":"https://doi.org/10.1002/cssc.202401974","url":null,"abstract":"<p><p>The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401974"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Selective Catalytic Oxidation of Lignin β-O-4 Bond via Orbital Modulation and Surface Lattice Reconstruction. 通过轨道调节和表面晶格重构增强木质素 β-O-4 键的选择性催化氧化作用
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202402194
Haonan Chen, Baolong Qin, Qi Zhang, Xiaohong Hu, Longlong Ma, Xinghua Zhang, Zhiyuan Tang, Lungang Chen

The orbital modulation and surface lattice reconstruction represent an effective strategy to regulate the interaction between catalyst interface sites and intermediates, thereby enhancing catalytic activity and selectivity. In this study, the crystal surface of Au-K/CeO2 catalyst can undergo reversible transformation by tuning the coordination environment of Ce, which enables the activation of the Cβ-H bond and the oxidative cleavage of the Cβ-O and Cα-Cβ bonds, leading to the  cleavage of 2-phenoxy-1-phenylethanol. The t2g orbitals of Au 5d hybridize with the 2p orbitals of lattice oxygen in CeO2 via π-coordination, modulating the coordination environment of Ce 4f and reconstructing the lattice oxygen in the CeO2 framework, as well as increasing the oxygen vacancies. The interface sites formed by the synergy between Au clusters in the reconstructed Ce-OL1-Au structure and doped K play dual roles. On the one hand, it activates the Cβ-H bond, facilitating the enolization of the pre-oxidized 2-phenoxy-1-phenylethanone. On the other hand, through single-electron transfer involving Ce3+ 4f1 and the adsorption by oxygen vacancies, it enhances the oxidative cleavage of the Cβ-O and Cα-Cβ bonds. This study elucidates the complex mechanistic roles of the structure and properties of Au-K/CeO2 catalyst in the selective catalytic oxidation of lignin β-O-4 bond.

轨道调制和表面晶格重构是调节催化剂界面位点与中间产物之间相互作用的有效策略,从而提高催化活性和选择性。在本研究中,通过调控 Ce 的配位环境,Au-K/CeO2 催化剂的晶面可以发生可逆转变,使 Cβ-H 键活化,Cβ-O 和 Cα-Cβ 键氧化裂解,从而导致 2-苯氧基-1-苯乙醇的裂解。Au 5d 的 t2g 轨道通过 π 配位与 CeO2 中晶格氧的 2p 轨道杂化,改变了 Ce 4f 的配位环境,重构了 CeO2 框架中的晶格氧,并增加了氧空位。重构的 Ce-OL1-Au 结构中的金簇与掺杂的 K 协同作用形成的界面位点发挥着双重作用。一方面,它激活了 Cβ-H 键,促进了预氧化 2-苯氧基-1-苯乙酮的烯醇化。另一方面,通过 Ce3+ 4f1 的单电子转移和氧空位的吸附作用,它增强了 Cβ-O 和 Cα-Cβ 键的氧化裂解。本研究阐明了 Au-K/CeO2 催化剂的结构和性质在选择性催化氧化木质素 β-O-4 键过程中的复杂机理作用。
{"title":"Enhancement of Selective Catalytic Oxidation of Lignin β-O-4 Bond via Orbital Modulation and Surface Lattice Reconstruction.","authors":"Haonan Chen, Baolong Qin, Qi Zhang, Xiaohong Hu, Longlong Ma, Xinghua Zhang, Zhiyuan Tang, Lungang Chen","doi":"10.1002/cssc.202402194","DOIUrl":"https://doi.org/10.1002/cssc.202402194","url":null,"abstract":"<p><p>The orbital modulation and surface lattice reconstruction represent an effective strategy to regulate the interaction between catalyst interface sites and intermediates, thereby enhancing catalytic activity and selectivity. In this study, the crystal surface of Au-K/CeO2 catalyst can undergo reversible transformation by tuning the coordination environment of Ce, which enables the activation of the Cβ-H bond and the oxidative cleavage of the Cβ-O and Cα-Cβ bonds, leading to the  cleavage of 2-phenoxy-1-phenylethanol. The t2g orbitals of Au 5d hybridize with the 2p orbitals of lattice oxygen in CeO2 via π-coordination, modulating the coordination environment of Ce 4f and reconstructing the lattice oxygen in the CeO2 framework, as well as increasing the oxygen vacancies. The interface sites formed by the synergy between Au clusters in the reconstructed Ce-OL1-Au structure and doped K play dual roles. On the one hand, it activates the Cβ-H bond, facilitating the enolization of the pre-oxidized 2-phenoxy-1-phenylethanone. On the other hand, through single-electron transfer involving Ce3+ 4f1 and the adsorption by oxygen vacancies, it enhances the oxidative cleavage of the Cβ-O and Cα-Cβ bonds. This study elucidates the complex mechanistic roles of the structure and properties of Au-K/CeO2 catalyst in the selective catalytic oxidation of lignin β-O-4 bond.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402194"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allylation and Thermosetting of Acetosolv Wheat Straw Lignin. 乙缩醛小麦秸秆木质素的烯丙基化和热固性。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202402051
Alessio Truncali, Davide Di Francesco, Cristiana Margarita, Iuliana Ribca, Louise Brandt, Benedikt Sochor, Stephan V Roth, Mats Johansson, Helena Lundberg

