首页 > 最新文献

Journal of Atmospheric and Solar-Terrestrial Physics最新文献

英文 中文
Analyzing trend and forecasting of temperature and rainfall in Shimla district of Himachal Pradesh, India using non-parametric and bagging REPTree machine learning approaches 使用非参数和袋式 REPTree 机器学习方法分析和预测印度喜马偕尔邦西姆拉地区的气温和降雨趋势
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-19 DOI: 10.1016/j.jastp.2024.106352
Aastha Sharma, Haroon Sajjad, Tamal Kanti Saha, Md Masroor, Yatendra Sharma, Geeta Kumari
The changing pattern of climate variables has caused extreme weather events and severe disasters, especially in mountainous regions. Such events have a detrimental impact on resources, environment and society. Thus, it has become imperative to examine the trends and forecasts of meteorological variables using a scientific modelling approach. This study investigates temperature and rainfall trends using the modified Mann-Kendall test and Sen's slope estimator between 1980 and 2021. A Bagging-REPTree machine learning model was utilized for forecasting temperature and rainfall trends for the next 30 years (2022–2051) to understand the temporal dynamics in Shimla district of the Indian Himalayan state. The mean absolute percentage error, mean absolute error, root mean squared error and correlation coefficient were determined to assess the effectiveness and precision of the model. The findings revealed that the frequency of intense rainfall in the district has increased during the monsoon season (June–September) from 1980 to 2021. Significant trends were found in annual rainfall, maximum, minimum and mean temperatures while rainfall during the winter, summer and post-monsoon seasons has shown a declining trend. The forecast analysis revealed a significant trend for rainfall during the monsoon season and an increasing trend in the maximum temperature has been observed during the winter and summer seasons. The analysis has provided sufficient evidence of variability and uncertainty in the behavior of meteorological variables. The outcome of the study may help in devising suitable adaptation and mitigation strategies to combat climate change in hilly regions. The methodology adopted in the study may help in the future progression of the research in different geographical regions for trend and climate forecasting.
气候变量模式的变化造成了极端天气事件和严重灾害,尤其是在山区。这些事件对资源、环境和社会产生了有害影响。因此,利用科学建模方法研究气象变量的趋势和预测已成为当务之急。本研究利用改进的 Mann-Kendall 检验法和 Sen's 坡度估计法研究了 1980 年至 2021 年的气温和降雨趋势。利用 Bagging-REPTree 机器学习模型预测了未来 30 年(2022-2051 年)的气温和降雨趋势,以了解印度喜马拉雅邦西姆拉地区的时间动态。确定了平均绝对百分比误差、平均绝对误差、均方根误差和相关系数,以评估模型的有效性和精确性。研究结果表明,从 1980 年到 2021 年,该地区季风季节(6 月至 9 月)的强降雨频率有所增加。年降雨量、最高气温、最低气温和平均气温均呈显著变化趋势,而冬季、夏季和季风后季节的降雨量则呈下降趋势。预测分析表明,季风季节的降雨量呈显著趋势,冬季和夏季的最高气温呈上升趋势。分析充分证明了气象变量行为的可变性和不确定性。研究结果有助于制定适当的适应和减缓战略,以应对丘陵地区的气候变化。研究中采用的方法可能有助于今后在不同地理区域开展趋势和气候预测研究。
{"title":"Analyzing trend and forecasting of temperature and rainfall in Shimla district of Himachal Pradesh, India using non-parametric and bagging REPTree machine learning approaches","authors":"Aastha Sharma,&nbsp;Haroon Sajjad,&nbsp;Tamal Kanti Saha,&nbsp;Md Masroor,&nbsp;Yatendra Sharma,&nbsp;Geeta Kumari","doi":"10.1016/j.jastp.2024.106352","DOIUrl":"10.1016/j.jastp.2024.106352","url":null,"abstract":"<div><div>The changing pattern of climate variables has caused extreme weather events and severe disasters, especially in mountainous regions. Such events have a detrimental impact on resources, environment and society. Thus, it has become imperative to examine the trends and forecasts of meteorological variables using a scientific modelling approach. This study investigates temperature and rainfall trends using the modified Mann-Kendall test and Sen's slope estimator between 1980 and 2021. A Bagging-REPTree machine learning model was utilized for forecasting temperature and rainfall trends for the next 30 years (2022–2051) to understand the temporal dynamics in Shimla district of the Indian Himalayan state. The mean absolute percentage error, mean absolute error, root mean squared error and correlation coefficient were determined to assess the effectiveness and precision of the model. The findings revealed that the frequency of intense rainfall in the district has increased during the monsoon season (June–September) from 1980 to 2021. Significant trends were found in annual rainfall, maximum, minimum and mean temperatures while rainfall during the winter, summer and post-monsoon seasons has shown a declining trend. The forecast analysis revealed a significant trend for rainfall during the monsoon season and an increasing trend in the maximum temperature has been observed during the winter and summer seasons. The analysis has provided sufficient evidence of variability and uncertainty in the behavior of meteorological variables. The outcome of the study may help in devising suitable adaptation and mitigation strategies to combat climate change in hilly regions. The methodology adopted in the study may help in the future progression of the research in different geographical regions for trend and climate forecasting.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106352"},"PeriodicalIF":1.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Main features of the geomagnetic effect of the October 14, 2023 annular solar eclipse in the Americas 2023 年 10 月 14 日美洲日环食地磁效应的主要特征
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-18 DOI: 10.1016/j.jastp.2024.106354
Leonid F. Chernogor, Mariia Yu. Holub, Victor T. Rozumenko

