Human milk oligosaccharides (HMOs) are an evolutionarily significant advantage bestowed by mothers for facilitating the development of the infant's gut microbiota. They can avoid absorption in the stomach and small intestine, reaching the colon successfully, where they engage in close interactions with gut microbes. This process also enables HMOs to exert additional prebiotic effects, including regulating the mucus layer, promoting physical growth and brain development, as well as preventing and mitigating conditions such as NEC, allergies, and diarrhea. Here, we comprehensively review the primary ways by which gut microbiota, including Bifidobacteria and other genera, utilize HMOs, and we classify them into five central pathways. Furthermore, we emphasize the metabolic benefits of bacteria consuming HMOs, particularly the recently identified intrinsic link between HMOs and the metabolic conversion of tryptophan to indole and its derivatives. We also examine the extensive probiotic roles of HMOs and their recent research advancements, specifically concentrating on the unsummarized role of HMOs in regulating the mucus layer, where their interaction with the gut microbiota becomes crucial. Additionally, we delve into the principal tools used for functional mining of new HMOs. In conclusion, our study presents a thorough analysis of the interaction mechanism between HMOs and gut microbiota, emphasizing the cooperative utilization of HMOs by gut microbiota, and provides an overview of the subsequent probiotic effects of this interaction. This review provides new insights into the interaction of HMOs with the gut microbiota, which will inform the mechanisms by which HMOs function.
{"title":"Gut microbiota: A key role for human milk oligosaccharides in regulating host health early in life","authors":"Qingxue Chen, Xinming Ma, Zhengtao Guo, Peng Zhang, Bailiang Li, Zhongjiang Wang","doi":"10.1111/1541-4337.13431","DOIUrl":"10.1111/1541-4337.13431","url":null,"abstract":"<p>Human milk oligosaccharides (HMOs) are an evolutionarily significant advantage bestowed by mothers for facilitating the development of the infant's gut microbiota. They can avoid absorption in the stomach and small intestine, reaching the colon successfully, where they engage in close interactions with gut microbes. This process also enables HMOs to exert additional prebiotic effects, including regulating the mucus layer, promoting physical growth and brain development, as well as preventing and mitigating conditions such as NEC, allergies, and diarrhea. Here, we comprehensively review the primary ways by which gut microbiota, including Bifidobacteria and other genera, utilize HMOs, and we classify them into five central pathways. Furthermore, we emphasize the metabolic benefits of bacteria consuming HMOs, particularly the recently identified intrinsic link between HMOs and the metabolic conversion of tryptophan to indole and its derivatives. We also examine the extensive probiotic roles of HMOs and their recent research advancements, specifically concentrating on the unsummarized role of HMOs in regulating the mucus layer, where their interaction with the gut microbiota becomes crucial. Additionally, we delve into the principal tools used for functional mining of new HMOs. In conclusion, our study presents a thorough analysis of the interaction mechanism between HMOs and gut microbiota, emphasizing the cooperative utilization of HMOs by gut microbiota, and provides an overview of the subsequent probiotic effects of this interaction. This review provides new insights into the interaction of HMOs with the gut microbiota, which will inform the mechanisms by which HMOs function.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bailin Li, Yijie Zhou, Lingrong Wen, Bao Yang, Mohamed A. Farag, Yueming Jiang
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
{"title":"The occurrence, role, and management strategies for phytic acid in foods","authors":"Bailin Li, Yijie Zhou, Lingrong Wen, Bao Yang, Mohamed A. Farag, Yueming Jiang","doi":"10.1111/1541-4337.13416","DOIUrl":"10.1111/1541-4337.13416","url":null,"abstract":"<p>Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.
{"title":"Using bioactive compounds to mitigate the formation of typical chemical contaminants generated during the thermal processing of different food matrices","authors":"Zilong Guo, Xiao Feng, Guangyun He, Huanqi Yang, Tian Zhong, Ying Xiao, Xi Yu","doi":"10.1111/1541-4337.13409","DOIUrl":"10.1111/1541-4337.13409","url":null,"abstract":"<p>With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.