The acetosolv extraction, allylation and subsequent cross-linking of wheat straw lignin to thermoset biomaterials is herein described. The extraction temperature proved to be of great importance for the quality of the resulting lignin, with moderate temperature being key for preservation of β-O-4' linkages. The allylation of the acetosolv lignin was carried out using three different synthetic strategies, resulting in selective installation of either benzylic or phenolic allyl ethers, or unselective allylation of various hydroxyl groups via etherification and carboxyallylation. The different allylation protocols employed either allyl alcohol, allyl chloride, or diallylcarbonate as allyl precursors where the latter gave the highest degree of functionality. The results also show that it is crucial to choose a functionalization protocol that is adapted to the functional groups present in the specific lignin used. Selected allylated acetosolv lignins were cross-linked using a thiol-ene approach and the lignin with the highest density of allyl groups was found to form a cross-linked thermoset material with properties comparable to kraft lignin-based analogues.

本文介绍了小麦秸秆木质素与热固性生物材料的乙醇提取、烯丙基化和后续交联过程。事实证明,萃取温度对所得木质素的质量至关重要,适度的温度是保留 β-O-4' 连接的关键。乙醇木质素的烯丙基化采用了三种不同的合成策略,即选择性地安装苄基或酚醛烯丙基醚,或通过醚化和羧基烯丙基化对各种羟基进行非选择性烯丙基化。不同的烯丙基化方案采用烯丙基醇、氯化烯丙基或碳酸二烯丙酯作为烯丙基前体,其中后者的官能度最高。研究结果还表明,选择适合所用特定木质素中存在的官能团的官能化方案至关重要。使用巯基烯方法对选定的烯丙基化乙酰乙醇木质素进行了交联,发现烯丙基密度最高的木质素可形成交联热固性材料,其性能可与牛皮纸木质素类似物相媲美。
{"title":"Allylation and Thermosetting of Acetosolv Wheat Straw Lignin.","authors":"Alessio Truncali, Davide Di Francesco, Cristiana Margarita, Iuliana Ribca, Louise Brandt, Benedikt Sochor, Stephan V Roth, Mats Johansson, Helena Lundberg","doi":"10.1002/cssc.202402051","DOIUrl":"10.1002/cssc.202402051","url":null,"abstract":"<p><p>The acetosolv extraction, allylation and subsequent cross-linking of wheat straw lignin to thermoset biomaterials is herein described. The extraction temperature proved to be of great importance for the quality of the resulting lignin, with moderate temperature being key for preservation of β-O-4' linkages. The allylation of the acetosolv lignin was carried out using three different synthetic strategies, resulting in selective installation of either benzylic or phenolic allyl ethers, or unselective allylation of various hydroxyl groups via etherification and carboxyallylation. The different allylation protocols employed either allyl alcohol, allyl chloride, or diallylcarbonate as allyl precursors where the latter gave the highest degree of functionality. The results also show that it is crucial to choose a functionalization protocol that is adapted to the functional groups present in the specific lignin used. Selected allylated acetosolv lignins were cross-linked using a thiol-ene approach and the lignin with the highest density of allyl groups was found to form a cross-linked thermoset material with properties comparable to kraft lignin-based analogues.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402051"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Deep Eutectic Solvents for Regioselective Polar Additions to α,βUnsaturated Ketones and Aldehydes. 利用深共晶溶剂对 α、β 不饱和酮和醛进行区域选择性极性加成。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202402083
Andrew W J Platten, Iva Manasi, Mario Campana, Karen Edler, Eva Hevia

