Pub Date : 2024-12-01Epub Date: 2024-10-19DOI: 10.1007/s10863-024-10042-x
Mengke Wen, Na Yi, Bulabiyamu Mijiti, Shihong Zhao, Guqun Shen
N6-methyladenosine (m6A) modification is, a more common epigenetic modification, mainly found in mRNA. More and more researches have shown the important functions of m6A on human cancers. This study seeks to explore the role of hnRNPA2B1 and m6A-dependent mechanism in cervical cancer. Elevated hnRNPA2B1 indicated the poor prognosis of cervical cancer patients. Enforced hnRNPA2B1 reduced the apoptosis, and accelerated the proliferation and migration of cervical cancer cells in vitro. Besides, hnRNPA2B1 promoted the aerobic glycolysis of cervical cancer cells, including the lactate secretion, glucose uptake, ATP production, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). LDHA was found as the downstream target of hnRNPA2B1 by m6A site. Moreover, hnRNPA2B1 enhanced the mRNA stability of LDHA through m6A-dependent manner. LDHA inhibitor (FX-11) could reverse the effect of hnRNPA2B1. Taken together, the data revealed that hnRNPA2B1 promoted the proliferation, migration and aerobic glycolysis of cervical cancer cells by m6A/LDHA-dependent manner. These findings might bring a new idea for cervical cancer treatment.
{"title":"N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) reader HNRNPA2B1 accelerates the cervical cancer cells aerobic glycolysis.","authors":"Mengke Wen, Na Yi, Bulabiyamu Mijiti, Shihong Zhao, Guqun Shen","doi":"10.1007/s10863-024-10042-x","DOIUrl":"10.1007/s10863-024-10042-x","url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification is, a more common epigenetic modification, mainly found in mRNA. More and more researches have shown the important functions of m<sup>6</sup>A on human cancers. This study seeks to explore the role of hnRNPA2B1 and m<sup>6</sup>A-dependent mechanism in cervical cancer. Elevated hnRNPA2B1 indicated the poor prognosis of cervical cancer patients. Enforced hnRNPA2B1 reduced the apoptosis, and accelerated the proliferation and migration of cervical cancer cells in vitro. Besides, hnRNPA2B1 promoted the aerobic glycolysis of cervical cancer cells, including the lactate secretion, glucose uptake, ATP production, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). LDHA was found as the downstream target of hnRNPA2B1 by m<sup>6</sup>A site. Moreover, hnRNPA2B1 enhanced the mRNA stability of LDHA through m<sup>6</sup>A-dependent manner. LDHA inhibitor (FX-11) could reverse the effect of hnRNPA2B1. Taken together, the data revealed that hnRNPA2B1 promoted the proliferation, migration and aerobic glycolysis of cervical cancer cells by m<sup>6</sup>A/LDHA-dependent manner. These findings might bring a new idea for cervical cancer treatment.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"657-668"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-14DOI: 10.1007/s10863-024-10044-9
Xinran Deng, Yan Zhang, Xiwei He, Li Li, Zhongbin Yue, Yong Liang, Yue Huang
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in pathogenesis of age-related cataract (ARC), causing significant visual impairment. Apoptosis of porcine granulosa cells mediated by MMP2 is linked to DNA damage. The current study aimed to investigate the potential mechanism of MMP2 in DNA damage, apoptosis and senescence of lens epithelial cells caused by oxidative stress. HLE-B3 cells were treated with different doses of H2O2 for 24 h, and CCK-8 was used to detect cell viability. Furthermore, western blotting was used to detect the expressions of MMP2, Bcl2, Bax, cleaved caspase3, γ-H2AX, p16, p21, and TIMP2. DCFH-DA staining was used to assess ROS levels. Moreover, EdU staining was used to detect cell proliferation, and flow cytometry was used to detect cell apoptosis. Then, 15A3 immunofluorescence staining and γ-H2AX staining were used to detect DNA damage. In addition, SA-β-gal staining was used to observe cell senescence. The present findings suggest that oxidative stress triggers damage to LECs viability and elevates the expression of MMP2. Furthermore, MMP2 interference attenuates H2O2-induced active damage, apoptosis, DNA damage, and cellular senescence in LECs. Additionally, TIMP2 expression is down-regulated in H2O2-induced LECs, which suppresses the expression of MMP2 induced by H2O2. These findings highlight the crucial role of MMP2 and TIMP2 in the modulation of oxidative stress-induced cellular responses in LECs. Collectively, TIMP2 alleviates H2O2-induced lens epithelial cell viability damage, apoptosis, DNA damage and cell senescence in LECs by inhibiting MMP2.
