Pub Date : 2025-01-31DOI: 10.1016/j.jde.2025.01.036
F. Hummel , S. Jelbart , C. Kuehn
We consider the slow passage through a Turing bifurcation in the Swift-Hohenberg equation. We generalise the formally derived multiple scales ansatz from modulation theory for use in the slowly time-dependent setting. The key technique is to reformulate the problem via a geometric blow-up transformation. This leads to non-autonomous modulation equations of Ginzburg-Landau type in the blown-up space. We analyse solutions to the modulation equations in weighted Sobolev spaces in two different cases: (i) A symmetric case featuring delayed stability loss, and (ii) A non-symmetric case with a source term. Rigorous estimates on the error of the dynamic modulation approximation are derived in order to characterise the dynamics of the Swift-Hohenberg equation. This allows for a detailed asymptotic description of solutions to the original Swift-Hohenberg equation in both cases (i)-(ii). We also prove the existence of delayed stability loss in case (i), and provide a lower bound for the delay time.
{"title":"Geometric blow-up of a dynamic Turing instability in the Swift-Hohenberg equation","authors":"F. Hummel , S. Jelbart , C. Kuehn","doi":"10.1016/j.jde.2025.01.036","DOIUrl":"10.1016/j.jde.2025.01.036","url":null,"abstract":"<div><div>We consider the slow passage through a Turing bifurcation in the Swift-Hohenberg equation. We generalise the formally derived multiple scales ansatz from modulation theory for use in the slowly time-dependent setting. The key technique is to reformulate the problem via a geometric blow-up transformation. This leads to non-autonomous modulation equations of Ginzburg-Landau type in the blown-up space. We analyse solutions to the modulation equations in weighted Sobolev spaces in two different cases: (i) A symmetric case featuring delayed stability loss, and (ii) A non-symmetric case with a source term. Rigorous estimates on the error of the dynamic modulation approximation are derived in order to characterise the dynamics of the Swift-Hohenberg equation. This allows for a detailed asymptotic description of solutions to the original Swift-Hohenberg equation in both cases (i)-(ii). We also prove the existence of delayed stability loss in case (i), and provide a lower bound for the delay time.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 219-309"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1016/j.jde.2025.01.035
Katy Craig, Matt Jacobs, Olga Turanova
Motivated by recent work on approximation of diffusion equations by deterministic interacting particle systems, we develop a nonlocal approximation for a range of linear and nonlinear diffusion equations and prove convergence of the method in the slow, linear, and fast diffusion regimes. A key ingredient of our approach is a novel technique for using the 2-Wasserstein and dual Sobolev gradient flow structures of the diffusion equations to recover the duality relation characterizing the pressure in the nonlocal-to-local limit. Due to the general class of internal energy densities that our method is able to handle, a byproduct of our result is a novel particle method for sampling a wide range of probability measures, which extends classical approaches based on the Fokker-Planck equation beyond the log-concave setting.
{"title":"Nonlocal approximation of slow and fast diffusion","authors":"Katy Craig, Matt Jacobs, Olga Turanova","doi":"10.1016/j.jde.2025.01.035","DOIUrl":"10.1016/j.jde.2025.01.035","url":null,"abstract":"<div><div>Motivated by recent work on approximation of diffusion equations by deterministic interacting particle systems, we develop a nonlocal approximation for a range of linear and nonlinear diffusion equations and prove convergence of the method in the slow, linear, and fast diffusion regimes. A key ingredient of our approach is a novel technique for using the 2-Wasserstein and dual Sobolev gradient flow structures of the diffusion equations to recover the duality relation characterizing the pressure in the nonlocal-to-local limit. Due to the general class of internal energy densities that our method is able to handle, a byproduct of our result is a novel particle method for sampling a wide range of probability measures, which extends classical approaches based on the Fokker-Planck equation beyond the log-concave setting.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 782-852"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1016/j.jde.2025.01.039
A. Bensouilah , G.K. Duong , T.E. Ghoul
