Chenxi Dong, Yuan Wang, Zongbin Luo, Chunlong Dai, Zifeng Lin
Supercapacitors (SCs) are high-power energy storage devices but often experience reduced electrochemical performance at low temperatures, especially below -30 °C, due to the high freezing points of conventional electrolytes. In this study, we introduce a novel high-entropy electrolyte (HEE) for supercapacitors that extends operational capabilities over a wide temperature range. The high entropy of the HEE results in an exceptionally low freezing point of -116 °C. With an increased number of solvent molecules in the cation solvation structures, the HEE exhibits high conductivity (3.9 mS cm⁻¹ at -50 °C) and low de-solvation energy (14.1 kJ mol⁻¹). When incorporated into a carbon-based SC, the HEE enables a capacitance retention of 58% at temperatures below -30 °C, compared to 25 °C, while conventional single-solvent electrolytes retain only 38%. Additionally, the HEE provides superior high-rate performance and excellent cycling stability, maintaining 88% capacitance after 15,000 cycles, compared to 73% with conventional electrolytes.
{"title":"High-Entropy Electrolyte Design for Low-Temperature Supercapacitors.","authors":"Chenxi Dong, Yuan Wang, Zongbin Luo, Chunlong Dai, Zifeng Lin","doi":"10.1002/cssc.202402035","DOIUrl":"https://doi.org/10.1002/cssc.202402035","url":null,"abstract":"<p><p>Supercapacitors (SCs) are high-power energy storage devices but often experience reduced electrochemical performance at low temperatures, especially below -30 °C, due to the high freezing points of conventional electrolytes. In this study, we introduce a novel high-entropy electrolyte (HEE) for supercapacitors that extends operational capabilities over a wide temperature range. The high entropy of the HEE results in an exceptionally low freezing point of -116 °C. With an increased number of solvent molecules in the cation solvation structures, the HEE exhibits high conductivity (3.9 mS cm⁻¹ at -50 °C) and low de-solvation energy (14.1 kJ mol⁻¹). When incorporated into a carbon-based SC, the HEE enables a capacitance retention of 58% at temperatures below -30 °C, compared to 25 °C, while conventional single-solvent electrolytes retain only 38%. Additionally, the HEE provides superior high-rate performance and excellent cycling stability, maintaining 88% capacitance after 15,000 cycles, compared to 73% with conventional electrolytes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402035"},"PeriodicalIF":7.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angel Sousa, Alejandra Rendon Patino, Luis Garzon-Tovar, Diego Mateo, Jorge Gascon, Anastasiya Bavykina
Three cobalt-based metal-organic framework (MOF)-derived catalysts were developed for photothermal hydrogen production via ammonia decomposition. The selected MOFs were from distinct families, featuring carboxylate and imidazole linkers, and diverse in terms of porosity. The resulting catalysts consisted of uniform and homogeneously dispersed cobalt nanoparticles embedded within a carbon matrix. The carboxylate-based MOF-74 derived catalyst showed the highest initial activity, but gradually deactivated. ZIF-67 derived catalyst, however, demonstrated stable performance. The synergy between photo and thermal effects was confirmed. Additionally, this catalyst was found to be also effective in ammonia synthesis, potentially closing the loop for sustainable ammonia utilization.