The purpose of this paper is to investigate temporal variations in the northward, X, eastward, Y, and downward, Z, components of the geomagnetic field recorded during the October 14, 2023 annular solar eclipse, which main features include its annularity, the eclipse occurrence from local dawn to local dusk, its magnitude variation from 0.30 to 0.86, and the longest ever-observed path across the mainland of the Americas, covering latitudes from ∼65°N to 12°S. The analysis was made possible due to the data on temporal variations in the northward, X, eastward, Y, and downward, Z, components of the geomagnetic field collected at thirteen International Real-time Magnetic Observatory Network magnetometer stations (https://imag-data.bgs.ac.uk/GIN_V1/GINForms2). The solar eclipse acted to cause non-sinusoidal and quasi-sinusoidal perturbations having temporal durations of 180–240 min in all geomagnetic field components on a global scale (∼8000 km). The X-component experienced the largest perturbations attaining 10–20 nT, and the Z-component underwent the smallest disturbances. The quasi-sinusoidal perturbation amplitude did not exceed 5–6 nT, and the period most often showed variations within 15–40 min. The magnetic effect exhibited a tendency to increase with solar eclipse magnitude, while the magnitude of the effect has been shown to be significantly dependent on geographic coordinates, local time, ionospheric state, and the patterns of ionospheric currents as well. During the solar eclipse, the electron density depletion was estimated to be ∼0.10 to ∼0.40–0.60 when the eclipse obscuration Amax varied from 19% to 82%. The movement of the lunar shadow was accompanied by the generation of atmospheric gravity waves with period of ∼10–80 min and by electron density perturbations with amplitudes of the order of 0.01–0.03. The estimates made on the assumption that the magnetic effect is due to the ionospheric current disruptions show good agreement with the observations.