<div><div>In this paper, we consider the Yang-Mills heat flow on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>11</mn></math></span>. Under a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following nonlinear equation:<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mo>∂</mo></mrow><mrow><mi>r</mi></mrow></msub><mi>u</mi><mo>−</mo><mn>3</mn><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mtext> and </mtext><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>.</mo></math></span></span></span> We are interested in describing the singularity formation of this parabolic equation. More precisely, we aim to construct non self-similar blowup solutions in higher dimensions <span><math><mi>d</mi><mo>≥</mo><mn>11</mn></math></span>, and prove that the asymptotic behavior of the solution is of the form<span><span><span><math><mi>u</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mfrac><mrow><mi>r</mi></mrow><mrow><msqrt><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mtext> as </mtext><mi>t</mi><mo>→</mo><mi>T</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Q</mi></math></span> is the steady state corresponding to the boundary conditions <span><math><mi>Q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and the blowup speed <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> satisfies<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mi>o</mi></mrow><mrow><mi>t</mi><mo>→</mo><mi>T</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><msup><mrow><mo>(</mo><mi>T</
{"title":"Non-self similar blowup solutions to the higher dimensional Yang Mills heat flows","authors":"A. Bensouilah , G.K. Duong , T.E. Ghoul","doi":"10.1016/j.jde.2025.01.039","DOIUrl":"10.1016/j.jde.2025.01.039","url":null,"abstract":"<div><div>In this paper, we consider the Yang-Mills heat flow on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>11</mn></math></span>. Under a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following nonlinear equation:<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mo>∂</mo></mrow><mrow><mi>r</mi></mrow></msub><mi>u</mi><mo>−</mo><mn>3</mn><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mtext> and </mtext><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>.</mo></math></span></span></span> We are interested in describing the singularity formation of this parabolic equation. More precisely, we aim to construct non self-similar blowup solutions in higher dimensions <span><math><mi>d</mi><mo>≥</mo><mn>11</mn></math></span>, and prove that the asymptotic behavior of the solution is of the form<span><span><span><math><mi>u</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mfrac><mrow><mi>r</mi></mrow><mrow><msqrt><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mtext> as </mtext><mi>t</mi><mo>→</mo><mi>T</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Q</mi></math></span> is the steady state corresponding to the boundary conditions <span><math><mi>Q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and the blowup speed <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> satisfies<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mi>o</mi></mrow><mrow><mi>t</mi><mo>→</mo><mi>T</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><msup><mrow><mo>(</mo><mi>T</","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 26-142"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1016/j.jde.2025.01.079
Xiaoxue Guo, Zhiyuan Wen
In this paper, we study Dirichlet eigenvalue problem of the second order measure differential equation with an indefinite weight measure. The main result is a complete description on eigenvalues of the problem. To obtain such a result, we will first establish a sufficient and necessary condition on the existence of the first positive and negative eigenvalues of the problem. Secondly, we will give a fully description on eigenvalues of the problem when the indefinite weight measures are singular measures. Thirdly, by constructing approximating measures and developing some convergence result on eigenvalues, we will prove the main result. Finally, we will propose some optimization problems on the first positive eigenvalue.
{"title":"On Dirichlet eigenvalues of measure differential equations with indefinite weight measures","authors":"Xiaoxue Guo, Zhiyuan Wen","doi":"10.1016/j.jde.2025.01.079","DOIUrl":"10.1016/j.jde.2025.01.079","url":null,"abstract":"<div><div>In this paper, we study Dirichlet eigenvalue problem of the second order measure differential equation with an indefinite weight measure. The main result is a complete description on eigenvalues of the problem. To obtain such a result, we will first establish a sufficient and necessary condition on the existence of the first positive and negative eigenvalues of the problem. Secondly, we will give a fully description on eigenvalues of the problem when the indefinite weight measures are singular measures. Thirdly, by constructing approximating measures and developing some convergence result on eigenvalues, we will prove the main result. Finally, we will propose some optimization problems on the first positive eigenvalue.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 163-193"},"PeriodicalIF":2.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.jde.2025.01.078
Hebai Chen , Dehong Dai , Lingling Liu , Lan Zou
This paper aims to provide sufficient and necessary conditions for the monodromic problem and center problem of continuous piecewise linear systems with arbitrary finite number of switching lines. Notice that a system under arbitrary small perturbation with the continuous piecewise linear class has the same number of switching lines, implying that the monodromic equilibrium is structurally unstable. Then, we give the versal unfoldings of the monodromic equilibrium of the continuous piecewise linear system with a switching line and bifurcation diagrams and all phase portraits of these versal unfoldings.
