Pub Date : 2024-01-01Epub Date: 2024-01-08DOI: 10.1080/03601234.2023.2301117
Daniele Rodrigues Barbosa, Ana Luiza da Rocha Fortes Saraiva, Karen Caroline Ferreira Santaren, Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Irene da Silva Coelho, Nelson Moura Brasil do Amaral Sobrinho
The relationship between bacterial diversity and the bioavailability of nutrients, toxic metals and the herbicide oxyfluorfen in a tropical vegetable growing area was evaluated. The study was conducted in a vegetable growing area located in the mountainous region of Rio de Janeiro (Brazil), and samples were collected in areas of vegetable cultivation and areas of environmental reserve. Fertility analyses and determination of the pseudototal levels of toxic metals in the soil samples were performed. The profile of the soil bacterial community was determined by amplification of the 16S rRNA gene and separation by DGGE. The results showed that the levels of toxic metals and elements associated with soil fertility were higher in vegetable production areas. These differences in the physical and chemical characteristics of the soil favored the presence of a greater number of OTUs in the cultivation areas (17.3-27 OTUs) than in the areas of environmental reserve (13-22 OTUs). Therefore, this study demonstrates that the presence of toxic metals and the herbicide oxyfluorfen and the increase in fertility in soils in areas with intensive vegetable cultivation resulting from the intensive management adopted in these areas promotes a differentiation of the bacterial profiles in soils in tropical vegetable growing areas.
{"title":"Influence of nutrient, toxic metal and herbicide contents on the soil bacterial communities in tropical vegetable growing areas.","authors":"Daniele Rodrigues Barbosa, Ana Luiza da Rocha Fortes Saraiva, Karen Caroline Ferreira Santaren, Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Irene da Silva Coelho, Nelson Moura Brasil do Amaral Sobrinho","doi":"10.1080/03601234.2023.2301117","DOIUrl":"10.1080/03601234.2023.2301117","url":null,"abstract":"<p><p>The relationship between bacterial diversity and the bioavailability of nutrients, toxic metals and the herbicide oxyfluorfen in a tropical vegetable growing area was evaluated. The study was conducted in a vegetable growing area located in the mountainous region of Rio de Janeiro (Brazil), and samples were collected in areas of vegetable cultivation and areas of environmental reserve. Fertility analyses and determination of the pseudototal levels of toxic metals in the soil samples were performed. The profile of the soil bacterial community was determined by amplification of the 16S rRNA gene and separation by DGGE. The results showed that the levels of toxic metals and elements associated with soil fertility were higher in vegetable production areas. These differences in the physical and chemical characteristics of the soil favored the presence of a greater number of OTUs in the cultivation areas (17.3-27 OTUs) than in the areas of environmental reserve (13-22 OTUs). Therefore, this study demonstrates that the presence of toxic metals and the herbicide oxyfluorfen and the increase in fertility in soils in areas with intensive vegetable cultivation resulting from the intensive management adopted in these areas promotes a differentiation of the bacterial profiles in soils in tropical vegetable growing areas.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-20DOI: 10.1080/03601234.2024.2406123
Matthew Fatino, Katie Martin, Franck Dayan, Bradley D Hanson
Results of previous research on chemigated imazamox for control of branched broomrape (Phelipanche ramosa) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL-1 sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL-1 sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL-1 sorbed; Woodland: 699.9 pg µL-1 sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.
{"title":"Adsorption of imazamox in California agricultural soils and implications for branched broomrape <i>(Phelipanche ramosa)</i> management.","authors":"Matthew Fatino, Katie Martin, Franck Dayan, Bradley D Hanson","doi":"10.1080/03601234.2024.2406123","DOIUrl":"10.1080/03601234.2024.2406123","url":null,"abstract":"<p><p>Results of previous research on chemigated imazamox for control of branched broomrape (<i>Phelipanche ramosa</i>) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL<sup>-1</sup> sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL<sup>-1</sup> sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL<sup>-1</sup> sorbed; Woodland: 699.9 pg µL<sup>-1</sup> sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-22DOI: 10.1080/03601234.2024.2381934
Victor Augustus Vasconcelos de Oliveira, Luan Mateus Silva Donato, Murilo Antônio Oliveira Ruas, José Ângeles Moreira de Oliveira, Richardson Fernandes de Souza, Leonardo David Tuffi Santos
The variation in light within the environment triggers morphophysiological changes in plants and can lead to distinct responses in sun-exposed or shaded plants to glyphosate. The response of Urochloa genotypes subjected to desiccation with 2160, 1622.4, 1080, 524.4, 273.6, and 0.0 g ha-1 of glyphosate was evaluated in full sun and shade conditions. Cayana grass, mulato II grass, and sabiá grass - hybrids recently launched on the market, in addition to palisade grass and congo grass were evaluated. Under full sun, we achieved control of congo grass using 1080 g ha-1 of glyphosate, while the other grasses required 2160 g ha-1. In the low-light environment, sabiá grass was effectively controlled with 524.4 g ha-1 of glyphosate, but the other grasses needed 273.6 g ha-1. In shading, compared to full sun, the savings with glyphosate were 75 and 76% for the control of congo grass and sabiá grass, respectively, and 87% for palisade grass, mulato II grass and cayana grass. Increasing glyphosate doses leads to a decline in the quantum efficiency of photosystem II and in the electron transport rate, especially in the shade. Urochloa genotypes are more sensitive to glyphosate in the shade, which must be considered when determining the herbicide dose.