{"title":"Effects of MMP2 and its inhibitor TIMP2 on DNA damage, apoptosis and senescence of human lens epithelial cells induced by oxidative stress.","authors":"Xinran Deng, Yan Zhang, Xiwei He, Li Li, Zhongbin Yue, Yong Liang, Yue Huang","doi":"10.1007/s10863-024-10044-9","DOIUrl":"10.1007/s10863-024-10044-9","url":null,"abstract":"<p><p>Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in pathogenesis of age-related cataract (ARC), causing significant visual impairment. Apoptosis of porcine granulosa cells mediated by MMP2 is linked to DNA damage. The current study aimed to investigate the potential mechanism of MMP2 in DNA damage, apoptosis and senescence of lens epithelial cells caused by oxidative stress. HLE-B3 cells were treated with different doses of H<sub>2</sub>O<sub>2</sub> for 24 h, and CCK-8 was used to detect cell viability. Furthermore, western blotting was used to detect the expressions of MMP2, Bcl2, Bax, cleaved caspase3, γ-H2AX, p16, p21, and TIMP2. DCFH-DA staining was used to assess ROS levels. Moreover, EdU staining was used to detect cell proliferation, and flow cytometry was used to detect cell apoptosis. Then, 15A3 immunofluorescence staining and γ-H2AX staining were used to detect DNA damage. In addition, SA-β-gal staining was used to observe cell senescence. The present findings suggest that oxidative stress triggers damage to LECs viability and elevates the expression of MMP2. Furthermore, MMP2 interference attenuates H<sub>2</sub>O<sub>2</sub>-induced active damage, apoptosis, DNA damage, and cellular senescence in LECs. Additionally, TIMP2 expression is down-regulated in H<sub>2</sub>O<sub>2</sub>-induced LECs, which suppresses the expression of MMP2 induced by H<sub>2</sub>O<sub>2</sub>. These findings highlight the crucial role of MMP2 and TIMP2 in the modulation of oxidative stress-induced cellular responses in LECs. Collectively, TIMP2 alleviates H<sub>2</sub>O<sub>2</sub>-induced lens epithelial cell viability damage, apoptosis, DNA damage and cell senescence in LECs by inhibiting MMP2.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"619-630"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-12DOI: 10.1007/s10863-024-10043-w
Chao Zhou, Genchong Bao, Yanfei Chen
Influenza A (H1N1) virus is an acute respiratory infection responsible for enormous morbidity and mortality worldwide. The tripartite motif-containing protein 46 (TRIM46) has an antiviral function that inhibits various viral infections. This study is designed to explore the role and mechanism of TRIM46 in the progress of H1N1 infection. Herein, we infected A549 or 16HBE cells with the H1N1 virus at different times to assess TRIM46 and solute carrier family 7 member 11 (SLC7A11) expression. TRIM46 and Influenza A nucleoprotein mRNA levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). TRIM46, solute carrier family 7 member 11 (SLC7A11), and Nucleoprotein protein levels were detected using protein level were detected by western blot assay. Cell virulence was determined using Virulence assay (TCID50) assay. Cell viability was determined using Cell Counting Kit-8 (CCK-8) assay. Reactive oxygen species (ROS), intracellular iron content, Malondialdehyde (MDA), and Glutathione (GSH) levels were determined using special assay kits. The stability of SLC7A11 was assessed by Cycloheximide (CHX) assay. Interaction between TRIM46 and SLC7A11 was verified using Co-immunoprecipitation (CoIP) assay. The biological role of TRIM46 was assessed in H1N1 virus-challenged lung injury mice in vivo. TRIM46 level was significantly increased during H1N1 virus infection, and SLC7A11 expression was decreased. TRIM46 downregulation could suppress H1N1 virus replication and relieve H1N1 infection-induced ferroptosis and inflammation in A549 or 16HBE cells. Mechanistically, TRIM46 could promote SLC7A11 ubiquitination and decrease its stability. TRIM46 knockdown repressed H1N1 virus-induced lung injury in vivo. TRIM46 could contribute to influenza A H1N1 virus infection by promoting SLC7A11 ubiquitination in A549 cells, which indicates that targeting TRIM46 may improve the prognosis of patients.
