Pub Date : 2024-09-15Epub Date: 2024-09-18DOI: 10.1242/jcs.261895
Charmaine Yan Yu Wong, Hok Ning Tsui, Yue Wang, Karen Wing Yee Yuen
Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, although the specific mechanisms are not fully understood. Here, we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. Knockdown of CSR-1 does not affect mRNA and protein levels of the centromeric histone H3 variant and CENP-A homolog HCP-3 but does increase the localization of HCP-3 and some kinetochore proteins to the mitotic chromosomes. Such elevation of HCP-3 chromatin localization depends on EGO-1, which is an upstream factor in the CSR-1 RNA interference (RNAi) pathway, and PIWI domain activity of CSR-1. Our results suggest that CSR-1 restricts the level of HCP-3 at the holocentromeres, prevents erroneous kinetochore assembly and thereby promotes accurate chromosome segregation. Our work sheds light on the role of CSR-1 in regulating deposition of HCP-3 on chromatin and centromere function in embryos.
{"title":"Argonaute protein CSR-1 restricts localization of holocentromere protein HCP-3, the C. elegans CENP-A homolog.","authors":"Charmaine Yan Yu Wong, Hok Ning Tsui, Yue Wang, Karen Wing Yee Yuen","doi":"10.1242/jcs.261895","DOIUrl":"10.1242/jcs.261895","url":null,"abstract":"<p><p>Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, although the specific mechanisms are not fully understood. Here, we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. Knockdown of CSR-1 does not affect mRNA and protein levels of the centromeric histone H3 variant and CENP-A homolog HCP-3 but does increase the localization of HCP-3 and some kinetochore proteins to the mitotic chromosomes. Such elevation of HCP-3 chromatin localization depends on EGO-1, which is an upstream factor in the CSR-1 RNA interference (RNAi) pathway, and PIWI domain activity of CSR-1. Our results suggest that CSR-1 restricts the level of HCP-3 at the holocentromeres, prevents erroneous kinetochore assembly and thereby promotes accurate chromosome segregation. Our work sheds light on the role of CSR-1 in regulating deposition of HCP-3 on chromatin and centromere function in embryos.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15Epub Date: 2024-09-25DOI: 10.1242/jcs.261901
Hua Li, Yinzhen He, Yan Wang, Lin Xie, Gangyun Wu, Xiayu Liu, Xiufen Duan, Kaiyao Zhou, Wenxiu Ning
Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.
{"title":"The RhoGAP ARHGAP32 interacts with desmoplakin, and is required for desmosomal organization and assembly.","authors":"Hua Li, Yinzhen He, Yan Wang, Lin Xie, Gangyun Wu, Xiayu Liu, Xiufen Duan, Kaiyao Zhou, Wenxiu Ning","doi":"10.1242/jcs.261901","DOIUrl":"10.1242/jcs.261901","url":null,"abstract":"<p><p>Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15Epub Date: 2024-09-25DOI: 10.1242/jcs.262353
Florian Rouaud, Marine Maupérin, Annick Mutero-Maeda, Sandra Citi
Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.
{"title":"Cingulin-nonmuscle myosin interaction plays a role in epithelial morphogenesis and cingulin nanoscale organization.","authors":"Florian Rouaud, Marine Maupérin, Annick Mutero-Maeda, Sandra Citi","doi":"10.1242/jcs.262353","DOIUrl":"10.1242/jcs.262353","url":null,"abstract":"<p><p>Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 18","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15Epub Date: 2024-09-25DOI: 10.1242/jcs.262035
Valérie C Cabana, Audrey M Sénécal, Antoine Y Bouchard, Saïd Kourrich, Laurent Cappadocia, Marc P Lussier
Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.