{"title":"Ammonia Decomposition via MOF-derived Photothermal Catalysts.","authors":"Angel Sousa, Alejandra Rendon Patino, Luis Garzon-Tovar, Diego Mateo, Jorge Gascon, Anastasiya Bavykina","doi":"10.1002/cssc.202401896","DOIUrl":"https://doi.org/10.1002/cssc.202401896","url":null,"abstract":"<p><p>Three cobalt-based metal-organic framework (MOF)-derived catalysts were developed for photothermal hydrogen production via ammonia decomposition. The selected MOFs were from distinct families, featuring carboxylate and imidazole linkers, and diverse in terms of porosity. The resulting catalysts consisted of uniform and homogeneously dispersed cobalt nanoparticles embedded within a carbon matrix. The carboxylate-based MOF-74 derived catalyst showed the highest initial activity, but gradually deactivated. ZIF-67 derived catalyst, however, demonstrated stable performance. The synergy between photo and thermal effects was confirmed. Additionally, this catalyst was found to be also effective in ammonia synthesis, potentially closing the loop for sustainable ammonia utilization.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401896"},"PeriodicalIF":7.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qin Li, Ran Yang, Zhanzhen Ma, Sirui Liu, Di Li, Dan Tian, Deli Jiang
Poly(heptazine imide) (PHI) has received widely interest in the photocatalytic CO2 reduction due to its good crystallinity and complete in-plane structure. However, its poor photo-induced carrier separation and migration efficiency and insufficient active sites results in undesirable photocatalytic CO2 reduction performance. Herein, we designed and constructed a novel ohmic junction photocatalyst by integrating melamine edge-modified PHI (mel-PHI) with extended π-conjugated system with TiN (TiN/mel-PHI) for enhancing the photocatalytic CO2 reduction activity. Strikingly, the photocayalytic CO2 reduction yield of the optimal TiN/mel-PHI is 62.64 µmol·g-1·h-1, which is 5.6 and 2.8 times higher than PHI (11.26 µmol·g-1·h-1) and mel-PHI (22.32 µmol·g-1·h-1), respectively. The superior photocatalytic CO2 reduction activity is attributed not only to the formation of D-A structure by the introduction of melamine, which extends the π-conjugation system, alters the electronic structure of PHI, and accelerates the charge separation and migration, but also to the induced internal electric field by ohmic junction further enhances the charge separation and migration efficiency. Meanwhile, the synergistic effect of mel-PHI and TiN enriched the electron number of TiN, reducing the CO2 reduction potential. This work highlights the synergistic enhancement of charge transfer between D-A motifs and ohmic junctions, confirming their potential in optimizing photocatalysts.
聚(庚嗪亚胺)(PHI)因其良好的结晶性和完整的面内结构而在光催化还原二氧化碳方面受到广泛关注。然而,其光诱导载流子分离和迁移效率较低,活性位点不足,导致光催化还原二氧化碳的性能不理想。在此,我们设计并构建了一种新型欧姆结光催化剂,将三聚氰胺边缘改性 PHI(mel-PHI)与扩展的π-共轭体系和 TiN(TiN/mel-PHI)整合在一起,以提高光催化还原二氧化碳的活性。引人注目的是,最佳 TiN/mel-PHI 的光催化二氧化碳还原率为 62.64 µmol-g-1-h-1,分别是 PHI(11.26 µmol-g-1-h-1)和 mel-PHI (22.32 µmol-g-1-h-1)的 5.6 倍和 2.8 倍。卓越的光催化还原 CO2 活性不仅得益于三聚氰胺的引入形成了 D-A 结构,扩展了 π 共轭体系,改变了 PHI 的电子结构,加速了电荷分离和迁移,还得益于欧姆结的诱导内电场进一步提高了电荷分离和迁移效率。同时,mel-PHI 和 TiN 的协同效应丰富了 TiN 的电子数,降低了 CO2 的还原电位。这项研究凸显了 D-A 型图案与欧姆结之间协同增强电荷转移的作用,证实了它们在优化光催化剂方面的潜力。
{"title":"Enhanced Charge Transfer in Poly(Heptazine Imide) Synergistically Induced by Donor-Acceptor Motifs and Ohmic Junctions for Efficient Photocatalytic CO2 Reduction.","authors":"Qin Li, Ran Yang, Zhanzhen Ma, Sirui Liu, Di Li, Dan Tian, Deli Jiang","doi":"10.1002/cssc.202402000","DOIUrl":"https://doi.org/10.1002/cssc.202402000","url":null,"abstract":"<p><p>Poly(heptazine imide) (PHI) has received widely interest in the photocatalytic CO2 reduction due to its good crystallinity and complete in-plane structure. However, its poor photo-induced carrier separation and migration efficiency and insufficient active sites results in undesirable photocatalytic CO2 reduction performance. Herein, we designed and