{"title":"TRIM46 accelerates H1N1 influenza virus-induced ferroptosis and inflammatory response by regulating SLC7A11 ubiquitination.","authors":"Chao Zhou, Genchong Bao, Yanfei Chen","doi":"10.1007/s10863-024-10043-w","DOIUrl":"10.1007/s10863-024-10043-w","url":null,"abstract":"<p><p>Influenza A (H1N1) virus is an acute respiratory infection responsible for enormous morbidity and mortality worldwide. The tripartite motif-containing protein 46 (TRIM46) has an antiviral function that inhibits various viral infections. This study is designed to explore the role and mechanism of TRIM46 in the progress of H1N1 infection. Herein, we infected A549 or 16HBE cells with the H1N1 virus at different times to assess TRIM46 and solute carrier family 7 member 11 (SLC7A11) expression. TRIM46 and Influenza A nucleoprotein mRNA levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). TRIM46, solute carrier family 7 member 11 (SLC7A11), and Nucleoprotein protein levels were detected using protein level were detected by western blot assay. Cell virulence was determined using Virulence assay (TCID<sub>50</sub>) assay. Cell viability was determined using Cell Counting Kit-8 (CCK-8) assay. Reactive oxygen species (ROS), intracellular iron content, Malondialdehyde (MDA), and Glutathione (GSH) levels were determined using special assay kits. The stability of SLC7A11 was assessed by Cycloheximide (CHX) assay. Interaction between TRIM46 and SLC7A11 was verified using Co-immunoprecipitation (CoIP) assay. The biological role of TRIM46 was assessed in H1N1 virus-challenged lung injury mice in vivo. TRIM46 level was significantly increased during H1N1 virus infection, and SLC7A11 expression was decreased. TRIM46 downregulation could suppress H1N1 virus replication and relieve H1N1 infection-induced ferroptosis and inflammation in A549 or 16HBE cells. Mechanistically, TRIM46 could promote SLC7A11 ubiquitination and decrease its stability. TRIM46 knockdown repressed H1N1 virus-induced lung injury in vivo. TRIM46 could contribute to influenza A H1N1 virus infection by promoting SLC7A11 ubiquitination in A549 cells, which indicates that targeting TRIM46 may improve the prognosis of patients.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"631-643"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-14DOI: 10.1007/s10863-024-10045-8
Kunli Jiao, Jiahao Cheng, Qi Wang, Mingxiu Hao
To explore the regulatory mechanism of lncRNA UCA1 and NRF2 in cardiomyocyte aging. In this study, we explored how lncRNA UCA1 regulates NRF2 and its effect on cardiomyocyte aging. H9c2 cardiomyocytes were cultured and treated with H2O2 to simulate cardiomyocyte aging in vitro. The expression levels of lncRNA UCA1 and NRF2 in cells were detected using qRT-PCR. Cell viability was assessed using the CCK8 assay, and cell aging was detected via Sa-β-gal staining. The levels of oxidative stress markers (SOD, MDA, ROS) and the expressions of ferroptosis-related proteins (ACSL4, TFR1, FTH1, GPX4) were measured. The regulatory mechanism between UCA1 and NRF2 was investigated using RIP-qPCR. Additionally, changes in m6A modification levels and the expression of m6A modification-related proteins in cells after UCA1 overexpression were analyzed by western blot. Our results indicate that H2O2 treatment significantly downregulated the expression of lncRNA UCA1 and NRF2. UCA1 overexpression promoted H9c2 cell proliferation, inhibited cell aging, increased SOD activity and the expression of FTH1 and GPX4 proteins, and decreased MDA and ROS content as well as ACSL4 and TFR1 protein expression. RIP-qPCR verified that UCA1 can promote the expression of NRF2 in cells. Overexpression of UCA1 significantly increased the expression of the demethylase FTO, leading to a reduction in m6A modification levels. Furthermore, there was significant enrichment between FTO and NRF2, and overexpression of FTO improved the expression of NRF2 protein in cells. Taken together, lncRNA UCA1 inhibits oxidative stress and ferroptosis, thereby preventing cardiomyocyte aging. This protective effect is likely mediated by increasing the expression of demethylase FTO and reducing m6A modification, which promotes the expression of NRF2.