{"title":"Application of radio frequency energy in processing of fruit and vegetable products","authors":"Yingjie Tang, Pu Jing, Shunshan Jiao","doi":"10.1111/1541-4337.13425","DOIUrl":"10.1111/1541-4337.13425","url":null,"abstract":"<p>Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Ji Gu, Yu Ra Lee, Donghwan Kim, Yoonsook Kim, Sang Keun Ha
Advanced glycation end products (AGEs) are formed by the Maillard reaction, a nonenzymatic process that occurs widely in cooking, food processing, and within the human body. Primarily, AGEs are formed by the glycation of reducing sugars with amino groups, and this process is heat-dependent. With changes in lifestyle, there has been an increase in the diversity of dietary habits, including those patterns associated with Western diets, which include the consumption of processed foods that are rich in AGEs. Excessive intake and exposure to AGEs are known to cause abnormalities in body function such as obesity, diabetes, and fatty liver, and the beneficial effects of AGEs in food processing in improving food flavor and quality. To obtain meaningful data regarding AGEs in a variety of food and human samples, it is necessary to more precisely characterize and analyze the AGEs extracted from samples to obtain accurate results. This review explores the recent analytical research and characterization of AGEs in foods, including casein, β-lactoglobulin, soy protein, and meat protein, and in human samples, such as glycated-albumin, hemoglobin, and plasma. Additionally, it explores the metabolic fate of AGEs in the body and the mechanisms of disease associated with metabolic abnormalities that may be caused by the consumption of foods containing AGEs. This review aims to provide an overview of the perspectives of relevant recent and future research on metabolic abnormalities caused by foods containing AGEs or by AGEs produced in the body.
{"title":"Comprehensive research on the properties of advanced glycation end products in food and biological samples and their harmful role in inducing metabolic diseases","authors":"Min Ji Gu, Yu Ra Lee, Donghwan Kim, Yoonsook Kim, Sang Keun Ha","doi":"10.1111/1541-4337.13412","DOIUrl":"10.1111/1541-4337.13412","url":null,"abstract":"<p>Advanced glycation end products (AGEs) are formed by the Maillard reaction, a nonenzymatic process that occurs widely in cooking, food processing, and within the human body. Primarily, AGEs are formed by the glycation of reducing sugars with amino groups, and this process is heat-dependent. With changes in lifestyle, there has been an increase in the diversity of dietary habits, including those patterns associated with Western diets, which include the consumption of processed foods that are rich in AGEs. Excessive intake and exposure to AGEs are known to cause abnormalities in body function such as obesity, diabetes, and fatty liver, and the beneficial effects of AGEs in food processing in improving food flavor and quality. To obtain meaningful data regarding AGEs in a variety of food and human samples, it is necessary to more precisely characterize and analyze the AGEs extracted from samples to obtain accurate results. This review explores the recent analytical research and characterization of AGEs in foods, including casein, β-lactoglobulin, soy protein, and meat protein, and in human samples, such as glycated-albumin, hemoglobin, and plasma. Additionally, it explores the metabolic fate of AGEs in the body and the mechanisms of disease associated with metabolic abnormalities that may be caused by the consumption of foods containing AGEs. This review aims to provide an overview of the perspectives of relevant recent and future research on metabolic abnormalities caused by foods containing AGEs or by AGEs produced in the body.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rita Végh, Mariann Csóka, Csilla Sörös, László Sipos
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
{"title":"Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research","authors":"Rita Végh, Mariann Csóka, Csilla Sörös, László Sipos","doi":"10.1111/1541-4337.13404","DOIUrl":"10.1111/1541-4337.13404","url":null,"abstract":"<p>These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The demand for functional food is rising in tandem with the prevalence of chronic diseases. Probiotics play a crucial role in functional food development, yet their ability to confer health benefits to the host remains a topic of debate according to Food and Agriculture Organization/World Health Organization requirements. The application of culturomics, innovative isolation techniques, within the realm of probiotics is increasingly deemed essential for fully harnessing the latent potential of microbial reservoirs. Nevertheless, its application remains confined predominantly to human fecal sources. Following the integration of probiogenomics, significant advancements have been made in the safety assessment of probiotics. However, the adoption of novel probiotic microorganisms has yet to match the requisite pace. Progress in research concerning host–probiotic interactions by employing omics technologies, particularly in animal models, is notable. Nonetheless, the comprehensive elucidation of mechanisms of action and human trial studies are lagging behind. Additionally, the viability of probiotics, spanning from their production as functional foods to their transit to the human colon, has markedly improved through encapsulation techniques. Nevertheless, opportunities for exploration persist regarding alternative coating materials and diverse encapsulation methodologies. Furthermore, there is a discernible transition in the domain of probiotic-based functional foods, shifting away from a primarily dairy-centric focus toward inclusion in a broader array of food categories. This comprehensive review addresses critical issues ranging from isolation sources and novel techniques to the final functional food developments. while doing so, it explores probiogenomics applications for probiotic characterization, investigations into host–probiotic interactions, and strategies for probiotic stabilization under harsh environmental conditions.