本文旨在研究 2023 年 10 月 14 日日环食期间记录到的地磁场向北、X、向东、Y 和向下 Z 分量的时间变化,其主要特征包括日环食、日食发生时间为当地黎明至当地黄昏、食甚变化范围为 0.30 至 0.86,以及有史以来观测到的穿越美洲大陆的最长路径,覆盖纬度为北纬 65°至南纬 12°。13 个国际实时磁场观测网络磁强计站 (https://imag-data.bgs.ac.uk/GIN_V1/GINForms2) 收集到的地磁场向北分量 X、向东分量 Y 和向下分量 Z 的时间变化数据使分析成为可能。日食对全球范围内(∼8000 公里)的所有地磁场分量都产生了非正弦和准正弦扰动,时间持续 180-240 分钟。X 分量的扰动最大,达到 10-20 nT,Z 分量的扰动最小。准正弦扰动振幅不超过 5-6 nT,周期多在 15-40 分钟内变化。磁效应随着日食幅度的增大而增强,而效应的大小则与地理坐标、当地时间、电离层状态以及电离层电流模式有很大关系。日食期间,当日食遮蔽率 Amax 在 19% 至 82% 之间变化时,电子密度损耗估计为 ∼0.10 至 ∼0.40-0.60。月影的移动伴随着周期为 10-80 分钟的大气重力波和振幅为 0.01-0.03 的电子密度扰动。假定磁效应是由电离层电流扰动引起的,所做的估计与观测结果十分吻合。
{"title":"Main features of the geomagnetic effect of the October 14, 2023 annular solar eclipse in the Americas","authors":"Leonid F. Chernogor,&nbsp;Mariia Yu. Holub,&nbsp;Victor T. Rozumenko","doi":"10.1016/j.jastp.2024.106354","DOIUrl":"10.1016/j.jastp.2024.106354","url":null,"abstract":"<div><p>The purpose of this paper is to investigate temporal variations in the northward, <em>X</em>, eastward, <em>Y</em>, and downward, Z, components of the geomagnetic field recorded during the October 14, 2023 annular solar eclipse, which main features include its annularity, the eclipse occurrence from local dawn to local dusk, its magnitude variation from 0.30 to 0.86, and the longest ever-observed path across the mainland of the Americas, covering latitudes from ∼65°N to 12°S. The analysis was made possible due to the data on temporal variations in the northward, <em>X</em>, eastward, <em>Y</em>, and downward, Z, components of the geomagnetic field collected at thirteen International Real-time Magnetic Observatory Network magnetometer stations (<span><span>https://imag-data.bgs.ac.uk/GIN_V1/GINForms2</span><svg><path></path></svg></span>). The solar eclipse acted to cause non-sinusoidal and quasi-sinusoidal perturbations having temporal durations of 180–240 min in all geomagnetic field components on a global scale (∼8000 km). The <em>X</em>-component experienced the largest perturbations attaining 10–20 nT, and the <em>Z</em>-component underwent the smallest disturbances. The quasi-sinusoidal perturbation amplitude did not exceed 5–6 nT, and the period most often showed variations within 15–40 min. The magnetic effect exhibited a tendency to increase with solar eclipse magnitude, while the magnitude of the effect has been shown to be significantly dependent on geographic coordinates, local time, ionospheric state, and the patterns of ionospheric currents as well. During the solar eclipse, the electron density depletion was estimated to be ∼0.10 to ∼0.40–0.60 when the eclipse obscuration <em>A</em><sub><em>max</em></sub> varied from 19% to 82%. The movement of the lunar shadow was accompanied by the generation of atmospheric gravity waves with period of ∼10–80 min and by electron density perturbations with amplitudes of the order of 0.01–0.03. The estimates made on the assumption that the magnetic effect is due to the ionospheric current disruptions show good agreement with the observations.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106354"},"PeriodicalIF":1.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive evaluation of lightning location accuracy using a weighted gridding method 使用加权网格法全面评估闪电定位精度
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-17 DOI: 10.1016/j.jastp.2024.106342
Lin Song , Qingda Li , Jun Yang , Qilin Zhang , Jie Li , Shudong Wang , Yuqing Zhong , Zhiren Zhou , Meng Zheng
For the newly built very low-frequency long-range lightning location network (VLF-LLN) in China based on the equivalent propagation velocity method, we have evaluated the probability of deviation distance between the locations results and the reference points by using a weighted gridding method, and have drawn some conclusions. (1) By analyzing the effects of different numbers and configurations of stations on the location deviations, it is found that when the number of participating stations increase, the location deviation relatively decreases, and the numbers and configurations of participating stations has much more effect on the probability of location deviation of the lightning flashes outside the network than those in the network; (2) We statistically analyzed the location deviation for each grid of the network by using a weighted gridding method. The deviation probability using 11-station synchronization as a reference is similar to that for 13-station synchronization per grid. Assuming that the deviation distance is less than 3–5 km, the average location results are almost unchanged when the station number exceeds 7 or 8; (3) Comparing with the Advanced Direction and Time-of-Arrival Detecting network (ADTD), our VLF-LLN has an average deviation value of 3.47 km and a median value of 1.81 km for 63767 lightning flashes, and 90% samples have the location deviation less than 8 km and 54% have the location deviation less than 2 km.
针对我国新建的基于等效传播速度法的甚低频长距离雷电定位网(VLF-LLN),采用加权网格法对定位结果与参考点之间的偏差距离概率进行了评估,并得出了一些结论。(1)通过分析不同台站数量和配置对位置偏差的影响,发现当参与台站数量增加时,位置偏差相对减小,且参与台站数量和配置对网外雷闪位置偏差概率的影响远大于网内雷闪位置偏差概率;(2)采用加权网格法统计分析了网内各网格的位置偏差。以 11 站同步为参考的偏差概率与每个网格 13 站同步的偏差概率相似。假设偏差距离小于 3-5 千米,当站点数量超过 7 或 8 个时,平均定位结果几乎没有变化;(3)与高级方向和到达时间检测网络(ADTD)相比,我们的 VLF-LLN 对 63767 次闪电的平均偏差值为 3.47 千米,中值为 1.81 千米,90% 的样本的定位偏差小于 8 千米,54% 的样本的定位偏差小于 2 千米。
{"title":"A comprehensive evaluation of lightning location accuracy using a weighted gridding method","authors":"Lin Song ,&nbsp;Qingda Li ,&nbsp;Jun Yang ,&nbsp;Qilin Zhang ,&nbsp;Jie Li ,&nbsp;Shudong Wang ,&nbsp;Yuqing Zhong ,&nbsp;Zhiren Zhou ,&nbsp;Meng Zheng","doi":"10.1016/j.jastp.2024.106342","DOIUrl":"10.1016/j.jastp.2024.106342","url":null,"abstract":"<div><div>For the newly built very low-frequency long-range lightning location network (VLF-LLN) in China based on the equivalent propagation velocity method, we have evaluated the probability of deviation distance between the locations results and the reference points by using a weighted gridding method, and have drawn some conclusions. (1) By analyzing the effects of different numbers and configurations of stations on the location deviations, it is found that when the number of participating stations increase, the location deviation relatively decreases, and the numbers and configurations of participating stations has much more effect on the probability of location deviation of the lightning flashes outside the network than those in the network; (2) We statistically analyzed the location deviation for each grid of the network by using a weighted gridding method. The deviation probability using 11-station synchronization as a reference is similar to that for 13-station synchronization per grid. Assuming that the deviation distance is less than 3–5 km, the average location results are almost unchanged when the station number exceeds 7 or 8; (3) Comparing with the Advanced Direction and Time-of-Arrival Detecting network (ADTD), our VLF-LLN has an average deviation value of 3.47 km and a median value of 1.81 km for 63767 lightning flashes, and 90% samples have the location deviation less than 8 km and 54% have the location deviation less than 2 km.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106342"},"PeriodicalIF":1.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A case study on the dust storm that occurred on March 13–18, 2022, over the Algerian Sahara, using satellite remote sensing 利用卫星遥感技术对 2022 年 3 月 13-18 日发生在阿尔及利亚撒哈拉沙漠上空的沙尘暴进行案例研究
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-14 DOI: 10.1016/j.jastp.2024.106345
Riad Guehaz , Venkataraman Sivakumar , Nkanyiso Mbatha