细胞器之间的转运通常由短基序保证,这些基序与载体蛋白接触,将它们转运到目的地。泛素 E3 连接酶 RING 手指蛋白 13(RNF13)是细胞增殖、凋亡和蛋白质转运的调控因子,它通过与凝集素适配蛋白复合物 AP-3 的二亮氨酸基团结合而定位到溶酶体内腔。该突变降低了 RNF13 与 AP-3 相互作用的能力。在这里,我们的研究表明,在 RNF13 的 C 端区域发现了一个与酪氨酸基基团相似的谷氨酰胺基基团,它能与clathrin适配蛋白复合物 AP-1 结合,但与 AP-3 没有明显的功能性相互作用。通过在 HeLa 细胞中使用生化、分子和细胞方法,我们的研究证明 RNF13 二亮氨酸变体使用 AP-1 依赖性途径从高尔基体向内体腔输出。总之,这项研究从机理上揭示了 RNF13 二亮氨酸分选基团变体所使用的替代途径。
{"title":"AP-1 contributes to endosomal targeting of the ubiquitin ligase RNF13 via a secondary and novel non-canonical binding motif.","authors":"Valérie C Cabana, Audrey M Sénécal, Antoine Y Bouchard, Saïd Kourrich, Laurent Cappadocia, Marc P Lussier","doi":"10.1242/jcs.262035","DOIUrl":"10.1242/jcs.262035","url":null,"abstract":"<p><p>Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15Epub Date: 2024-09-27DOI: 10.1242/jcs.262032
Destiny F Schultz, Brian A Davies, Johanna A Payne, Cole P Martin, Annabel Y Minard, Bennett G Childs, Cheng Zhang, Karthik B Jeganathan, Ines Sturmlechner, Thomas A White, Alain de Bruin, Liesbeth Harkema, Huiqin Chen, Michael A Davies, Sarah Jachim, Nathan K LeBrasseur, Robert C Piper, Hu Li, Darren J Baker, Jan van Deursen, Daniel D Billadeau, David J Katzmann
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
{"title":"Loss of HD-PTP function results in lipodystrophy, defective cellular signaling and altered lipid homeostasis.","authors":"Destiny F Schultz, Brian A Davies, Johanna A Payne, Cole P Martin, Annabel Y Minard, Bennett G Childs, Cheng Zhang, Karthik B Jeganathan, Ines Sturmlechner, Thomas A White, Alain de Bruin, Liesbeth Harkema, Huiqin Chen, Michael A Davies, Sarah Jachim, Nathan K LeBrasseur, Robert C Piper, Hu Li, Darren J Baker, Jan van Deursen, Daniel D Billadeau, David J Katzmann","doi":"10.1242/jcs.262032","DOIUrl":"10.1242/jcs.262032","url":null,"abstract":"<p><p>His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15Epub Date: 2024-09-27DOI: 10.1242/jcs.262347
Alaina H Willet, Joshua S Park, Chloe E Snider, Jingdian Jamie Huang, Jun-Song Chen, Kathleen L Gould
Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.
{"title":"Fission yeast Duc1 links to ER-PM contact sites and influences PM lipid composition and cytokinetic ring anchoring.","authors":"Alaina H Willet, Joshua S Park, Chloe E Snider, Jingdian Jamie Huang, Jun-Song Chen, Kathleen L Gould","doi":"10.1242/jcs.262347","DOIUrl":"10.1242/jcs.262347","url":null,"abstract":"<p><p>Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Fouad Zakaria,Hiroki Kato,Soichiro Sonoda,Kenichi Kato,Norihisa Uehara,Yukari Kyumoto-Nakamura,Mohammed Majd Sharifa,Liting Yu,Lisha Dai,Haruyoshi Yamaza,Shunichi Kajioka,Fusanori Nishimura,Takayoshi Yamaza
Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (SCN1A/NaV1.1); however, the functions of NaV1.1 are unclear. SCN1A was expressed in human mesenchymal stem cells (MSCs). Nav1.1 was abundantly expressed in the endoplasmic reticulum of MSCs; however, its expression was not found to be related to sodium currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A-silencing also suppressed the protein levels of CDK2 and AKT, despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. Cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. Proteolysis inhibition assay using epoxomicin, bafilomycin A1, and NH4Cl, revealed that the ubiquitin-proteasome and autophagy/endo-lysosome systems were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.
{"title":"NaV1.1 contributes to the cell cycle of human mesenchymal stem cells by regulating AKT and CDK2.","authors":"Mohammed Fouad Zakaria,Hiroki Kato,Soichiro Sonoda,Kenichi Kato,Norihisa Uehara,Yukari Kyumoto-Nakamura,Mohammed Majd Sharifa,Liting Yu,Lisha Dai,Haruyoshi Yamaza,Shunichi Kajioka,Fusanori Nishimura,Takayoshi Yamaza","doi":"10.1242/jcs.261732","DOIUrl":"https://doi.org/10.1242/jcs.261732","url":null,"abstract":"Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (SCN1A/NaV1.1); however, the functions of NaV1.1 are unclear. SCN1A was expressed in human mesenchymal stem cells (MSCs). Nav1.1 was abundantly expressed in the endoplasmic reticulum of MSCs; however, its expression was not found to be related to sodium currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A-silencing also suppressed the protein levels of CDK2 and AKT, despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. Cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. Proteolysis inhibition assay using epoxomicin, bafilomycin A1, and NH4Cl, revealed that the ubiquitin-proteasome and autophagy/endo-lysosome systems were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"16 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SMN, linked to spinal muscular atrophy, is a key component of the Gemin complex essential for snRNP assembly. Following initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in CB suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN-complexes from Cajal bodies remain unclear. Here we employed a super-resolution microscope alongside the beta-carboline alkaloid harmine, which disrupted the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small, interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies where SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.
