Pub Date : 2024-08-29DOI: 10.1007/s42835-024-02025-0
R. Kala, Raja Chandrasekaran, A. Ahilan, P. Jayapriya
Human brains are the most complex organs. There are a number of functions that this three-pound organ performs, including intelligence, interpreter of the senses, initiator of bodily movements, and controller of behaviour. In this paper, a novel ER-GAN model has been proposed for image inpainting (IIP) Brain MRI images. Initially, the brain MRI images are segmented using Attention V-Net. In the first GAN, Edge reconstruction Generative Adversarial Networks (EGAN) are used as edge generators able to hallucinate edges in missing regions based on the rest of the image’s edges and grayscale pixel intensities. Edge generation in brain MRI images involves leveraging these grayscale pixel intensities to detect boundaries between different brain tissues or structures. The varying intensities in MRI images often correspond to changes in tissue composition or boundaries between anatomical regions, making them valuable for edge detection and delineation. The second GAN uses the Region Reconstruction Generative Adversarial Network (RGAN) to fill in the missing regions by combining edge information from the missing regions and color and texture information from the surrounding regions. In experimental analysis, the Jaccard Index (JI) and Dice Index (DI) are obtained at 0.78 and 0.84 respectively. The proposed ER-GAN model reaches an overall accuracy of 99.25%, which is comparatively better than the existing techniques.
{"title":"Brain Magnetic Resonance Image Inpainting via Deep Edge Region-based Generative Adversarial Network","authors":"R. Kala, Raja Chandrasekaran, A. Ahilan, P. Jayapriya","doi":"10.1007/s42835-024-02025-0","DOIUrl":"https://doi.org/10.1007/s42835-024-02025-0","url":null,"abstract":"<p>Human brains are the most complex organs. There are a number of functions that this three-pound organ performs, including intelligence, interpreter of the senses, initiator of bodily movements, and controller of behaviour. In this paper, a novel ER-GAN model has been proposed for image inpainting (IIP) Brain MRI images. Initially, the brain MRI images are segmented using Attention V-Net. In the first GAN, Edge reconstruction Generative Adversarial Networks (EGAN) are used as edge generators able to hallucinate edges in missing regions based on the rest of the image’s edges and grayscale pixel intensities. Edge generation in brain MRI images involves leveraging these grayscale pixel intensities to detect boundaries between different brain tissues or structures. The varying intensities in MRI images often correspond to changes in tissue composition or boundaries between anatomical regions, making them valuable for edge detection and delineation. The second GAN uses the Region Reconstruction Generative Adversarial Network (RGAN) to fill in the missing regions by combining edge information from the missing regions and color and texture information from the surrounding regions. In experimental analysis, the Jaccard Index (JI) and Dice Index (DI) are obtained at 0.78 and 0.84 respectively. The proposed ER-GAN model reaches an overall accuracy of 99.25%, which is comparatively better than the existing techniques.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"75 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1007/s42835-024-01940-6
Huige Chen, Shuangling Wang
The zero drift occurring to the sampling conditioning circuit of the non-isolated grid-connected inverter will make the output develop a DC component, thus resulting in system failure and posing safety risks. According to the IEEE standard 1547-2003, the DC component injected into the grid side should be less than 0.5% of the rated current. In this paper, a moving average filter is proposed to extract the DC component of the three-phase AC output current. The filter has a very strong attenuation ability to the fundamental integer multiple harmonics, and can accurately extract the DC component. Then the proportional integral resonant controller (PIR) is used to control the system. The control system has sufficient bandwidth to avoid the stability problem caused by frequency offset. Through the above methods, the purpose of accurately suppressing the DC component in the non-isolated grid-connected inverter is realized. Also, a 50 kVA prototype is built in this study. The experimental results show that the moving average filter is advantageous over the conventional low-pass filter method in extracting the DC component, and the PIR controller used in the closed-loop control system outperforms the proportional integral and proportional resonant controllers. Under the strategy proposed in this study, the DC component is reduced to less than 0.5% of the rated current, and the THD of the grid-connected current falls below 5%.