This study investigates the dynamics of a significant dust storm that occurred in Algeria in March 2022, employing data derived from the Sentinel-5P and CALIPSO satellite instruments. We examine the Aerosol Absorbing Index (AAI) to detect n absorbing aerosols, with a focus on desert dust, and analyze the attenuation coefficient. Additionally, we employ the HYSPLIT trajectory analyze to study dust transport and MERRA-2 to examine wind patterns wind. The key findings unveil a detailed trajectory of a prominent dust storm in Algeria in March 2022. The Aerosol Absorbing Index (AAI) effectively identifies absorbing aerosols, particularly desert dust, through thorough analyses of dust trajectory and wind patterns; augmenting these findings, CALIPSO satellite data has provided a detailed vertical profile of aerosols within the dust plume, emphasizing spatial and altitudinal extents. This research significantly contributes to advancing scientific discussions on atmospheric dynamics in arid regions and enhances our understanding and forecasting capabilities related to Saharan dust storm initiation and trajectory.

本研究利用 Sentinel-5P 和 CALIPSO 卫星仪器获得的数据,对 2022 年 3 月在阿尔及利亚发生的重大沙尘暴的动态进行了调查。我们研究了气溶胶吸收指数(AAI),以探测 n 种吸收气溶胶,重点是沙漠尘埃,并分析了衰减系数。此外,我们还利用 HYSPLIT 轨迹分析来研究沙尘的传输,并利用 MERRA-2 来研究风的模式。主要研究结果揭示了 2022 年 3 月阿尔及利亚一场突出沙尘暴的详细轨迹。气溶胶吸收指数(AAI)通过对沙尘轨迹和风型的全面分析,有效地识别了吸收性气溶胶,尤其是沙漠沙尘;CALIPSO卫星数据提供了沙尘羽流中气溶胶的详细垂直剖面图,强调了空间和高度范围,从而进一步丰富了这些发现。这项研究极大地促进了对干旱地区大气动力学的科学讨论,并增强了我们对撒哈拉沙尘暴的起因和轨迹的了解和预测能力。
{"title":"A case study on the dust storm that occurred on March 13–18, 2022, over the Algerian Sahara, using satellite remote sensing","authors":"Riad Guehaz ,&nbsp;Venkataraman Sivakumar ,&nbsp;Nkanyiso Mbatha","doi":"10.1016/j.jastp.2024.106345","DOIUrl":"10.1016/j.jastp.2024.106345","url":null,"abstract":"<div><p>This study investigates the dynamics of a significant dust storm that occurred in Algeria in March 2022, employing data derived from the Sentinel-5P and CALIPSO satellite instruments. We examine the Aerosol Absorbing Index (AAI) to detect n absorbing aerosols, with a focus on desert dust, and analyze the attenuation coefficient. Additionally, we employ the HYSPLIT trajectory analyze to study dust transport and MERRA-2 to examine wind patterns wind. The key findings unveil a detailed trajectory of a prominent dust storm in Algeria in March 2022. The Aerosol Absorbing Index (AAI) effectively identifies absorbing aerosols, particularly desert dust, through thorough analyses of dust trajectory and wind patterns; augmenting these findings, CALIPSO satellite data has provided a detailed vertical profile of aerosols within the dust plume, emphasizing spatial and altitudinal extents. This research significantly contributes to advancing scientific discussions on atmospheric dynamics in arid regions and enhances our understanding and forecasting capabilities related to Saharan dust storm initiation and trajectory.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106345"},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consistency of climatic changes at different time scales in Central England and Greenland 英格兰中部和格陵兰岛不同时间尺度气候变化的一致性
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-13 DOI: 10.1016/j.jastp.2024.106343
Rodion Stepanov , Dmitry Sokoloff , Peter Frick

Characteristic variations in the Greenland isotope temperature data over the last 1000 years and in the meteorological temperature measurements collected from Central England during the past four centuries have been analyzed. We take advantage of the continuous wavelet transform to analyze the simultaneous occurrence of temperature variations of different time scales. We assess the extent to which these phenomena can be compared when examining two different northern hemisphere locations at different time scales. Among the long-term variations, we focus on the cooling at the turn of the 18th century, which occurred slightly later in Greenland than in central England, and the warming observed at present. On the short time scale, the range under study is limited to times of the order of 5-10 years. It has been found that it is on these scales that temperature variations in the two locations are relatively consistent, with a cross-correlation coefficient as high as 0.6 for timescales of the order of 9 years. The main solar activity cycle also falls within the interval of significant correlations. It is shown that despite the absence of direct correlation between temperature and solar activity, the time dependence of the wavelet cross-correlation coefficient of the two temperature series on the scale of 11 years reproduces the long-term variations of solar activity.