Advancing the use of air-sensitive polar organometallic Grignard and organolithium reagents under more environmentally benign conditions, here we report the addition of these reagents to a-b unsaturated ketones and aldehydes using the deep eutetic solvent (DES) choline chloride (ChCl): glycerol (Gly) (1:2), under air. Reactions occur at room temperature within seconds with excellent regioselective control. Furthering understanding of how these C-C bond forming processes take place in these reaction media, we have explored the surface concentration of the organic substrate (chalcone) in DES using interfacial tension and neutron reflectivity measurements, finding that chalcone is concentrated at the DES-hydrocarbon interface compared to the bulk concentration, although the interfacial chalcone concentration is still relatively low in this system. The influence of aggregation of the organometallic reagent in the organic solvent employed has also been evaluated, revealing the importance of achieving a balance between activation (via de-aggregation) and stability (to avoid its decomposition in the DES). This DES approach has been successfully extended to double additions to a-b unsaturated estes and for one pot sequential 1,4 and 1,2 additions to ketones, providing a new entry point to a range of tertiary-alcohols, minimising the use of organic solvents and avoiding intermediate time-consuming purification steps.

为了在更环保的条件下推进对空气敏感的极性有机金属格氏试剂和有机锂试剂的使用,我们在此报告了在空气中使用氯化胆碱(ChCl):甘油(Gly)(1:2)的深静态溶剂(DES)将这些试剂加成到 a-b 不饱和酮和醛中的情况。反应在室温下数秒内完成,具有极佳的区域选择性控制。为了进一步了解这些 C-C 键形成过程是如何在这些反应介质中发生的,我们利用界面张力和中子反射率测量法探索了 DES 中有机底物(查尔酮)的表面浓度,发现与主体浓度相比,查尔酮集中在 DES-烃界面,尽管在该体系中界面查尔酮浓度仍然相对较低。此外,还评估了有机金属试剂在有机溶剂中聚集的影响,揭示了在活化(通过去聚集)和稳定性(避免其在 DES 中分解)之间实现平衡的重要性。这种 DES 方法已成功扩展到 a-b 型不饱和酯的双加成,以及酮的 1,4 和 1,2 一锅顺序加成,为一系列叔醇提供了新的切入点,最大限度地减少了有机溶剂的使用,并避免了中间耗时的纯化步骤。
{"title":"Harnessing Deep Eutectic Solvents for Regioselective Polar Additions to α,βUnsaturated Ketones and Aldehydes.","authors":"Andrew W J Platten, Iva Manasi, Mario Campana, Karen Edler, Eva Hevia","doi":"10.1002/cssc.202402083","DOIUrl":"10.1002/cssc.202402083","url":null,"abstract":"<p><p>Advancing the use of air-sensitive polar organometallic Grignard and organolithium reagents under more environmentally benign conditions, here we report the addition of these reagents to a-b unsaturated ketones and aldehydes using the deep eutetic solvent (DES) choline chloride (ChCl): glycerol (Gly) (1:2), under air. Reactions occur at room temperature within seconds with excellent regioselective control. Furthering understanding of how these C-C bond forming processes take place in these reaction media, we have explored the surface concentration of the organic substrate (chalcone) in DES using interfacial tension and neutron reflectivity measurements, finding that chalcone is concentrated at the DES-hydrocarbon interface compared to the bulk concentration, although the interfacial chalcone concentration is still relatively low in this system. The influence of aggregation of the organometallic reagent in the organic solvent employed has also been evaluated, revealing the importance of achieving a balance between activation (via de-aggregation) and stability (to avoid its decomposition in the DES). This DES approach has been successfully extended to double additions to a-b unsaturated estes and for one pot sequential 1,4 and 1,2 additions to ketones, providing a new entry point to a range of tertiary-alcohols, minimising the use of organic solvents and avoiding intermediate time-consuming purification steps.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402083"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerium Dioxide-Induced Abundant Cu+/Cu0 Sites for Electrocatalytic Reduction of Carbon Dioxide to C2+ Products. 二氧化铈诱导丰富的 Cu+/Cu0 位点,用于电催化将二氧化碳还原为 C2+ 产物。
IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1002/cssc.202402097
Yuwen Wang, Jiajun Wang, Shuang Liu, Xuan Zhang, Lin Jin, Lanlan Feng, Demeng Kong, Chenxi Zhang, Yajuan Wei, Jingbo Zhang