constructed a novel ohmic junction photocatalyst by integrating melamine edge-modified PHI (mel-PHI) with extended π-conjugated system with TiN (TiN/mel-PHI) for enhancing the photocatalytic CO2 reduction activity. Strikingly, the photocayalytic CO2 reduction yield of the optimal TiN/mel-PHI is 62.64 µmol·g-1·h-1, which is 5.6 and 2.8 times higher than PHI (11.26 µmol·g-1·h-1) and mel-PHI (22.32 µmol·g-1·h-1), respectively. The superior photocatalytic CO2 reduction activity is attributed not only to the formation of D-A structure by the introduction of melamine, which extends the π-conjugation system, alters the electronic structure of PHI, and accelerates the charge separation and migration, but also to the induced internal electric field by ohmic junction further enhances the charge separation and migration efficiency. Meanwhile, the synergistic effect of mel-PHI and TiN enriched the electron number of TiN, reducing the CO2 reduction potential. This work highlights the synergistic enhancement of charge transfer between D-A motifs and ohmic junctions, confirming their potential in optimizing photocatalysts.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402000"},"PeriodicalIF":7.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox mediators (RMs) have shown promise in enhancing Li-O2 battery cycling stability by reducing overpotential. However, their application is hindered by the shuttle effect, leading to RM loss and Li anode corrosion. Here, we introduce a polyionic liquid, poly (1-Butyl-3-vinylimidazolium bis(trifluoromethanesulfonylimine)) ([PBVIm]- TFSI) as an additive, showcasing a novel Li anode protection strategy for LiI-mediated Li-O2 batteries. [PBVIm]+ cations migrate to the Li anode, forming a protective cationic shield that promotes uniform Li+ deposition. The addition of [PBVIm]-TFSI enhances the cycling stability, achieving 105 cycles at 200 mA·g-1, compared to the cell with LiI which exhibited 38 cycles under the same conditions. Synchrotron X-ray tomography reveals the evolution of this protective layer, providing insights into its formation mechanism, in conjunction with XPS analysis. Our findings offer a new approach to Li anode protection in Li-O2 batteries, emphasizing the critical role of interfacial engineering for battery performance.
{"title":"Polymeric Ionic Liquid-Enabled In Situ Protection of Li Anodes for High-Performance Li-O2 Batteries.","authors":"Dan Li, Qian Chen, Rui Li, Yaolin Hou, Yulong Liu, Haiming Xie, Jia Liu, Jiefang Zhu","doi":"10.1002/cssc.202402102","DOIUrl":"https://doi.org/10.1002/cssc.202402102","url":null,"abstract":"<p><p>Redox mediators (RMs) have shown promise in enhancing Li-O2 battery cycling stability by reducing overpotential. However, their application is hindered by the shuttle effect, leading to RM loss and Li anode corrosion. Here, we introduce a polyionic liquid, poly (1-Butyl-3-vinylimidazolium bis(trifluoromethanesulfonylimine)) ([PBVIm]- TFSI) as an additive, showcasing a novel Li anode protection strategy for LiI-mediated Li-O2 batteries. [PBVIm]+ cations migrate to the Li anode, forming a protective cationic shield that promotes uniform Li+ deposition. The addition of [PBVIm]-TFSI enhances the cycling stability, achieving 105 cycles at 200 mA·g-1, compared to the cell with LiI which exhibited 38 cycles under the same conditions. Synchrotron X-ray tomography reveals the evolution of this protective layer, providing insights into its formation mechanism, in conjunction with XPS analysis. Our findings offer a new approach to Li anode protection in Li-O2 batteries, emphasizing the critical role of interfacial engineering for battery performance.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402102"},"PeriodicalIF":7.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for COx hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO2, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO2 hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.