非隔离式并网逆变器的采样调节电路发生的零点漂移会使输出产生直流分量,从而导致系统故障并带来安全风险。根据 IEEE 标准 1547-2003,注入电网侧的直流分量应小于额定电流的 0.5%。本文提出了一种移动平均滤波器,用于提取三相交流输出电流中的直流分量。该滤波器对基波整数多次谐波有很强的衰减能力,能准确提取直流分量。然后使用比例积分谐振控制器(PIR)对系统进行控制。该控制系统具有足够的带宽,避免了频率偏移引起的稳定性问题。通过上述方法,实现了精确抑制非隔离并网逆变器中直流分量的目的。本研究还建立了一个 50 kVA 的原型。实验结果表明,与传统的低通滤波器方法相比,移动平均滤波器在提取直流分量方面更具优势,闭环控制系统中使用的 PIR 控制器优于比例积分控制器和比例谐振控制器。在本研究提出的策略下,直流分量降低到额定电流的 0.5%以下,并网电流的总谐波失真(THD)低于 5%。
{"title":"Research on DC Component Suppression Method of Non-isolated Grid-Connected Inverter","authors":"Huige Chen, Shuangling Wang","doi":"10.1007/s42835-024-01940-6","DOIUrl":"https://doi.org/10.1007/s42835-024-01940-6","url":null,"abstract":"<p>The zero drift occurring to the sampling conditioning circuit of the non-isolated grid-connected inverter will make the output develop a DC component, thus resulting in system failure and posing safety risks. According to the IEEE standard 1547-2003, the DC component injected into the grid side should be less than 0.5% of the rated current. In this paper, a moving average filter is proposed to extract the DC component of the three-phase AC output current. The filter has a very strong attenuation ability to the fundamental integer multiple harmonics, and can accurately extract the DC component. Then the proportional integral resonant controller (PIR) is used to control the system. The control system has sufficient bandwidth to avoid the stability problem caused by frequency offset. Through the above methods, the purpose of accurately suppressing the DC component in the non-isolated grid-connected inverter is realized. Also, a 50 kVA prototype is built in this study. The experimental results show that the moving average filter is advantageous over the conventional low-pass filter method in extracting the DC component, and the PIR controller used in the closed-loop control system outperforms the proportional integral and proportional resonant controllers. Under the strategy proposed in this study, the DC component is reduced to less than 0.5% of the rated current, and the THD of the grid-connected current falls below 5%.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"9 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1007/s42835-024-02012-5
Sang Hwa Lee, Kwang Min Yu, Jeon Hong Kang, Seung Hoon Nahm, Jae Yeong Park
The effects of probe contact resistance, thermoelectric voltage and time dependence on electrical resistance measurement of superalloy single-crystal steel were examined as important error factors in determining the electrical conductivity of the sample using the four-point probe (FPP) method. It was shown that even when the contact resistance and its time dependence are large, its effect on the sample resistance measurement results is insignificant. Additionally, it was found that the thermoelectric voltage effect can cause a measurement error of several percent, and to cancel this effect, the voltage due to both polarities of the applied current must be averaged. In addition, it was found that in the first few minutes, the measured voltage values change rapidly within the first few minutes and may cause an error of several percent; to obtain accuracy and an uncertainty of about 0.1%, the measurements must be performed after voltage stabilization. The results indicated that to determine sample resistance accurately using the FPP method, the effects examined above must be considered in addition to the basic parameters of current, voltage, and geometric correction factor mentioned in literature (Kang et al. in J Electr Eng Technol 18:1419–1427, 2023).