{"title":"LncRNA UCA1 enhances NRF2 expression through the m<sup>6</sup>A pathway to mitigate oxidative stress and ferroptosis in aging cardiomyocytes.","authors":"Kunli Jiao, Jiahao Cheng, Qi Wang, Mingxiu Hao","doi":"10.1007/s10863-024-10045-8","DOIUrl":"10.1007/s10863-024-10045-8","url":null,"abstract":"<p><p>To explore the regulatory mechanism of lncRNA UCA1 and NRF2 in cardiomyocyte aging. In this study, we explored how lncRNA UCA1 regulates NRF2 and its effect on cardiomyocyte aging. H9c2 cardiomyocytes were cultured and treated with H2O2 to simulate cardiomyocyte aging in vitro. The expression levels of lncRNA UCA1 and NRF2 in cells were detected using qRT-PCR. Cell viability was assessed using the CCK8 assay, and cell aging was detected via Sa-β-gal staining. The levels of oxidative stress markers (SOD, MDA, ROS) and the expressions of ferroptosis-related proteins (ACSL4, TFR1, FTH1, GPX4) were measured. The regulatory mechanism between UCA1 and NRF2 was investigated using RIP-qPCR. Additionally, changes in m6A modification levels and the expression of m6A modification-related proteins in cells after UCA1 overexpression were analyzed by western blot. Our results indicate that H2O2 treatment significantly downregulated the expression of lncRNA UCA1 and NRF2. UCA1 overexpression promoted H9c2 cell proliferation, inhibited cell aging, increased SOD activity and the expression of FTH1 and GPX4 proteins, and decreased MDA and ROS content as well as ACSL4 and TFR1 protein expression. RIP-qPCR verified that UCA1 can promote the expression of NRF2 in cells. Overexpression of UCA1 significantly increased the expression of the demethylase FTO, leading to a reduction in m6A modification levels. Furthermore, there was significant enrichment between FTO and NRF2, and overexpression of FTO improved the expression of NRF2 protein in cells. Taken together, lncRNA UCA1 inhibits oxidative stress and ferroptosis, thereby preventing cardiomyocyte aging. This protective effect is likely mediated by increasing the expression of demethylase FTO and reducing m<sup>6</sup>A modification, which promotes the expression of NRF2.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"607-617"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-05DOI: 10.1007/s10863-024-10033-y
Ahmad Mostaar, Zahra Behroozi, Ali MotamedNezhad, Sourosh Taherkhani, Negin Mojarad, Fatemeh Ramezani, Atousa Janzadeh, Pooya Hajimirzaie
This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.
{"title":"The effect of intra spinal administration of cerium oxide nanoparticles on central pain mechanism: An experimental study.","authors":"Ahmad Mostaar, Zahra Behroozi, Ali MotamedNezhad, Sourosh Taherkhani, Negin Mojarad, Fatemeh Ramezani, Atousa Janzadeh, Pooya Hajimirzaie","doi":"10.1007/s10863-024-10033-y","DOIUrl":"10.1007/s10863-024-10033-y","url":null,"abstract":"<p><p>This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"505-515"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-27DOI: 10.1007/s10863-024-10035-w
Xiuchan Liu, Zhenjuan Xia, Lei Liu, Dongyun Ren
Rheumatoid arthritis (RA) is a chronic condition characterized by inflammation and an abnormal immune response. N6-methyladenosine (m6A) methylation has altered nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3. This change is implicated in the regulation of cell pyroptosis and inflammation. WTAP has a crucial role in regulating NLRP3 m6A. In this work, we used a rat model of collagen-induced arthritis (CIA) to investigate the involvement of WTAP in the evolution of inflammation in RA. The purpose of silencing or overexpressing WTAP in RA-fibroblast-like synoviocytes (RA-FLSs) treated with TNF-α was to identify its impact on pyroptosis, NLRP3 inflammasome-related proteins, the secretion of pro-inflammatory cytokines and migration. Bioinformatics techniques were used to pinpoint the exact target controlled by WTAP. To assess WTAP and NLRP3's role in RA-FLSs, we used methylated RNA immunoprecipitation, LDH test, flow cytometry, RT-qPCR, Western blotting, and Transwell. Our results show that WTAP expression is upregulated in both RA rats and cell models. Cell pyroptosis, NLRP3-related pro-inflammatory cytokines, and migration were reduced in TNF-α-treated RA-FLSs when WTAP was knocked down, whereas overexpression of WTAP displayed the opposite effect in RA-FLSs. WTAP mediated m6A modification in the NLRP3 mRNA and enhanced its mRNA stability. These results suggested that WTAP promoted FLSs pyroptosis and related inflammatory response via NLRP3 and identified WTAP as a potential target for treating RA.