我们分析了过去 1000 年格陵兰岛同位素温度数据和过去四个世纪英格兰中部气象温度测量数据的特征变化。我们利用连续小波变换分析了不同时间尺度上同时出现的温度变化。在研究北半球两个不同地点不同时间尺度的气温变化时,我们评估了这些现象的可比较程度。在长期变化中,我们重点关注 18 世纪之交的降温(格陵兰岛的降温比英格兰中部稍晚)和目前观测到的升温。在短时间尺度上,研究范围仅限于 5-10 年左右。研究发现,正是在这些时间尺度上,两地的气温变化相对一致,在 9 年左右的时间尺度上,交叉相关系数高达 0.6。主要太阳活动周期也在显著相关区间内。研究表明,尽管气温与太阳活动之间没有直接的相关性,但两个气温序列的小波交叉相关系数在 11 年尺度上的时间依赖性再现了太阳活动的长期变化。
{"title":"Consistency of climatic changes at different time scales in Central England and Greenland","authors":"Rodion Stepanov ,&nbsp;Dmitry Sokoloff ,&nbsp;Peter Frick","doi":"10.1016/j.jastp.2024.106343","DOIUrl":"10.1016/j.jastp.2024.106343","url":null,"abstract":"<div><p>Characteristic variations in the Greenland isotope temperature data over the last 1000 years and in the meteorological temperature measurements collected from Central England during the past four centuries have been analyzed. We take advantage of the continuous wavelet transform to analyze the simultaneous occurrence of temperature variations of different time scales. We assess the extent to which these phenomena can be compared when examining two different northern hemisphere locations at different time scales. Among the long-term variations, we focus on the cooling at the turn of the 18th century, which occurred slightly later in Greenland than in central England, and the warming observed at present. On the short time scale, the range under study is limited to times of the order of 5-10 years. It has been found that it is on these scales that temperature variations in the two locations are relatively consistent, with a cross-correlation coefficient as high as 0.6 for timescales of the order of 9 years. The main solar activity cycle also falls within the interval of significant correlations. It is shown that despite the absence of direct correlation between temperature and solar activity, the time dependence of the wavelet cross-correlation coefficient of the two temperature series on the scale of 11 years reproduces the long-term variations of solar activity.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106343"},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of anomalous lightning activity during the January 15, 2022 Tonga volcano eruption based on measurements of the VLF and ELF electromagnetic fields 根据 VLF 和 ELF 电磁场测量结果调查 2022 年 1 月 15 日汤加火山爆发期间的异常闪电活动
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-13 DOI: 10.1016/j.jastp.2024.106344
Alexander Shvets , Yasuhide Hobara , Masashi Hayakawa , Alisa Shvets , Oleksandr Koloskov , Yury Yampolsky

An anomalous increase in the level of Very Low Frequency (VLF, 3–30 kHz) and Extremely Low Frequency (ELF, 3–3000 Hz) radio noise and the rate of VLF atmospherics was registered during the explosive eruption of the Tonga volcano on January 15, 2022 at the Akademik Vernadsky station (65.246°S; 64.257°W) about 8870 km from the volcano. At the peak activity around 5 UT, the number of atmospherics in 2-min intervals increased by almost 15 times compared to the period preceding the eruption. At this point, the estimated rate reached 360 VLF atmospherics per second. At the same time, an increase in the power spectral density of the magnetic field by 5–9 times was observed in both the ELF and VLF ranges. After 40 min, only on ELF an increased peak lasting ∼10 min was observed, comparable in magnitude to the main peak. According to the Worldwide Lightning Location Network (WWLLN), increased thunderstorm activity was concentrated very close to the volcano during this period. This discrepancy between the intensities of ELF and VLF radiation suggests a significant difference in the parameters of currents in lightning discharges occurring in the area of the volcano vent and in the area of the volcanic ash plume.