{"title":"Establishing definitive conditions for monodromic equilibria and centers of continuous piecewise linear systems with arbitrary finite number of switching lines","authors":"Hebai Chen , Dehong Dai , Lingling Liu , Lan Zou","doi":"10.1016/j.jde.2025.01.078","DOIUrl":"10.1016/j.jde.2025.01.078","url":null,"abstract":"<div><div>This paper aims to provide sufficient and necessary conditions for the monodromic problem and center problem of continuous piecewise linear systems with arbitrary finite number of switching lines. Notice that a system under arbitrary small perturbation with the continuous piecewise linear class has the same number of switching lines, implying that the monodromic equilibrium is structurally unstable. Then, we give the versal unfoldings of the monodromic equilibrium of the continuous piecewise linear system with a switching line and bifurcation diagrams and all phase portraits of these versal unfoldings.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 690-720"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.jde.2025.01.071
Shengquan Liu , Jiashan Zheng
<div><div>In this paper, we are concerned with the Keller-Segel-Navier-Stokes system with nonlinear diffusion and matrix-valued sensitivities as<span><span><span>(<em>KSNF</em>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>κ</mi><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is a bounded domain with smooth boundary, <span><math><mi>m</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>κ</mi><mo>∈</mo><mi>R</mi></math></span> are two given constants, <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is a given function, and the chemotactic sensitivity <em>S</em> is a given matrix-valued function on <span><math><mi>Ω</mi><mo>×</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> satisfying<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>></mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mi>α</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span> With suitable regular nonnegative initial data, we establish
{"title":"A new result for global solvability of a Keller-Segel-Navier-Stokes system with nonlinear diffusion and matrix-valued sensitivities in three dimensions","authors":"Shengquan Liu , Jiashan Zheng","doi":"10.1016/j.jde.2025.01.071","DOIUrl":"10.1016/j.jde.2025.01.071","url":null,"abstract":"<div><div>In this paper, we are concerned with the Keller-Segel-Navier-Stokes system with nonlinear diffusion and matrix-valued sensitivities as<span><span><span>(<em>KSNF</em>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>κ</mi><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is a bounded domain with smooth boundary, <span><math><mi>m</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>κ</mi><mo>∈</mo><mi>R</mi></math></span> are two given constants, <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is a given function, and the chemotactic sensitivity <em>S</em> is a given matrix-valued function on <span><math><mi>Ω</mi><mo>×</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> satisfying<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>></mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mi>α</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span> With suitable regular nonnegative initial data, we establish","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 721-759"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.jde.2025.01.080
Pelin G. Geredeli
In this work, the dynamics of a multilayered structure-fluid interaction (FSI) PDE system is considered. Here, the coupling of 3D Stokes and 3D elastic dynamics is realized via an additional 2D elastic equation on the boundary interface. Such modeling PDE systems appear in the mathematical modeling of eukaryotic cells and vascular blood flow in mammalian arteries. We analyze the long time behavior of solutions to such FSI coupled system in the sense of strong stability.
Our proof is based on an analysis of the spectrum of the associated semigroup generator A which in particular entails the elimination of all three parts of the spectrum of A from the imaginary axis. In order to avoid steady states in our stability analysis, we firstly show that zero is an eigenvalue for the operator A, and we provide a characterization of the (one dimensional) zero eigenspace . In turn, we address the issue of asymptotic decay of the solution to the zero state for any initial data taken from the orthogonal complement of the zero eigenspace .
{"title":"Spectral analysis and asymptotic decay of the solutions to multilayered structure-Stokes fluid interaction PDE system","authors":"Pelin G. Geredeli","doi":"10.1016/j.jde.2025.01.080","DOIUrl":"10.1016/j.jde.2025.01.080","url":null,"abstract":"<div><div>In this work, the dynamics of a multilayered structure-fluid interaction (FSI) PDE system is considered. Here, the coupling of 3D Stokes and 3D elastic dynamics is realized via an additional 2D elastic equation on the boundary interface. Such modeling PDE systems appear in the mathematical modeling of eukaryotic cells and vascular blood flow in mammalian arteries. We analyze the long time behavior of solutions to such FSI coupled system in the sense of strong stability.</div><div>Our proof is based on an analysis of the spectrum of the associated semigroup generator <strong>A</strong> which in particular entails the elimination of all three parts of the spectrum of <strong>A</strong> from the imaginary axis. In order to avoid steady states in our stability analysis, we firstly show that zero is an eigenvalue for the operator <strong>A</strong>, and we provide a characterization of the (one dimensional) zero eigenspace <span><math><mi>N</mi><mi>u</mi><mi>l</mi><mi>l</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In turn, we address the issue of asymptotic decay of the solution to the zero state for any initial data taken from the orthogonal complement of the zero eigenspace <span><math><mi>N</mi><mi>u</mi><mi>l</mi><mi>l</mi><msup><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 1-25"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.jde.2025.01.042
Tim Binz , Matthias Hieber , Arnab Roy
This article considers fluid structure interaction describing the motion of a fluid contained in a porous medium. The fluid is modeled by Navier-Stokes equations and the coupling between fluid and the porous medium is described by the classical Beaver-Joseph or the Beaver-Joseph-Saffman interface condition. In contrast to previous work these conditions are investigated for the first time in the strong sense and it is shown that the coupled system admits a unique, global strong solution in critical spaces provided the data are small enough. Furthermore, a Serrin-type blow-up criterium is developed and higher regularity estimates at the interface are established, which say that the solution is even analytic provided the forces are so.