{"title":"Effect of Probe Contact Resistance, Thermoelectric Voltage and Time Dependence on Electrical Resistance Measurement of Superalloy Single-Crystal Steel by Four-Point Probe","authors":"Sang Hwa Lee, Kwang Min Yu, Jeon Hong Kang, Seung Hoon Nahm, Jae Yeong Park","doi":"10.1007/s42835-024-02012-5","DOIUrl":"https://doi.org/10.1007/s42835-024-02012-5","url":null,"abstract":"<p>The effects of probe contact resistance, thermoelectric voltage and time dependence on electrical resistance measurement of superalloy single-crystal steel were examined as important error factors in determining the electrical conductivity of the sample using the four-point probe (FPP) method. It was shown that even when the contact resistance and its time dependence are large, its effect on the sample resistance measurement results is insignificant. Additionally, it was found that the thermoelectric voltage effect can cause a measurement error of several percent, and to cancel this effect, the voltage due to both polarities of the applied current must be averaged. In addition, it was found that in the first few minutes, the measured voltage values change rapidly within the first few minutes and may cause an error of several percent; to obtain accuracy and an uncertainty of about 0.1%, the measurements must be performed after voltage stabilization. The results indicated that to determine sample resistance accurately using the FPP method, the effects examined above must be considered in addition to the basic parameters of current, voltage, and geometric correction factor mentioned in literature (Kang et al. in J Electr Eng Technol 18:1419–1427, 2023).</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"384 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigations on static air-gap eccentricity (SAGE) faults about magnetic field variations, current/ voltage changes, and stator/ rotor vibrations have been widely carried out, while the mechanical properties of the end windings have been rarely studied, especially in 3D eccentricity cases. This article provides a detailed study on the stator end winding mechanics behavior in synchronous generators at typical rotor eccentricity running conditions. Such mechanics behavior includes not only the electromagnetic force (EF) properties, but also the end winding vibrations as well as the stress/strain/deformation responses due to the uneven EF excitation. The typical rotor eccentricity running conditions include: 1) radial static air-gap eccentricity (RSAGE), 2) axial static air-gap eccentricity (ASAGE), and 3) hybrid static air-gap eccentricity (HSAGE). The theoretical analysis, finite element analysis calculation and experimental verification are performed respectively, by taking a 5kVA synchronous generator as the research object in this paper. It is shown that in normal and SAGE cases, the end winding EF/vibration contains the DC component and even harmonics, especially the 2nd harmonic. RSAGE increases the end winding EF/vibration, whereas ASAGE increases the end winding EF/vibration at the extended end of the rotor while decreasing the EF/vibration on the retracted end. Under HSAGE, both RSAGE and ASAGE will affect the variation trend of end winding EF/vibration with the rule of single direction SAGE fault. The nose part and the joint to connect the end part and the linear sections are the most dangerous positions to afford the mechanics responses, and the occurrence of SAGE will make these parts more vulnerable.
{"title":"Impact of 2D and 3D Rotor Eccentricity on End Winding Mechanics Behavior in Synchronous Generators","authors":"Ming-Xing Xu, Yu-Ling He, Wen Zhang, Wen-Jie Zheng, De-Rui Dai, Xiang-Ao Liu, David Gerada","doi":"10.1007/s42835-024-01997-3","DOIUrl":"https://doi.org/10.1007/s42835-024-01997-3","url":null,"abstract":"<p>Investigations on static air-gap eccentricity (SAGE) faults about magnetic field variations, current/ voltage changes, and stator/ rotor vibrations have been widely carried out, while the mechanical properties of the end windings have been rarely studied, especially in 3D eccentricity cases. This article provides a detailed study on the stator end winding mechanics behavior in synchronous generators at typical rotor eccentricity running conditions. Such mechanics behavior includes not only the electromagnetic force (EF) properties, but also the end winding vibrations as well as the stress/strain/deformation responses due to the uneven EF excitation. The typical rotor eccentricity running conditions include: 1) radial static air-gap eccentricity (RSAGE), 2) axial static air-gap eccentricity (ASAGE), and 3) hybrid static air-gap eccentricity (HSAGE). The theoretical analysis, finite