{"title":"Dissecting the role of SMN multimerization in its dissociation from the Cajal body using harmine as a tool compound.","authors":"Saki Ohazama,Akiko Fujimoto,Daisuke Konda,Ryota Yokoyama,Shinichi Nakagawa,Hiroshi Maita","doi":"10.1242/jcs.261834","DOIUrl":"https://doi.org/10.1242/jcs.261834","url":null,"abstract":"SMN, linked to spinal muscular atrophy, is a key component of the Gemin complex essential for snRNP assembly. Following initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in CB suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN-complexes from Cajal bodies remain unclear. Here we employed a super-resolution microscope alongside the beta-carboline alkaloid harmine, which disrupted the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small, interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies where SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"10 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
膜结合复制细胞器(RO)是各种正链 RNA 病毒的一个统一特征。这些由各种宿主细胞器改变形成的区室为病毒基因组复制提供了一个保护性生态位。一些 RO 的特征是由病毒蛋白形成的跨膜孔。RO 膜将内部与细胞质中的免疫传感器隔开。成像技术的最新进展揭示了各病毒家族 RO 形态和起源的惊人差异。尽管如此,RO 仍具有共同的核心特征,如与宿主蛋白质相互作用,以实现其生物生成以及脂质和能量的转移。为 RO 的生物生成和维持而重组宿主膜需要病毒和宿主因子的协调作用,包括膜弯曲蛋白、脂质修饰酶和用于组织间接触的系链。在这篇《细胞科学一瞥》(Cell Science at a Glance)文章和随附的海报中,我们强调RO是正链RNA病毒的一个普遍特征,依赖于病毒与宿主之间的相互作用,我们在广泛研究的背景下讨论了RO,研究重点是RO作为抗病毒疗法潜在靶点的潜力,以及RO作为理解细胞生物学基本原理模型的作用。
{"title":"Positive-strand RNA virus replication organelles at a glance.","authors":"Viktoriya G Stancheva,Sumana Sanyal","doi":"10.1242/jcs.262164","DOIUrl":"https://doi.org/10.1242/jcs.262164","url":null,"abstract":"Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"19 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-06DOI: 10.1242/jcs.263450
Mona Höhler, Abel R Alcázar-Román, Katharina Schenk, Mac Pholo Aguirre-Huamani, Corinna Braun, Rafat Zrieq, Katja Mölleken, Johannes H Hegemann, Ursula Fleig
To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.
为了在真核细胞内繁殖,致病细菌会劫持和重塑宿主细胞的功能。对人类和动物健康构成严重威胁的革兰氏阴性细胞内衣原体,会附着在宿主细胞上并注入效应蛋白,对宿主细胞机制进行重编程。保守的衣原体 TarP 家族成员已被鉴定为主要的早期效应蛋白,可与宿主肌动蛋白细胞骨架结合并重塑其结构。我们现在描述了肺炎衣原体 TarP 成员 CPn0572 的一种新功能,即结合和改变微管细胞骨架的能力。因此,CPn0572 是唯一能直接调节真核细胞两种动态细胞骨架的原核蛋白质。异位表达的 GFP-CPn0572 能以剂量无关的方式单独或同时与两种细胞骨架结合。在体外,CPn0572 直接与微管结合。只表达微管的 CPn0572 变体会形成异常粗大、稳定的微管网络。有趣的是,在感染过程中,分泌的 CPn0572 也与改变的微管共定位,这表明该蛋白在感染过程中也会影响微管动力学。我们的分析表明,肌动蛋白和微管细胞骨架之间通过衣原体 CPn0572 产生了串扰。
{"title":"Direct targeting of host microtubule and actin cytoskeletons by a chlamydial pathogenic effector protein.","authors":"Mona Höhler, Abel R Alcázar-Román, Katharina Schenk, Mac Pholo Aguirre-Huamani, Corinna Braun, Rafat Zrieq, Katja Mölleken, Johannes H Hegemann, Ursula Fleig","doi":"10.1242/jcs.263450","DOIUrl":"10.1242/jcs.263450","url":null,"abstract":"<p><p>To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}