{"title":"Fluid-structure interaction with porous media: The Beaver-Joseph condition in the strong sense","authors":"Tim Binz , Matthias Hieber , Arnab Roy","doi":"10.1016/j.jde.2025.01.042","DOIUrl":"10.1016/j.jde.2025.01.042","url":null,"abstract":"<div><div>This article considers fluid structure interaction describing the motion of a fluid contained in a porous medium. The fluid is modeled by Navier-Stokes equations and the coupling between fluid and the porous medium is described by the classical Beaver-Joseph or the Beaver-Joseph-Saffman interface condition. In contrast to previous work these conditions are investigated for the first time in the strong sense and it is shown that the coupled system admits a unique, global strong solution in critical spaces provided the data are small enough. Furthermore, a Serrin-type blow-up criterium is developed and higher regularity estimates at the interface are established, which say that the solution is even analytic provided the forces are so.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 660-689"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.jde.2025.01.057
Bum Ja Jin , Šárka Nečasová , Florian Oschmann , Arnab Roy
We consider a bounded domain and a rigid body moving inside a viscous compressible Newtonian fluid. We exploit the body's roughness to establish that the solid collides with its container within a finite time. We investigate the case when the boundary of the body is of -regularity and show that collision can happen for some suitable range of α. We also discuss some no-collision results for the smooth body case when an additional control is added.
{"title":"Collision/no-collision results of a solid body with its container in a 3D compressible viscous fluid","authors":"Bum Ja Jin , Šárka Nečasová , Florian Oschmann , Arnab Roy","doi":"10.1016/j.jde.2025.01.057","DOIUrl":"10.1016/j.jde.2025.01.057","url":null,"abstract":"<div><div>We consider a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and a rigid body <span><math><mi>S</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>⊂</mo><mi>Ω</mi></math></span> moving inside a viscous compressible Newtonian fluid. We exploit the body's roughness to establish that the solid collides with its container within a finite time. We investigate the case when the boundary of the body is of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity and show that collision can happen for some suitable range of <em>α</em>. We also discuss some no-collision results for the smooth body case when an additional control is added.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 760-781"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143135897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.jde.2025.01.055
Yun Li , Shigui Ruan , Zhi-Cheng Wang
In this paper, we study a reaction-convection-diffusion SIS epidemic model with standard incidence function in a heterogeneous environment. The convection term is allowed to vary from positive to negative and a sign-changing function is used to specify convective direction. In particular, such a sign-changing function is allowed to be high-order degenerate at its critical points. We first establish the existence of endemic equilibria through the basic reproduction number and investigate the asymptotic profile of for large convection rate and small diffusion rate of the infectives, respectively. We further study the asymptotic behavior of endemic equilibria as convection approaches to infinity and the diffusion rate of infectives tends to zero, respectively. Our findings show that for large convection rate, both susceptible and infectious populations concentrate only at the critical points of the convection function, behaving exactly like a delta function; and for small diffusion rate of infectives, the density of susceptible population is positive while the total biomass of infectious population vanishes.
{"title":"Asymptotic behavior of endemic equilibria for a SIS epidemic model in convective environments","authors":"Yun Li , Shigui Ruan , Zhi-Cheng Wang","doi":"10.1016/j.jde.2025.01.055","DOIUrl":"10.1016/j.jde.2025.01.055","url":null,"abstract":"<div><div>In this paper, we study a reaction-convection-diffusion SIS epidemic model with standard incidence function in a heterogeneous environment. The convection term is allowed to vary from positive to negative and a sign-changing function is used to specify convective direction. In particular, such a sign-changing function is allowed to be high-order degenerate at its critical points. We first establish the existence of endemic equilibria through the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and investigate the asymptotic profile of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for large convection rate and small diffusion rate of the infectives, respectively. We further study the asymptotic behavior of endemic equilibria as convection approaches to infinity and the diffusion rate of infectives tends to zero, respectively. Our findings show that for large convection rate, both susceptible and infectious populations concentrate only at the critical points of the convection function, behaving exactly like a delta function; and for small diffusion rate of infectives, the density of susceptible population is positive while the total biomass of infectious population vanishes.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 606-659"},"PeriodicalIF":2.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}