2022 年 1 月 15 日汤加火山爆发期间,在距离火山约 8870 公里的 Akademik Vernadsky 站(南纬 65.246°;西经 64.257°)发现甚低频(VLF,3-30 kHz)和极低频(ELF,3-3000 Hz)无线电噪声水平和甚低频大气速率异常增加。在世界标准时间 5 时左右的活动高峰期,2 分钟间隔内的大气数据数量比火山爆发前增加了近 15 倍。此时,估计速率达到每秒 360 个甚低频大气压。同时,在 ELF 和 VLF 范围内观察到磁场功率谱密度增加了 5-9 倍。40 分钟后,仅在 ELF 范围内观察到一个持续 10 分钟的增大峰值,其大小与主峰值相当。根据全球闪电定位网络(WWLLN)的数据,在此期间,增加的雷暴活动主要集中在火山附近。ELF 和 VLF 辐射强度之间的这种差异表明,火山喷口地区和火山灰羽流地区发生的雷电放电中的电流参数存在显著差异。
{"title":"Investigation of anomalous lightning activity during the January 15, 2022 Tonga volcano eruption based on measurements of the VLF and ELF electromagnetic fields","authors":"Alexander Shvets ,&nbsp;Yasuhide Hobara ,&nbsp;Masashi Hayakawa ,&nbsp;Alisa Shvets ,&nbsp;Oleksandr Koloskov ,&nbsp;Yury Yampolsky","doi":"10.1016/j.jastp.2024.106344","DOIUrl":"10.1016/j.jastp.2024.106344","url":null,"abstract":"<div><p>An anomalous increase in the level of Very Low Frequency (VLF, 3–30 kHz) and Extremely Low Frequency (ELF, 3–3000 Hz) radio noise and the rate of VLF atmospherics was registered during the explosive eruption of the Tonga volcano on January 15, 2022 at the Akademik Vernadsky station (65.246°S; 64.257°W) about 8870 km from the volcano. At the peak activity around 5 UT, the number of atmospherics in 2-min intervals increased by almost 15 times compared to the period preceding the eruption. At this point, the estimated rate reached 360 VLF atmospherics per second. At the same time, an increase in the power spectral density of the magnetic field by 5–9 times was observed in both the ELF and VLF ranges. After 40 min, only on ELF an increased peak lasting ∼10 min was observed, comparable in magnitude to the main peak. According to the Worldwide Lightning Location Network (WWLLN), increased thunderstorm activity was concentrated very close to the volcano during this period. This discrepancy between the intensities of ELF and VLF radiation suggests a significant difference in the parameters of currents in lightning discharges occurring in the area of the volcano vent and in the area of the volcanic ash plume.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106344"},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual variation of summer southwest monsoon rainfall over the monsoon core regions of the eastern Bay of Bengal and its relationship with oceans 孟加拉湾东部季风核心区夏季西南季风降雨量的年际变化及其与海洋的关系
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-12 DOI: 10.1016/j.jastp.2024.106341
Kyaw Than Oo , Kazora Jonah
The study looked at how summer monsoon rainfall in the eastern Bay of Bengal area changes from year to year due to Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Study used rainfall data and sea surface temperature data to see these variations. It's found that during ENSO positive phase, rainfall decreased in the eastern coastal region of the Bay of Bengal but increased in the northern Indo-Myanmar region. The opposite happened during ENSO negative phase. The study used a special analysis method called EOF and Morlet wavelet power-spectrum analysis to look for important patterns in the rainfall data and did correlation analysis to understand what causes abnormal rainfall in these regions. The study also found that the local convection and water vapor flux during ENSO positive phase are related to the anomalous rainfall in the Monsoon Core region. Rainfall is made stronger by the unusual anticyclone circulation in the upper troposphere. A strong/weak Mainland Indochina southwest monsoon (MSwM) in the positive or negative phase of ENSO can bring excess/less moisture to wet/dry the local southwest summer rainfall. In northern Indo-Myanmar, the anomalous rainfall is not only relied on the intensity of the MSwM but also the frequency of western disturbances also influences the regional rainfall, and further study need to develop.
这项研究考察了孟加拉湾东部地区夏季季风降雨量受印度洋偶极子(IOD)和厄尔尼诺南方涛动(ENSO)影响的逐年变化情况。研究利用降雨数据和海面温度数据来观察这些变化。研究发现,在厄尔尼诺/南方涛动正相位期间,孟加拉湾东部沿海地区降雨量减少,但印度-缅甸北部地区降雨量增加。在厄尔尼诺/南方涛动负相期间,情况则恰恰相反。研究使用了一种名为 EOF 和 Morlet 小波功率谱分析的特殊分析方法来寻找降雨数据中的重要模式,并进行了相关分析,以了解造成这些地区降雨异常的原因。研究还发现,厄尔尼诺/南方涛动正相时的局地对流和水汽通量与季风核心区的异常降雨有关。对流层上层异常的反气旋环流使降雨更强。在厄尔尼诺/南方涛动正负相位中,印度支那大陆西南季风(MSwM)的强/弱会带来过多/过少的水汽,使当地西南夏季降雨湿润/干燥。在印度-缅甸北部,异常降雨量不仅取决于西南季风的强度,西部扰动的频率也会影响区域降雨量,需要进一步研究。
{"title":"Interannual variation of summer southwest monsoon rainfall over the monsoon core regions of the eastern Bay of Bengal and its relationship with oceans","authors":"Kyaw Than Oo ,&nbsp;Kazora Jonah","doi":"10.1016/j.jastp.2024.106341","DOIUrl":"10.1016/j.jastp.2024.106341","url":null,"abstract":"<div><div>The study looked at how summer monsoon rainfall in the eastern Bay of Bengal area changes from year to year due to Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Study used rainfall data and sea surface temperature data to see these variations. It's found that during ENSO positive phase, rainfall decreased in the eastern coastal region of the Bay of Bengal but increased in the northern Indo-Myanmar region. The opposite happened during ENSO negative phase. The study used a special analysis method called EOF and Morlet wavelet power-spectrum analysis to look for important patterns in the rainfall data and did correlation analysis to understand what causes abnormal rainfall in these regions. The study also found that the local convection and water vapor flux during ENSO positive phase are related to the anomalous rainfall in the Monsoon Core region. Rainfall is made stronger by the unusual anticyclone circulation in the upper troposphere. A strong/weak Mainland Indochina southwest monsoon (MSwM) in the positive or negative phase of ENSO can bring excess/less moisture to wet/dry the local southwest summer rainfall. In northern Indo-Myanmar, the anomalous rainfall is not only relied on the intensity of the MSwM but also the frequency of western disturbances also influences the regional rainfall, and further study need to develop.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106341"},"PeriodicalIF":1.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of machine learning models for rainfall prediction 降雨预测机器学习模型的比较分析
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-30 DOI: 10.1016/j.jastp.2024.106340
Pritee Krishna Das, Rajiv Lochan Sahu, Prakash Chandra Swain