{"title":"WTAP promotes fibroblast-like synoviocyte pyroptosis in Rheumatoid arthritis by upregulating N6-methyladenosine modification of NLRP3.","authors":"Xiuchan Liu, Zhenjuan Xia, Lei Liu, Dongyun Ren","doi":"10.1007/s10863-024-10035-w","DOIUrl":"10.1007/s10863-024-10035-w","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic condition characterized by inflammation and an abnormal immune response. N6-methyladenosine (m6A) methylation has altered nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3. This change is implicated in the regulation of cell pyroptosis and inflammation. WTAP has a crucial role in regulating NLRP3 m6A. In this work, we used a rat model of collagen-induced arthritis (CIA) to investigate the involvement of WTAP in the evolution of inflammation in RA. The purpose of silencing or overexpressing WTAP in RA-fibroblast-like synoviocytes (RA-FLSs) treated with TNF-α was to identify its impact on pyroptosis, NLRP3 inflammasome-related proteins, the secretion of pro-inflammatory cytokines and migration. Bioinformatics techniques were used to pinpoint the exact target controlled by WTAP. To assess WTAP and NLRP3's role in RA-FLSs, we used methylated RNA immunoprecipitation, LDH test, flow cytometry, RT-qPCR, Western blotting, and Transwell. Our results show that WTAP expression is upregulated in both RA rats and cell models. Cell pyroptosis, NLRP3-related pro-inflammatory cytokines, and migration were reduced in TNF-α-treated RA-FLSs when WTAP was knocked down, whereas overexpression of WTAP displayed the opposite effect in RA-FLSs. WTAP mediated m6A modification in the NLRP3 mRNA and enhanced its mRNA stability. These results suggested that WTAP promoted FLSs pyroptosis and related inflammatory response via NLRP3 and identified WTAP as a potential target for treating RA.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"563-571"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-09DOI: 10.1007/s10863-024-10027-w
Linping Zhang, Gang Jin, Wei Zhang, Qiong Wang, Yan Liang, Qianlan Dong
Diabetic nephropathy (DN) is one of microvascular complication associated with diabetes. Circular RNAs (circRNAs) have been shown to be involved in DN pathogenesis. Hence, this work aimed to explore the role and mechanism of circ_Arf3 in DN. Mouse mesangial cells (MCs) cultured in high glucose (HG) condition were used for functional analysis. Cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 assays. Western blotting was used to measure the levels of proliferation indicator PCNA and fibrosis-related proteins α-smooth muscle actin (α-SMA), collagen I (Col I), fibronectin (FN), and collagen IV (Col IV). The binding interaction between miR-107-3p and circ_Arf3 or Tmbim6 (transmembrane BAX inhibitor motif containing 6) was confirmed using dual-luciferase reporter and pull-down assays. Circ_Arf3 is a stable circRNA, and the expression of circ_Arf3 was decreased after HG treatment in MCs. Functionally, ectopic overexpression of circ_Arf3 protected against HG-induced proliferation and elevation of fibrosis-related proteins in MCs. Mechanistically, circ_Arf3 directly bound to miR-107-3p, and Tmbim6 was a target of miR-107-3p. Further rescue assay showed miR-107-3p reversed the protective action of circ_Arf3 on MCs function under HG condition. Moreover, inhibition of miR-107-3p suppressed HG-induced proliferation and fibrosis, which were attenuated by Tmbim6 knockdown in MCs. CircRNA Arf3 could suppress HG-evoked mesangial cell proliferation and fibrosis via miR-107-3p/Tmbim6 axis, indicating the potential involvement of this axis in DN progression.
{"title":"CircRNA Arf3 suppresses glomerular mesangial cell proliferation and fibrosis in diabetic nephropathy via miR-107-3p/Tmbim6 axis.","authors":"Linping Zhang, Gang Jin, Wei Zhang, Qiong Wang, Yan Liang, Qianlan Dong","doi":"10.1007/s10863-024-10027-w","DOIUrl":"10.1007/s10863-024-10027-w","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is one of microvascular complication associated with diabetes. Circular RNAs (circRNAs) have been shown to be involved in DN pathogenesis. Hence, this work aimed to explore the role and mechanism of circ_Arf3 in DN. Mouse mesangial cells (MCs) cultured in high glucose (HG) condition were used for functional analysis. Cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 assays. Western blotting was used to measure the levels of proliferation indicator PCNA and fibrosis-related proteins α-smooth muscle actin (α-SMA), collagen I (Col I), fibronectin (FN), and collagen IV (Col IV). The binding interaction between miR-107-3p and circ_Arf3 or Tmbim6 (transmembrane BAX inhibitor motif containing 6) was confirmed using dual-luciferase reporter and pull-down assays. Circ_Arf3 is a stable circRNA, and the expression of circ_Arf3 was decreased after HG treatment in MCs. Functionally, ectopic overexpression of circ_Arf3 protected against HG-induced proliferation and elevation of fibrosis-related proteins in MCs. Mechanistically, circ_Arf3 directly bound to miR-107-3p, and Tmbim6 was a target of miR-107-3p. Further rescue assay showed miR-107-3p reversed the protective action of circ_Arf3 on MCs function under HG condition. Moreover, inhibition of miR-107-3p suppressed HG-induced proliferation and fibrosis, which were attenuated by Tmbim6 knockdown in MCs. CircRNA Arf3 could suppress HG-evoked mesangial cell proliferation and fibrosis via miR-107-3p/Tmbim6 axis, indicating the potential involvement of this axis in DN progression.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"543-552"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-05DOI: 10.1007/s10863-024-10036-9