{"title":"The light intensity in the cultivation environment and the impact of glyphosate on plants of the <i>Urochloa</i> genus.","authors":"Victor Augustus Vasconcelos de Oliveira, Luan Mateus Silva Donato, Murilo Antônio Oliveira Ruas, José Ângeles Moreira de Oliveira, Richardson Fernandes de Souza, Leonardo David Tuffi Santos","doi":"10.1080/03601234.2024.2381934","DOIUrl":"10.1080/03601234.2024.2381934","url":null,"abstract":"<p><p>The variation in light within the environment triggers morphophysiological changes in plants and can lead to distinct responses in sun-exposed or shaded plants to glyphosate. The response of <i>Urochloa</i> genotypes subjected to desiccation with 2160, 1622.4, 1080, 524.4, 273.6, and 0.0 g ha<sup>-1</sup> of glyphosate was evaluated in full sun and shade conditions. Cayana grass, mulato II grass, and sabiá grass - hybrids recently launched on the market, in addition to palisade grass and congo grass were evaluated. Under full sun, we achieved control of congo grass using 1080 g ha<sup>-1</sup> of glyphosate, while the other grasses required 2160 g ha<sup>-1</sup>. In the low-light environment, sabiá grass was effectively controlled with 524.4 g ha<sup>-1</sup> of glyphosate, but the other grasses needed 273.6 g ha<sup>-1</sup>. In shading, compared to full sun, the savings with glyphosate were 75 and 76% for the control of congo grass and sabiá grass, respectively, and 87% for palisade grass, mulato II grass and cayana grass. Increasing glyphosate doses leads to a decline in the quantum efficiency of photosystem II and in the electron transport rate, especially in the shade. <i>Urochloa</i> genotypes are more sensitive to glyphosate in the shade, which must be considered when determining the herbicide dose.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work developed a rapid colorimetric method for nitrite detection in meat products. The detection was based on the reaction of nitrite with 60 mM HCl to produce radicals which further oxidized ABTS (50 µM) to form a water-soluble blue-green product (ABTS•+). The absorbance was measured at a maximum absorption wavelength of 412.5 nm. Parameters such as concentration of HCl, concentration of ABTS and reaction time were evaluated. The absorbance was linearly proportional to the concentration of nitrite (0.1-20 µM) with the limit of detection of 0.34 µM. The proposed method was a time-saving assay since it required only 2 min to complete one measurement. There was no effect of the interference produced by other ions. The assay was robust with 2.5%RSD (n = 50). In meat product samples, high accuracy was observed with the recoveries between 100 ± 2.2% and 105 ± 3.7%. The amount of nitrite in meat products detected by the ABTS method was found in the range of 5.41 - 7.62 mg/kg. The conventional Griess method was applied to determine nitrite in the same meat products. There was no statistically significant difference between the two methods (P = 0.05).
{"title":"Rapid colorimetric assay based on the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid-diammonium salt for nitrite detection in meat products.","authors":"Jongjit Jantra, Supattra Arsawiset, Siriwan Teepoo, Kanchalar Keeratirawee","doi":"10.1080/03601234.2023.2297639","DOIUrl":"10.1080/03601234.2023.2297639","url":null,"abstract":"<p><p>This work developed a rapid colorimetric method for nitrite detection in meat products. The detection was based on the reaction of nitrite with 60 mM HCl to produce radicals which further oxidized ABTS (50 µM) to form a water-soluble blue-green product (ABTS<sup>•+</sup>). The absorbance was measured at a maximum absorption wavelength of 412.5 nm. Parameters such as concentration of HCl, concentration of ABTS and reaction time were evaluated. The absorbance was linearly proportional to the concentration of nitrite (0.1-20 µM) with the limit of detection of 0.34 µM. The proposed method was a time-saving assay since it required only 2 min to complete one measurement. There was no effect of the interference produced by other ions. The assay was robust with 2.5%RSD (<i>n</i> = 50). In meat product samples, high accuracy was observed with the recoveries between 100 ± 2.2% and 105 ± 3.7%. The amount of nitrite in meat products detected by the ABTS method was found in the range of 5.41 - 7.62 mg/kg. The conventional Griess method was applied to determine nitrite in the same meat products. There was no statistically significant difference between the two methods (<i>P</i> = 0.05).</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-31DOI: 10.1080/03601234.2024.2305596
Johana I Luzzi, Virginia C Aparicio, Eduardo De Geronimo, Alejandra Ledda, Veronica M Sauer, José L Costa
Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.