In recent years, the electrochemical reduction of carbon dioxide (CO2RR) has made many advances in C2+ production. Cu+/Cu0 site is beneficial for C-C coupling process, but the oxidation state of copper cannot be well maintained during the reaction process, resulting in a decrease in catalyst activity. Based on this consideration, in this work, transition metal oxide CeO2 with a hollow cube structure and oxygen vacancies was introduced to stabilize and increase Cu+/Cu0 active sites (Ce1Cu2). The catalyst exhibits excellent CO2RR performance, with FEC2+ achieving 73.52% and jC2+ > 280 mA/cm2 at 1.26 V (vs. RHE). Ethanol is the main C2+ product and FEethanol reaches 39% at 1.26 V. The experimental results indicate that the presence of CeO2 provides a large number of oxygen vacancies and forming Cu+-O2--Ce4+ structure by the strong interaction of CeO2 and Cu NPs. The structure of Cu+-O2--Ce4+ and abundant oxygen vacancies lay a good foundation for the CO2 adsorption. Moreover, it increases the content of Cu+/Cu0 sites, effectively inhibiting hydrogen evolution reaction, promoting the C-C coupling interaction, thereby facilitating the generation of C2+ products. The DFT theoretical calculation further demonstrates that Ce1Cu2 is more inclined towards the ethanol pathway, confirming its high selectivity for ethanol.

近年来,二氧化碳的电化学还原(CO2RR)在 C2+ 生产方面取得了许多进展。Cu+/Cu0 位点有利于 C-C 偶联过程,但铜的氧化态在反应过程中不能很好地保持,导致催化剂活性下降。基于这一考虑,本研究引入了具有中空立方体结构和氧空位的过渡金属氧化物 CeO2 来稳定和增加 Cu+/Cu0 活性位点(Ce1Cu2)。该催化剂具有优异的 CO2RR 性能,在 1.26 V(相对于 RHE)电压下,FEC2+ 达到 73.52%,jC2+ > 280 mA/cm2。实验结果表明,CeO2 的存在提供了大量的氧空位,并通过 CeO2 和 Cu NPs 的强相互作用形成了 Cu+-O2-Ce4+ 结构。Cu+-O2-Ce4+ 结构和丰富的氧空位为二氧化碳的吸附奠定了良好的基础。此外,它还增加了 Cu+/Cu0 位点的含量,有效抑制了氢进化反应,促进了 C-C 偶联作用,从而促进了 C2+ 产物的生成。DFT 理论计算进一步证明,Ce1Cu2 更倾向于乙醇途径,证实了它对乙醇的高选择性。
{"title":"Cerium Dioxide-Induced Abundant Cu+/Cu0 Sites for Electrocatalytic Reduction of Carbon Dioxide to C2+ Products.","authors":"Yuwen Wang, Jiajun Wang, Shuang Liu, Xuan Zhang, Lin Jin, Lanlan Feng, Demeng Kong, Chenxi Zhang, Yajuan Wei, Jingbo Zhang","doi":"10.1002/cssc.202402097","DOIUrl":"10.1002/cssc.202402097","url":null,"abstract":"<p><p>In recent years, the electrochemical reduction of carbon dioxide (CO2RR) has made many advances in C2+ production. Cu+/Cu0 site is beneficial for C-C coupling process, but the oxidation state of copper cannot be well maintained during the reaction process, resulting in a decrease in catalyst activity. Based on this consideration, in this work, transition metal oxide CeO2 with a hollow cube structure and oxygen vacancies was introduced to stabilize and increase Cu+/Cu0 active sites (Ce1Cu2). The catalyst exhibits excellent CO2RR performance, with FEC2+ achieving 73.52% and jC2+ > 280 mA/cm2 at 1.26 V (vs. RHE). Ethanol is the main C2+ product and FEethanol reaches 39% at 1.26 V. The experimental results indicate that the presence of CeO2 provides a large number of oxygen vacancies and forming Cu+-O2--Ce4+ structure by the strong interaction of CeO2 and Cu NPs. The structure of Cu+-O2--Ce4+ and abundant oxygen vacancies lay a good foundation for the CO2 adsorption. Moreover, it increases the content of Cu+/Cu0 sites, effectively inhibiting hydrogen evolution reaction, promoting the C-C coupling interaction, thereby facilitating the generation of C2+ products. The DFT theoretical calculation further demonstrates that Ce1Cu2 is more inclined towards the ethanol pathway, confirming its high selectivity for ethanol.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402097"},"PeriodicalIF":7.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemSusChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1