Bin Mu, Jiangpeng Jing, Ruichun Li, Chuankun Li
Previous studies have suggested that N6-methyladenosine (mA) modification of RNA affects fundamental aspects of RNA metabolism, and mA dysregulation is implicated in various human diseases, including Alzheimer's disease (AD). This study is designed to explore the role and mechanism of methyltransferase-like 14 (METTL14) in the pathogenesis of AD. SK-N-SH cells were treated with Aβ1-42 to establish an in vitro model of AD. Cerebellin 4 (CBLN4) and METTL14 expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C-caspase-3, total-caspase-3, C/EBP homologous protein (CHOP), and glucose-related protein 78 (GRP78) protein levels were determined using Western blot. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) levels were analyzed using ELISA. Reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) products were examined using special assay kits. Interaction between CBLN4 and METTL14 was verified using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assays. CBLN4 and METTL14 expression was decreased in Aβ1-42-treated SK-N-SH cells. Upregulation of CBLN4 relieved Aβ1-42-induced SK-N-SH cell apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in vitro. At the molecular level, METTL14 could improve the stability and expression of CBLN4 mRNA via m6A methylation. Our findings indicated that m6A methylase METTL14-mediated upregulation of CBLN4 mRNA stability could repress Aβ1-42-triggered SK-N-SH cell injury, providing a promising therapeutic target for AD treatment.
以往的研究表明,RNA 的 N6-甲基腺苷(mA)修饰会影响 RNA 代谢的基本方面,而 mA 失调与包括阿尔茨海默病(AD)在内的多种人类疾病有关。本研究旨在探索甲基转移酶样14(METTL14)在AD发病机制中的作用和机制。用Aβ1-42处理SK-N-SH细胞,建立AD的体外模型。通过实时定量聚合酶链反应(RT-qPCR)检测小脑蛋白4(CBLN4)和METTL14的表达水平。采用 3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2-H-溴化四氮唑(MTT)检测法和流式细胞仪检测法分析细胞活力和凋亡。用 Western 印迹法测定 B 细胞淋巴瘤-2(Bcl-2)、Bcl-2 相关 X 蛋白(Bax)、C-天冬酶-3、总天冬酶-3、C/EBP 同源蛋白(CHOP)和葡萄糖相关蛋白 78(GRP78)的蛋白水平。白细胞介素-1β(IL-1β)和肿瘤坏死因子α(TNF-α)水平采用酶联免疫吸附法进行分析。活性氧 (ROS)、丙二醛 (MDA) 和超氧化物歧化酶 (SOD) 产物则使用专用检测试剂盒进行检测。使用甲基化 RNA 免疫沉淀(MeRIP)和双荧光素酶报告实验验证了 CBLN4 和 METTL14 之间的相互作用。在 Aβ1-42 处理的 SK-N-SH 细胞中,CBLN4 和 METTL14 的表达量减少。CBLN4的上调缓解了Aβ1-42诱导的体外SK-N-SH细胞凋亡、炎症、氧化应激和内质网(ER)应激。在分子水平上,METTL14可通过m6A甲基化改善CBLN4 mRNA的稳定性和表达。我们的研究结果表明,m6A甲基化酶METTL14介导的CBLN4 mRNA稳定性上调可抑制Aβ1-42诱导的SK-N-SH细胞损伤,为AD治疗提供了一个有前景的治疗靶点。
{"title":"METTL14 inhibits Aβ1-42-induced neuronal injury through regulating the stability of CBLN4 mRNA in Alzheimer's disease.","authors":"Bin Mu, Jiangpeng Jing, Ruichun Li, Chuankun Li","doi":"10.1007/s10863-024-10036-9","DOIUrl":"10.1007/s10863-024-10036-9","url":null,"abstract":"<p><p>Previous studies have suggested that N6-methyladenosine (mA) modification of RNA affects fundamental aspects of RNA metabolism, and mA dysregulation is implicated in various human diseases, including Alzheimer's disease (AD). This study is designed to explore the role and mechanism of methyltransferase-like 14 (METTL14) in the pathogenesis of AD. SK-N-SH cells were treated with Aβ1-42 to establish an in vitro model of AD. Cerebellin 4 (CBLN4) and METTL14 expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C-caspase-3, total-caspase-3, C/EBP homologous protein (CHOP), and glucose-related protein 78 (GRP78) protein levels were determined using Western blot. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) levels were analyzed using ELISA. Reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) products were examined using special assay kits. Interaction between CBLN4 and METTL14 was verified using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assays. CBLN4 and METTL14 expression was decreased in Aβ1-42-treated SK-N-SH cells. Upregulation of CBLN4 relieved Aβ1-42-induced SK-N-SH cell apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in vitro. At the molecular level, METTL14 could improve the stability and expression of CBLN4 mRNA via m6A methylation. Our findings indicated that m6A methylase METTL14-mediated upregulation of CBLN4 mRNA stability could repress Aβ1-42-triggered SK-N-SH cell injury, providing a promising therapeutic target for AD treatment.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"495-504"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-26DOI: 10.1007/s10863-024-10030-1
Cisem Altunayar-Unsalan
Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2‑dipalmitoyl‑sn‑glycerol‑3‑phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the Lβ'-to-Pβ' and Pβ'-to-Lα phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.