Predicting rainfall is essential for many applications, including agriculture, hydrology, and disaster management. In this work, we undertake a comparison examination of various machine learning models to forecast rainfall based on meteorological data. The target variable in this study is rainfall, and the dataset used includes characteristics like temperature, relative humidity, wind speed, and wind direction. The following seven machine learning models were assessed: Support Vector Regression (SVR), Multivariate adaptive regression splines (MARS), Random Forest Regression, and Deep Neural Network with Historical Data (DWFH), Haar Wavelet Function, Decision Tree and Discrete wavelet Transform (DWT). Data preprocessing, which includes standardisation and lagging to capture temporal dependencies, comes first in the analysis phase. A wavelet transformation is also used to capture complex patterns in the data. Each model is tested on a different test set after being trained on a subset of the dataset. The results are assessed using the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE), focusing on the RMSE and MSE values for better comparison across models. Our findings reveal that the DWFH model achieved an RMSE of 0.0138807 mm and MSE of 0.000193 mm2, demonstrating their effectiveness in predicting rainfall. The Random Forest and SVR models also provided competitive results. This study highlights the importance of selecting an appropriate machine learning model for rainfall prediction and the significance of preprocessing techniques in improving model performance. These insights can aid decision-makers in choosing the most suitable model for their specific application, contributing to more accurate rainfall predictions and enhanced decision support systems.

预测降雨量对农业、水文和灾害管理等许多应用都至关重要。在这项工作中,我们对基于气象数据预测降雨的各种机器学习模型进行了比较研究。本研究的目标变量是降雨量,使用的数据集包括温度、相对湿度、风速和风向等特征。对以下七个机器学习模型进行了评估:支持向量回归(SVR)、多变量自适应回归样条(MARS)、随机森林回归、带历史数据的深度神经网络(DWFH)、哈小波函数、决策树和离散小波变换(DWT)。在分析阶段,首先要进行数据预处理,包括标准化和滞后处理,以捕捉时间依赖性。小波变换也用于捕捉数据中的复杂模式。每个模型在数据集的一个子集上进行训练后,在不同的测试集上进行测试。使用均方根误差(RMSE)和均方误差(MSE)对结果进行评估,重点关注 RMSE 和 MSE 值,以便更好地比较不同模型。我们的研究结果表明,DWFH 模型的 RMSE 为 0.0138807 毫米,MSE 为 0.000193 平方毫米,这表明它们在预测降雨量方面非常有效。随机森林和 SVR 模型也提供了有竞争力的结果。这项研究强调了选择合适的机器学习模型进行降雨预测的重要性,以及预处理技术对提高模型性能的重要意义。这些见解可以帮助决策者为其特定应用选择最合适的模型,从而提高降雨预测的准确性并增强决策支持系统。
{"title":"Comparative analysis of machine learning models for rainfall prediction","authors":"Pritee Krishna Das,&nbsp;Rajiv Lochan Sahu,&nbsp;Prakash Chandra Swain","doi":"10.1016/j.jastp.2024.106340","DOIUrl":"10.1016/j.jastp.2024.106340","url":null,"abstract":"<div><p>Predicting rainfall is essential for many applications, including agriculture, hydrology, and disaster management. In this work, we undertake a comparison examination of various machine learning models to forecast rainfall based on meteorological data. The target variable in this study is rainfall, and the dataset used includes characteristics like temperature, relative humidity, wind speed, and wind direction. The following seven machine learning models were assessed: Support Vector Regression (SVR), Multivariate adaptive regression splines (MARS), Random Forest Regression, and Deep Neural Network with Historical Data (DWFH), Haar Wavelet Function, Decision Tree and Discrete wavelet Transform (DWT). Data preprocessing, which includes standardisation and lagging to capture temporal dependencies, comes first in the analysis phase. A wavelet transformation is also used to capture complex patterns in the data. Each model is tested on a different test set after being trained on a subset of the dataset. The results are assessed using the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE), focusing on the RMSE and MSE values for better comparison across models. Our findings reveal that the DWFH model achieved an RMSE of 0.0138807 mm and MSE of 0.000193 mm<sup>2</sup>, demonstrating their effectiveness in predicting rainfall. The Random Forest and SVR models also provided competitive results. This study highlights the importance of selecting an appropriate machine learning model for rainfall prediction and the significance of preprocessing techniques in improving model performance. These insights can aid decision-makers in choosing the most suitable model for their specific application, contributing to more accurate rainfall predictions and enhanced decision support systems.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106340"},"PeriodicalIF":1.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A statistical analysis of atmospheric parameters for cataloged astronomical observatory sites 对编目天文观测站点大气参数的统计分析
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-30 DOI: 10.1016/j.jastp.2024.106334
Zühal Kurt , Sinan Kaan Yerli , Nazım Aksaker , Alişan Aktay , Mehmet Akif Erdoğan