本视角重点关注 COx 加氢催化剂中金属-支撑相互作用(MSI)的调制,强调其对催化性能的深远影响。首先,它概述了不同的策略,包括使用高还原性氧化物和适度还原处理,从而诱发经典的强金属-支撑相互作用(SMSI)效应和电子金属-支撑相互作用(EMSI)效应。此外,还讨论了作为控制 EMSI 有效方法的氧化物形态工程和结晶相处理。利用 ZrO2 等封装倾向低的氧化物可以实现 SMSI 和 EMSI 的区分,从而支持电子修饰,避免或最大限度地减少过度生长问题,优化甲烷化的催化性能。然后,在 SMSI 的作用下,强调了 Cu 和 ZnO 在甲醇合成中的协同作用。优化支撑氧化物以控制氧空位,可提高 CO2 加氢制甲醇的催化性能。讨论了催化剂设计中对结构-MSI-性能关系的基本理解的未来研究前景。
{"title":"Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO<sub>x</sub> Hydrogenation.","authors":"Shilong Chen","doi":"10.1002/cssc.202401437","DOIUrl":"https://doi.org/10.1002/cssc.202401437","url":null,"abstract":"<p><p>This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for CO<sub>x</sub> hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO<sub>2</sub>, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO<sub>2</sub> hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401437"},"PeriodicalIF":7.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyun You Kim, Habib Ullah, Zakir Ullah, Zafar A K Khattak, Muhammad Tahir, Eunji Kang, Francis Verpoort
Covalent organic frameworks (COFs) constitute an evolving class of permanently porous and ordered materials, and they have recently attracted increased interest due to their intriguing morphological features and numerous applications in gas storage, adsorption, and catalysis. However, their low aqueous stabilities and tedious syntheses generally hamper their use in heterogeneous catalysis. Nonetheless, a capable and water-stable heterogeneous catalytic system for coupling CO2/epoxides to generate industrially important cyclic carbonates is still of great interest. Herein, exceedingly water- and thermally stable 2D-cobalt-impregnated hydrazone-linked fibrous COFs are reported as a catalyst for CO2/epoxide coupling reactions at ambient pressure. The functionalized cobalt (Co)-doped COFs demonstrated excellent catalytic activities with the high TONs (80925) and TOFs (6466 h-1), outperforming reported heterogeneous catalysts for CO2/epoxide coupling at ambient pressure. We found that the Co2+ ions within the COF matrix catalyze CO2 cycloaddition through density functional theory calculations. We also confirmed the excellent structural stability and consistent activity of Co-doped COFs up to ten repeating cycles.
共价有机框架(COFs)是一类不断发展的永久性多孔有序材料,由于其奇妙的形态特征以及在气体储存、吸附和催化方面的大量应用,最近引起了越来越多的关注。然而,它们较低的水稳定性和繁琐的合成过程普遍阻碍了它们在异相催化中的应用。尽管如此,人们仍然对一种能够将二氧化碳/环氧化物偶联生成具有重要工业意义的环状碳酸盐的水稳定性异相催化体系非常感兴趣。在此,我们报告了具有超强水稳定性和热稳定性的二维钴浸渍腙连接纤维状 COFs,作为催化剂可在常压下进行二氧化碳/环氧化物偶联反应。掺杂钴(Co)的官能化 COFs 表现出优异的催化活性,具有较高的催化活性(80925)和催化时间(6466 h-1),优于已报道的用于常压下 CO2/ 环氧化物偶联反应的异相催化剂。通过密度泛函理论计算,我们发现 COF 基质中的 Co2+ 离子可催化 CO2 环加成反应。我们还证实,掺 Co 的 COF 具有出色的结构稳定性和持续的活性,可重复十次循环。
{"title":"Solvent Free Ambient Pressure CO2 Cycloaddition Catalyzed by Cobalt-Impregnated 2D-Nanofibrous COFs.","authors":"Hyun You Kim, Habib Ullah, Zakir Ullah, Zafar A K Khattak, Muhammad Tahir, Eunji Kang, Francis Verpoort","doi":"10.1002/cssc.202401046","DOIUrl":"https://doi.org/10.1002/cssc.202401046","url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) constitute an evolving class of permanently porous and ordered materials, and they have recently attracted increased interest due to their intriguing morphological features and numerous applications in gas storage, adsorption, and catalysis. However, their low aqueous stabilities and tedious syntheses generally hamper their use in heterogeneous catalysis. Nonetheless, a capable and water-stable heterogeneous catalytic system for coupling CO2/epoxides to generate industrially important cyclic carbonates is still of great interest. Herein, exceedingly water- and thermally stable 2D-cobalt-impregnated hydrazone-linked fibrous COFs are reported as a catalyst for CO2/epoxide coupling reactions at ambient pressure. The functionalized cobalt (Co)-doped COFs demonstrated excellent catalytic activities with the high TONs (80925) and TOFs (6466 h-1), outperforming reported heterogeneous catalysts for CO2/epoxide coupling at ambient pressure. We found that the Co2+ ions within the COF matrix catalyze CO2 cycloaddition through density functional theory calculations. We also confirmed the excellent structural stability and consistent activity of Co-doped COFs up to ten repeating cycles.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401046"},"PeriodicalIF":7.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study investigated the fouling propensity of polysulfone (PSF) hollow fiber (HF) mixed matrix membranes modified with 1.0 wt.% graphene oxide (GO). Using scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), and mechanical assessments, the structural characteristics of both untreated and GO-modified PSF HF membranes were examined. Filtration experiments included pure water and model contaminants such as bovine serum albumin (BSA), humic acid (HA), E. coli, and oil-in-water emulsion. The GO-modified membranes demonstrated a significant enhancement in antifouling performance, recovering over 90% of their initial pure water flux with HA and oil, indicating high resistance to irreversible fouling. Additionally, the GO-modified membranes showed superior oil separation efficiency. However, fouling parameters for BSA were similar for both membrane types, suggesting that GO does not significantly affect membrane-BSA interactions. Both types of membranes displayed high retention capabilities for E. coli, with no noticeable improvement due to GO addition. This study highlights the potential of GO-modified PSF HF membranes in enhancing antifouling performance and oil separation efficiency.