{"title":"DSC and FTIR study on the interaction between pentacyclic triterpenoid lupeol and DPPC membrane.","authors":"Cisem Altunayar-Unsalan","doi":"10.1007/s10863-024-10030-1","DOIUrl":"10.1007/s10863-024-10030-1","url":null,"abstract":"<p><p>Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2‑dipalmitoyl‑sn‑glycerol‑3‑phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the L<sub>β'</sub>-to-P<sub>β'</sub> and P<sub>β'</sub>-to-L<sub>α</sub> phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"553-561"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-22DOI: 10.1007/s10863-024-10034-x
Yonghong Tan, Qiong Wang, Yubing Guo, Na Zhang, Yingyi Xu, Xue Bai, Jianhua Liu, Xiaobao Bi
Dexmedetomidine (DEX) has been confirmed to exert neuroprotective effects in various nerve injury models by regulating ferroptosis, including spinal cord injury (SCI). Although it has been established that CDGSH iron sulfur domain 2 (CISD2) can regulate ferroptosis, whether DEX can regulate ferroptosis by CISD2 in SCI remains unclear. Lidocaine was used to induce PC12 cells and stimulate rats to establish SCI models in vitro and in vivo. MTT assays were performed to analyze cell viability. Ferroptosis was assessed by determining the levels of cellular reactive axygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and Fe2+. Ferritinophagy was analyzed by LysoTracker staining, FerroOrange staining, and immunofluorescence. Western blotting was carried out to quantify the levels of several proteins. Fluorescence microscopy was also used to observe cell autophagy. The morphology of mitochondria within the tissue was observed under transmission electron microscopy (TEM). DEX treatment weakened lidocaine-induced elevation of ROS, Fe2+, and MDA and reduced GSH in PC12 cells, indicating that DEX treatment weakened lidocaine-induced ferroptosis in PC12 cells. Similarly, lidocaine promoted autophagy, Fe2+, and microtubule-associated protein 1 light chain 3 (LC3) in PC12 cells and suppressed ferritin and p62 protein levels, indicating that DEX could weaken lidocaine-induced ferritinophagy in PC12 cells. DEX treatment improved the BBB score, reduced tissue damage, increased the number of neurons, and alleviated mitochondrial damage by inhibiting ferroptosis and ferritinophagy in lidocaine-induced SCI rat models. The decreased CISD2, ferritin heavy chain 1 (FTH1), solute carrier family 7-member 11-glutathione (SLC7A11), and glutathione peroxidase 4 (GPX4) protein levels and the elevated nuclear receptor coactivator 4 (NCOA4) protein levels in rat models in the lidocaine group were weakened by DEX treatment. Moreover, CISD2 inhibition reversed the inhibitory effects of DEX treatment on lidocaine-induced ferroptosis and ferritinophagy in PC12 cells significantly. Taken together, DEX treatment could impair lidocaine-induced SCI by inhibiting ferroptosis and ferritinophagy by upregulating CISD2 in rat models.