Astronomical sites have to be selected according to many factors whereas the geographic location of the site and the quality of the atmosphere above the site play an important role in the decision process. The following factors were chosen to create layers 1907 northern and 235 southern observatories: CC (cloud coverage), PWV (precipitable water vapor), AOD (aerosol optical depth), VWV (vertical wind velocity), and HWV (horizontal wind velocity). To estimate the astronomical importance of the sites, DEM (digital elevation model) and LAT (latitude of observatory location) layers were also included. In addition to the variations or trends, a complete statistical analysis was carried out for all factors to investigate the potential correlations between the factors. There is a clear difference between the northern and southern hemispheres. The exchange of meteorological seasons between hemispheres is also compliant with factors. The geographical locations of most of the observatories were found to be “not suitable”. There seem to be no apparent long-term variations and/or patterns in all factors.

天文观测站必须根据许多因素来选择,而观测站的地理位置和观测站上空的大气质量在决策过程中起着重要作用。我们选择了以下因素来创建 1907 个北方观测站和 235 个南方观测站层:CC(云覆盖率)、PWV(可降水水汽)、AOD(气溶胶光学深度)、VWV(垂直风速)和 HWV(水平风速)。为了估算观测点的天文重要性,还加入了 DEM(数字高程模型)和 LAT(观测站位置纬度)层。除了变化或趋势之外,还对所有因素进行了完整的统计分析,以研究各因素之间的潜在相关性。南北半球之间存在明显差异。半球之间的气象季节交换也与各因素有关。大部分观测站的地理位置被认为 "不合适"。所有因素似乎都没有明显的长期变化和/或模式。
{"title":"A statistical analysis of atmospheric parameters for cataloged astronomical observatory sites","authors":"Zühal Kurt ,&nbsp;Sinan Kaan Yerli ,&nbsp;Nazım Aksaker ,&nbsp;Alişan Aktay ,&nbsp;Mehmet Akif Erdoğan","doi":"10.1016/j.jastp.2024.106334","DOIUrl":"10.1016/j.jastp.2024.106334","url":null,"abstract":"<div><p>Astronomical sites have to be selected according to many factors whereas the geographic location of the site and the quality of the atmosphere above the site play an important role in the decision process. The following factors were chosen to create layers 1907 northern and 235 southern observatories: CC (cloud coverage), PWV (precipitable water vapor), AOD (aerosol optical depth), VWV (vertical wind velocity), and HWV (horizontal wind velocity). To estimate the astronomical importance of the sites, DEM (digital elevation model) and LAT (latitude of observatory location) layers were also included. In addition to the variations or trends, a complete statistical analysis was carried out for all factors to investigate the potential correlations between the factors. There is a clear difference between the northern and southern hemispheres. The exchange of meteorological seasons between hemispheres is also compliant with factors. The geographical locations of most of the observatories were found to be “not suitable”. There seem to be no apparent long-term variations and/or patterns in all factors.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"263 ","pages":"Article 106334"},"PeriodicalIF":1.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time series analysis of sea surface temperature change in the coastal seas of Türkiye 图尔基耶近海海面温度变化的时间序列分析
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-28 DOI: 10.1016/j.jastp.2024.106339
Mehmet Bilgili , Tahir Durhasan , Engin Pinar

Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5ox0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.

海面温度(SST)是评估空气与海面之间热量交换的重要地球物理参数。SST 的变化及其准确预测在解释全球热平衡、确定大气环流和构建全球气候模型方面发挥着关键作用。本研究旨在揭示一个模型,用于提前一个月预测图尔基耶沿岸(包括地中海、爱琴海、马尔马拉海和黑海)的 SST 时间序列数据及其未来长期预测。为此使用了长短期记忆(LSTM)神经网络和季节自回归综合移动平均(SARIMA)模型。模型开发使用了 ECMWF ERA5(0.5ox0.5°)月度 SST 数据集,时间跨度为 1970-2023 年。LSTM 和 SARIMA 模型得出的结果表明,直到 2050 年,这些沿海地区的海温将呈上升趋势。2023 年地中海、爱琴海、马尔马拉海和黑海沿岸的海温测量值分别为 23.4 ℃、20.2 ℃、17.0 ℃ 和 16.6 ℃,预计到 2050 年将分别升至 25.1 ℃、21.9 ℃、18.1 ℃ 和 18.8 ℃。这些数据表明,在未来四分之一世纪里,这些沿岸海域的海温值将分别上升 7.3%、8.4%、6.5% 和 13.3%。
{"title":"Time series analysis of sea surface temperature change in the coastal seas of Türkiye","authors":"Mehmet Bilgili ,&nbsp;Tahir Durhasan ,&nbsp;Engin Pinar","doi":"10.1016/j.jastp.2024.106339","DOIUrl":"10.1016/j.jastp.2024.106339","url":null,"abstract":"<div><p>Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5<sup>o</sup>x0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"263 ","pages":"Article 106339"},"PeriodicalIF":1.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Atmospheric and Solar-Terrestrial Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1