{"title":"A comprehensive review of the characterization, host interactions, and stabilization advancements on probiotics: Addressing the challenges in functional food diversification","authors":"Eskindir Getachew Fentie, Kyeongmo Lim, Minsoo Jeong, Jae-Ho Shin","doi":"10.1111/1541-4337.13424","DOIUrl":"10.1111/1541-4337.13424","url":null,"abstract":"<p>The demand for functional food is rising in tandem with the prevalence of chronic diseases. Probiotics play a crucial role in functional food development, yet their ability to confer health benefits to the host remains a topic of debate according to Food and Agriculture Organization/World Health Organization requirements. The application of culturomics, innovative isolation techniques, within the realm of probiotics is increasingly deemed essential for fully harnessing the latent potential of microbial reservoirs. Nevertheless, its application remains confined predominantly to human fecal sources. Following the integration of probiogenomics, significant advancements have been made in the safety assessment of probiotics. However, the adoption of novel probiotic microorganisms has yet to match the requisite pace. Progress in research concerning host–probiotic interactions by employing omics technologies, particularly in animal models, is notable. Nonetheless, the comprehensive elucidation of mechanisms of action and human trial studies are lagging behind. Additionally, the viability of probiotics, spanning from their production as functional foods to their transit to the human colon, has markedly improved through encapsulation techniques. Nevertheless, opportunities for exploration persist regarding alternative coating materials and diverse encapsulation methodologies. Furthermore, there is a discernible transition in the domain of probiotic-based functional foods, shifting away from a primarily dairy-centric focus toward inclusion in a broader array of food categories. This comprehensive review addresses critical issues ranging from isolation sources and novel techniques to the final functional food developments. while doing so, it explores probiogenomics applications for probiotic characterization, investigations into host–probiotic interactions, and strategies for probiotic stabilization under harsh environmental conditions.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
食品安全和真实性分析在保证食品质量、保障公众健康和维护消费者信任方面发挥着举足轻重的作用。近年来,社会的长足进步给食品分析领域带来了新的挑战,迫切需要设计出创新、便捷的现场评估方法。因此,纤维素纸基设备(PAD)因其微通道和固有毛细作用的特点而成为关注的焦点。本综述总结了纤维素纸基设备在各种食品中的最新进展,包括各种制造策略、检测方法(如质谱法和多模式检测)、取样和加工注意事项,以及过去三年中在筛选食品安全因素和评估食品真实性方面的应用。根据上述研究,纤维素 PAD 面临的挑战包括有限的样品处理能力、复用能力不足以及工作流程整合的要求,而新出现的创新技术,包括使用简化的样品前处理技术、先进纳米材料的整合、先进仪器(如便携式质谱仪)以及多模式检测方法的创新,提供了潜在的解决方案,并被强调为有前途的发展方向。本综述强调了纤维素 PAD 在促进分散、成本效益高和简化的检测方法以保持食品安全标准方面的巨大潜力。随着跨学科研究的进展,纤维素 PAD 有望成为现场食品安全和鉴定分析的重要平台,从而大大提高全球消费者的食品安全。
{"title":"Decentralized food safety and authentication on cellulose paper-based analytical platform: A review","authors":"An Du, Zhaoqing Lu, Li Hua","doi":"10.1111/1541-4337.13421","DOIUrl":"10.1111/1541-4337.13421","url":null,"abstract":"<p>Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karina Felix Dias Fernandes, Talita Silveira Queiroga, Maiara da Costa Lima, Kataryne Árabe Rimá de Oliveira, Evandro Leite de Souza
Colletotrichum spp. is a phytopathogen causing anthracnose in a variety of tropical fruits. Strategies used to control postharvest diseases in tropical fruits typically rely on the use of synthetic fungicides, which have stimulated the emergence of resistant pathogens. Safer alternative strategies to control anthracnose in tropical fruits have been described in the literature. This review presents and discusses the main innovative interventions concerning the application of sustainable alternative strategies in the postharvest control of pathogenic Colletotrichum species in tropical fruits, with a particular emphasis on the studies published in the last 5 years. The available studies have shown the use of various methods, including physical barriers, natural antimicrobials, and biological control with antagonistic microorganisms, to reduce anthracnose lesion severity and incidence in tropical fruits. The available literature showed high inhibitory activity in vitro, reduced anthracnose incidence and lesion diameter, and total disease inhibition in tropical fruits. Most studies focused on the inhibition of Colletotrichum gloeosporioides on avocado, papaya, and mango, as well as of Colletotrichum musae on banana; however, the inhibition of other Colletotrichum species was also demonstrated. The application of emerging sustainable alternative methods, including natural antimicrobial substances, also stimulated the induction of defense systems in tropical fruits, including enzymatic activity, such as polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase. The retrieved data helped to understand the current state of the research field and reveal new perspectives on developing efficient and sustainable intervention strategies to control pathogenic Colletotrichum species and anthracnose development in tropical fruits.