右美托咪定(DEX)已被证实可通过调节铁氧化作用在各种神经损伤模型中发挥神经保护作用,包括脊髓损伤(SCI)。虽然CDGSH铁硫结构域2(CISD2)能调节铁凋亡已被证实,但DEX是否能通过CISD2调节SCI中的铁凋亡仍不清楚。用利多卡因诱导 PC12 细胞并刺激大鼠建立体内外 SCI 模型。用 MTT 法分析细胞活力。通过测定细胞活性氧(ROS)、丙二醛(MDA)、谷胱甘肽(GSH)和Fe2+的水平来评估铁变态反应。通过溶血追踪器染色、铁橙染色和免疫荧光分析铁蛋白吞噬作用。采用 Western 印迹法对几种蛋白质的水平进行了定量分析。荧光显微镜也用于观察细胞自噬。透射电子显微镜(TEM)观察了组织内线粒体的形态。DEX处理减弱了利多卡因诱导的ROS、Fe2+和MDA的升高,并降低了PC12细胞中的GSH,表明DEX处理减弱了利多卡因诱导的PC12细胞铁变态反应。同样,利多卡因促进了PC12细胞的自噬、Fe2+和微管相关蛋白1轻链3(LC3),抑制了铁蛋白和p62蛋白水平,表明DEX可削弱利多卡因诱导的PC12细胞铁蛋白吞噬作用。在利多卡因诱导的SCI大鼠模型中,DEX治疗通过抑制铁蛋白噬和铁蛋白噬,改善了BBB评分,减少了组织损伤,增加了神经元数量,减轻了线粒体损伤。在利多卡因组大鼠模型中,CISD2、铁蛋白重链1(FTH1)、溶质运载家族7-成员11-谷胱甘肽(SLC7A11)和谷胱甘肽过氧化物酶4(GPX4)蛋白水平的降低以及核受体辅激活剂4(NCOA4)蛋白水平的升高在DEX治疗后得到了削弱。此外,抑制CISD2可显著逆转DEX对利多卡因诱导的PC12细胞铁嗜性和铁蛋白吞噬的抑制作用。综上所述,在大鼠模型中,DEX治疗可通过上调CISD2抑制铁嗜性和铁蛋白噬性,从而损害利多卡因诱导的SCI。
{"title":"Dexmedetomidine mitigates lidocaine-induced spinal cord injury by repressing ferritinophagy-mediated ferroptosis by increasing CISD2 expression in rat models.","authors":"Yonghong Tan, Qiong Wang, Yubing Guo, Na Zhang, Yingyi Xu, Xue Bai, Jianhua Liu, Xiaobao Bi","doi":"10.1007/s10863-024-10034-x","DOIUrl":"10.1007/s10863-024-10034-x","url":null,"abstract":"<p><p>Dexmedetomidine (DEX) has been confirmed to exert neuroprotective effects in various nerve injury models by regulating ferroptosis, including spinal cord injury (SCI). Although it has been established that CDGSH iron sulfur domain 2 (CISD2) can regulate ferroptosis, whether DEX can regulate ferroptosis by CISD2 in SCI remains unclear. Lidocaine was used to induce PC12 cells and stimulate rats to establish SCI models in vitro and in vivo. MTT assays were performed to analyze cell viability. Ferroptosis was assessed by determining the levels of cellular reactive axygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and Fe<sup>2+</sup>. Ferritinophagy was analyzed by LysoTracker staining, FerroOrange staining, and immunofluorescence. Western blotting was carried out to quantify the levels of several proteins. Fluorescence microscopy was also used to observe cell autophagy. The morphology of mitochondria within the tissue was observed under transmission electron microscopy (TEM). DEX treatment weakened lidocaine-induced elevation of ROS, Fe<sup>2+</sup>, and MDA and reduced GSH in PC12 cells, indicating that DEX treatment weakened lidocaine-induced ferroptosis in PC12 cells. Similarly, lidocaine promoted autophagy, Fe<sup>2+</sup>, and microtubule-associated protein 1 light chain 3 (LC3) in PC12 cells and suppressed ferritin and p62 protein levels, indicating that DEX could weaken lidocaine-induced ferritinophagy in PC12 cells. DEX treatment improved the BBB score, reduced tissue damage, increased the number of neurons, and alleviated mitochondrial damage by inhibiting ferroptosis and ferritinophagy in lidocaine-induced SCI rat models. The decreased CISD2, ferritin heavy chain 1 (FTH1), solute carrier family 7-member 11-glutathione (SLC7A11), and glutathione peroxidase 4 (GPX4) protein levels and the elevated nuclear receptor coactivator 4 (NCOA4) protein levels in rat models in the lidocaine group were weakened by DEX treatment. Moreover, CISD2 inhibition reversed the inhibitory effects of DEX treatment on lidocaine-induced ferroptosis and ferritinophagy in PC12 cells significantly. Taken together, DEX treatment could impair lidocaine-induced SCI by inhibiting ferroptosis and ferritinophagy by upregulating CISD2 in rat models.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"517-530"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}