该研究调查了用 1.0 wt.% 氧化石墨烯(GO)改性的聚砜(PSF)中空纤维(HF)混合基质膜的污垢倾向。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、水接触角(WCA)和机械评估,研究了未经处理和经 GO 改性的 PSF 高频膜的结构特性。过滤实验包括纯水和模型污染物,如牛血清白蛋白(BSA)、腐植酸(HA)、大肠杆菌和水包油乳液。GO 改性膜的防污性能显著提高,在含有 HA 和油的情况下,其初始纯水通量恢复了 90% 以上,表明其具有很强的抗不可逆污垢能力。此外,GO 改性膜还显示出卓越的油分离效率。然而,两种类型的膜对 BSA 的污垢参数相似,这表明 GO 不会显著影响膜与 BSA 的相互作用。两种类型的膜对大肠杆菌都有很高的截留能力,GO 的添加并没有带来明显的改善。这项研究强调了 GO 改性 PSF 高频膜在提高防污性能和油分离效率方面的潜力。
{"title":"Membranes fouling propensity of PSF/GO hollow fiber mixed matrix membranes for water treatment ultrafiltration application.","authors":"Jeanne Casetta, Héloïse Baldo, Laurence Soussan, Céline Pochat-Bohatier, Mikhael Bechelany, Philippe Miele","doi":"10.1002/cssc.202401061","DOIUrl":"https://doi.org/10.1002/cssc.202401061","url":null,"abstract":"<p><p>The study investigated the fouling propensity of polysulfone (PSF) hollow fiber (HF) mixed matrix membranes modified with 1.0 wt.% graphene oxide (GO). Using scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), and mechanical assessments, the structural characteristics of both untreated and GO-modified PSF HF membranes were examined. Filtration experiments included pure water and model contaminants such as bovine serum albumin (BSA), humic acid (HA), E. coli, and oil-in-water emulsion. The GO-modified membranes demonstrated a significant enhancement in antifouling performance, recovering over 90% of their initial pure water flux with HA and oil, indicating high resistance to irreversible fouling. Additionally, the GO-modified membranes showed superior oil separation efficiency. However, fouling parameters for BSA were similar for both membrane types, suggesting that GO does not significantly affect membrane-BSA interactions. Both types of membranes displayed high retention capabilities for E. coli, with no noticeable improvement due to GO addition. This study highlights the potential of GO-modified PSF HF membranes in enhancing antifouling performance and oil separation efficiency.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401061"},"PeriodicalIF":7.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Enrico Scattolin, Dr. Mattia Benedet, Prof. Gian Andrea Rizzi, Prof. Alberto Gasparotto, Dr. Oleg I. Lebedev, Dr. Davide Barreca, Prof. Chiara Maccato
The Front Cover shows visible-light-activated water splitting activated by graphitic carbon nitride supported on flexible carbon cloths and modified with nickel oxide cocatalysts. The photocatalytic activity was strongly dependent on the degree of NiO dispersion, the optimization of which yielded performances that compared favorably even with different benchmark systems based on IrO2 and RuO2. The system's stability and the activity retainment even in real seawater hold considerable promise for replacing noble-metal-based materials for various energy-related applications. More information can be found in the Research Article by D. Barreca and co-workers.