element analysis calculation and experimental verification are performed respectively, by taking a 5kVA synchronous generator as the research object in this paper. It is shown that in normal and SAGE cases, the end winding EF/vibration contains the DC component and even harmonics, especially the 2nd harmonic. RSAGE increases the end winding EF/vibration, whereas ASAGE increases the end winding EF/vibration at the extended end of the rotor while decreasing the EF/vibration on the retracted end. Under HSAGE, both RSAGE and ASAGE will affect the variation trend of end winding EF/vibration with the rule of single direction SAGE fault. The nose part and the joint to connect the end part and the linear sections are the most dangerous positions to afford the mechanics responses, and the occurrence of SAGE will make these parts more vulnerable.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"106 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1007/s42835-024-01986-6
Dong-Hyeon Kim, Dong-Seok Kim, Sung-Uk Zhang
Power semiconductors play a crucial role in power conversion applications within nuclear power plants. These semiconductors are enclosed using polymeric materials for cost-effectiveness. Researchers have substantiated that polymeric materials are subject to radiation-induced degradation in nuclear power plants, prompting reliability studies. Consequently, investigating the radiation degradation behavior of polymeric materials becomes imperative to ensure their reliability and stability. This study focuses on the degradation of epoxy molding compound (EMC), a type of polymeric material, under the influence of total ionizing dose (TID). To analyze the effects of TID conditions on EMC, data was collected and subjected to various tests, including FTIR (Fourier Transform Infrared Spectroscopy) spectroscopy, thermal conductivity testing, and nanoindentation testing. These tests were conducted to assess chemical changes, thermal properties, and mechanical properties of EMC as a consequence of TID exposure. TID induces random ionization damage of EMC. Five EMC samples with different total cumulative doses were produced by varying the TID exposure time. Spectral data were obtained from the fabricated EMC samples by FTIR spectroscopy. FTIR spectral data was used to build a machine learning model, and the degree of EMC performance degradation due to TID exposure was determined. In our study, we selected an optimal algorithm among six machine learning algorithms. Dimensionality reduction methods such as ReliefF and PCA were also applied to build a more simplified discriminant model. As a result, it was confirmed that radiation changed the thermal properties of EMC materials. However, no change in the mechanical properties of EMC was observed under our test conditions.
功率半导体在核电站的功率转换应用中发挥着至关重要的作用。这些半导体使用聚合材料封装,以提高成本效益。研究人员已经证实,聚合材料在核电站中会受到辐射引起的降解,从而引发可靠性研究。因此,为了确保聚合物材料的可靠性和稳定性,研究聚合物材料的辐射降解行为势在必行。本研究主要关注高分子材料环氧模塑料(EMC)在总电离剂量(TID)影响下的降解。为分析 TID 条件对 EMC 的影响,收集了数据并进行了各种测试,包括傅立叶变换红外光谱、热导率测试和纳米压痕测试。进行这些测试的目的是评估 EMC 因暴露于 TID 而产生的化学变化、热性能和机械性能。TID 会对 EMC 造成随机电离损伤。通过改变 TID 暴露时间,制作了五个具有不同总累积剂量的 EMC 样品。利用傅立叶变换红外光谱法获得了所制 EMC 样品的光谱数据。傅立叶变换红外光谱数据用于建立机器学习模型,并确定 TID 暴露导致的 EMC 性能下降程度。在研究中,我们从六种机器学习算法中选择了一种最佳算法。此外,我们还采用了降维方法,如 ReliefF 和 PCA,以建立更简化的判别模型。结果证实,辐射改变了 EMC 材料的热性能。不过,在我们的测试条件下,没有观察到 EMC 的机械性能发生变化。
{"title":"Classifying Radiation Degradation of Epoxy Molding Compound by Using Machine Learning and its Effect on Thermal and Mechanical Properties","authors":"Dong-Hyeon Kim, Dong-Seok Kim, Sung-Uk Zhang","doi":"10.1007/s42835-024-01986-6","DOIUrl":"https://doi.org/10.1007/s42835-024-01986-6","url":null,"abstract":"<p>Power semiconductors play a crucial role in power conversion applications within nuclear power plants. These semiconductors are enclosed using polymeric materials for cost-effectiveness. Researchers have substantiated that polymeric materials are subject to radiation-induced degradation in nuclear power plants, prompting reliability studies. Consequently, investigating the radiation degradation behavior of polymeric materials becomes imperative to ensure their reliability and stability. This study focuses on the degradation of epoxy molding compound (EMC), a type of polymeric material, under the influence of total ionizing dose (TID). To analyze the effects of TID conditions on EMC, data was collected and subjected to various tests, including FTIR (Fourier Transform Infrared Spectroscopy) spectroscopy, thermal conductivity testing, and nanoindentation testing. These tests were conducted to assess chemical changes, thermal properties, and mechanical properties of EMC as a consequence of TID exposure. TID induces random ionization damage of