{"title":"Interventions based on alternative and sustainable strategies for postharvest control of anthracnose and maintain quality in tropical fruits","authors":"Karina Felix Dias Fernandes, Talita Silveira Queiroga, Maiara da Costa Lima, Kataryne Árabe Rimá de Oliveira, Evandro Leite de Souza","doi":"10.1111/1541-4337.13427","DOIUrl":"10.1111/1541-4337.13427","url":null,"abstract":"<p><i>Colletotrichum</i> spp. is a phytopathogen causing anthracnose in a variety of tropical fruits. Strategies used to control postharvest diseases in tropical fruits typically rely on the use of synthetic fungicides, which have stimulated the emergence of resistant pathogens. Safer alternative strategies to control anthracnose in tropical fruits have been described in the literature. This review presents and discusses the main innovative interventions concerning the application of sustainable alternative strategies in the postharvest control of pathogenic <i>Colletotrichum</i> species in tropical fruits, with a particular emphasis on the studies published in the last 5 years. The available studies have shown the use of various methods, including physical barriers, natural antimicrobials, and biological control with antagonistic microorganisms, to reduce anthracnose lesion severity and incidence in tropical fruits. The available literature showed high inhibitory activity in vitro, reduced anthracnose incidence and lesion diameter, and total disease inhibition in tropical fruits. Most studies focused on the inhibition of <i>C</i>olletotrichum <i>gloeosporioides</i> on avocado, papaya, and mango, as well as of <i>C</i>olletotrichum <i>musae</i> on banana; however, the inhibition of other <i>Colletotrichum</i> species was also demonstrated. The application of emerging sustainable alternative methods, including natural antimicrobial substances, also stimulated the induction of defense systems in tropical fruits, including enzymatic activity, such as polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase. The retrieved data helped to understand the current state of the research field and reveal new perspectives on developing efficient and sustainable intervention strategies to control pathogenic <i>Colletotrichum</i> species and anthracnose development in tropical fruits.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Ze, E. D. van Asselt, M. Focker, H. J. van der Fels-Klerx
Foodborne illnesses result in a high disease burden worldwide, making food safety control of food business operations (FBOs) an urgent issue. With public agencies and FBOs facing challenges in monitoring the complex food supply chain with limited resources, scientific and objective insights into those factors that are related to food safety at FBOs are needed. These factors can be used as input for risk-based inspection. We conducted a systematic review to identify and analyze risk factors affecting the FBOs’ food safety risk. We used a set of predefined search strings in Scopus and Web of Science to search for scientific manuscripts published in the English language between January 1 2003 and February 1 2023. The review identified 53 relevant studies and 43 risk factors. The presence of certified personnel turned out to be the most cited factor. Nearly half of the extracted factors had only been investigated in one study. Additional challenges were identified for developing a universal ready-to-use list of factors for the building of a risk-based inspection method, such as the limitation in the applicability of identified factors in different types of FBOs, and the variability in conclusions between publications for certain factors (e.g., FBO location and inspection history), stressing the need for additional research. Future studies should also prioritize standardizing definitions and measurements, particularly regarding compliance factors. In general, the current list of factors brought forward in our review lays the groundwork for building a transparent, objective, and risk-based method for food safety inspections of FBOs.
{"title":"Risk factors affecting the food safety risk in food business operations for risk-based inspection: A systematic review","authors":"Y. Ze, E. D. van Asselt, M. Focker, H. J. van der Fels-Klerx","doi":"10.1111/1541-4337.13403","DOIUrl":"10.1111/1541-4337.13403","url":null,"abstract":"<p>Foodborne illnesses result in a high disease burden worldwide, making food safety control of food business operations (FBOs) an urgent issue. With public agencies and FBOs facing challenges in monitoring the complex food supply chain with limited resources, scientific and objective insights into those factors that are related to food safety at FBOs are needed. These factors can be used as input for risk-based inspection. We conducted a systematic review to identify and analyze risk factors affecting the FBOs’ food safety risk. We used a set of predefined search strings in Scopus and Web of Science to search for scientific manuscripts published in the English language between January 1 2003 and February 1 2023. The review identified 53 relevant studies and 43 risk factors. The presence of certified personnel turned out to be the most cited factor. Nearly half of the extracted factors had only been investigated in one study. Additional challenges were identified for developing a universal ready-to-use list of factors for the building of a risk-based inspection method, such as the limitation in the applicability of identified factors in different types of FBOs, and the variability in conclusions between publications for certain factors (e.g., FBO location and inspection history), stressing the need for additional research. Future studies should also prioritize standardizing definitions and measurements, particularly regarding compliance factors. In general, the current list of factors brought forward in our review lays the groundwork for building a transparent, objective, and risk-based method for food safety inspections of FBOs.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}