EMC. Five EMC samples with different total cumulative doses were produced by varying the TID exposure time. Spectral data were obtained from the fabricated EMC samples by FTIR spectroscopy. FTIR spectral data was used to build a machine learning model, and the degree of EMC performance degradation due to TID exposure was determined. In our study, we selected an optimal algorithm among six machine learning algorithms. Dimensionality reduction methods such as ReliefF and PCA were also applied to build a more simplified discriminant model. As a result, it was confirmed that radiation changed the thermal properties of EMC materials. However, no change in the mechanical properties of EMC was observed under our test conditions.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"75 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1007/s42835-024-01992-8
Boo-Hyun Shin, Hye-Seon Lee, Gi-Dae Oh, Seung-Chul Kim
Due to the increasing demand for underground installation of ground equipment, KEPCO has been researching the installation of Underground Compact Distribution Stations (U-CDS). To install and operate U-CDS in the distribution system, it is necessary to establish relevant standards and design and operation criteria. Therefore, this paper discusses the test method of IEC 62271-202 to establish its standard. This standard mainly comprises dielectric tests, temperature rise tests, short-time/peak current tests, and internal arc tests. However, each electrical distribution equipment has already been tested for dielectric, short-time current, internal fault arc, and temperature rise tests. Since U-CDS requires all equipment to be gathered in one place and operate safely, it is necessary to test the interconnections. As a result of the tests, some tests satisfied the standards, but others did not. Since these tests have not been performed before, additional research on the standards and test methods will be needed.
{"title":"Electrical Performance Verification Study of Underground Structures Including Electrical Distribution Equipment","authors":"Boo-Hyun Shin, Hye-Seon Lee, Gi-Dae Oh, Seung-Chul Kim","doi":"10.1007/s42835-024-01992-8","DOIUrl":"https://doi.org/10.1007/s42835-024-01992-8","url":null,"abstract":"<p>Due to the increasing demand for underground installation of ground equipment, KEPCO has been researching the installation of Underground Compact Distribution Stations (U-CDS). To install and operate U-CDS in the distribution system, it is necessary to establish relevant standards and design and operation criteria. Therefore, this paper discusses the test method of IEC 62271-202 to establish its standard. This standard mainly comprises dielectric tests, temperature rise tests, short-time/peak current tests, and internal arc tests. However, each electrical distribution equipment has already been tested for dielectric, short-time current, internal fault arc, and temperature rise tests. Since U-CDS requires all equipment to be gathered in one place and operate safely, it is necessary to test the interconnections. As a result of the tests, some tests satisfied the standards, but others did not. Since these tests have not been performed before, additional research on the standards and test methods will be needed.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1007/s42835-024-02003-6
Gil Hyun Kang, Kyung Sik Kim, Chin Young Chang, Chul Su Kim
Fault diagnosis and prediction are important to prevent traffic congestion during rush hour due to door failures of urban railway vehicles. This paper is a study on improving failure classification performance through machine learning using the data set collected by installing a displacement sensor on a door simulator. First, the durability test of the sensor and the developed simulator was verified through 147,000 no-failure tests. For machine learning, 11,225 sets of normal and abnormal data of the door were collected and supervised learning was performed. In order to overcome the difficulty of fault diagnosis of the existing pressure sensor or acoustic sensor, pre-processing was performed that converted to speed-based data. In addition, feature extraction was compared with the single zone method by testing the 2-zone segmentation method. Feature selection was made using the principal component analysis algorithm developed for feature dimensionality reduction. As a result, the classification performance of the method using the single zone method with open and close data was better than the 2-zone segmentation method by acceleration and deceleration. Among the machine learning models, the LGBM model showed the highest prediction accuracy of 99.55%, which is expected to be applied to actual vehicles.