{"title":"Degradation of atrazine, glyphosate, and 2,4-D in soils collected from two contrasting crop rotations in Southwest Chaco, Argentina.","authors":"Johana I Luzzi, Virginia C Aparicio, Eduardo De Geronimo, Alejandra Ledda, Veronica M Sauer, José L Costa","doi":"10.1080/03601234.2024.2305596","DOIUrl":"10.1080/03601234.2024.2305596","url":null,"abstract":"<p><p>Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-05DOI: 10.1080/03601234.2024.2312063
Marina J Batista-Barwinski, Nicolli Butzke-Souza, Ramaiana Radetski-Silva, Frankie Tiegs, Rosane Laçoli, Giorgini A Venturieri, Paul Richard M Miller, Joaquim O Branco, Rafael Ariente-Neto, Claudemir M Radetski
Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.
小型屠宰场会产生生物垃圾,出于经济原因,这些生物垃圾一般都要进行堆肥处理。接种适当的微生物可以提高生物降解效率,减轻堆肥过程中产生的臭味,并产生中性或宜人气味的堆肥。因此,本研究的目的是比较使用和不使用配方接种物(酿酒酵母、枯草芽孢杆菌和淡水红假单胞菌)产生的堆肥的气味强度降低情况。根据德国 "Verein Deutscher Ingenieure "气味协议,收集并分析了一组实验数据。结果表明,在夏季和冬季,添加微生物能有效减少猪、牛和家禽屠宰场副产品产生的三种堆肥中的难闻气味。此外,在两个测试季节(即夏季和冬季)接种的堆肥中,土壤气味占主导地位。另一方面,未接种的堆肥无论在哪个季节测试,其气味都类似于猪堆肥中的泥炭味、牛堆肥中的氨味和家禽堆肥中的粪便味。总之,使用适当的接种物进行堆肥处理有助于正确处理屠宰场废物,将有机物质转化为堆肥,作为土壤改良剂和/或肥料具有经济和环境价值。
{"title":"Slaughterhouse by-products composting: can microorganisms inoculum addition mitigate final compost odor emission?","authors":"Marina J Batista-Barwinski, Nicolli Butzke-Souza, Ramaiana Radetski-Silva, Frankie Tiegs, Rosane Laçoli, Giorgini A Venturieri, Paul Richard M Miller, Joaquim O Branco, Rafael Ariente-Neto, Claudemir M Radetski","doi":"10.1080/03601234.2024.2312063","DOIUrl":"10.1080/03601234.2024.2312063","url":null,"abstract":"<p><p>Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (<i>Saccharomyces cerevisiae</i>, <i>Bacillus subtilis</i>, and <i>Rhodopseudomonas palustris</i>). A set of experimental data was collected and analyzed according to the German \"Verein Deutscher Ingenieure\" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Per and polyfluoroalkyl substances (PFAS) are toxicologically concerning because of their potential to bioaccumulate and their persistence in the environment and the human body. We determined PFAS levels in cosmetic and personal care products and assessed their health risks. We investigated the trends in concentrations and types of PFAS contaminants in cosmetic and personal care products before and after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were added to the list of persistent organic pollutants. The total PFAS concentration ranged from 1.98 to 706.75 ng g-1. The hazard quotients (HQs) for PFOA, PFOS and perfluorobutanesulfonic acid (PFBS) were lower than 1, indicating no appreciable risk to consumers. Assuming the simultaneous use of all product types and the worst-case scenario for calculations, perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids (PFSAs) also had hazard indices lower than 1. We found that adverse effects are unlikely to occur when each type of cosmetic is used separately, or even when all product types are used together. Nevertheless, the persistence and bioaccumulation characteristics of additional PFAS present in cosmetics continue to be a cause for concern. Further research is necessary to investigate the long-term impacts of using such cosmetics and the associated risks to human health.
{"title":"Concentration and health risk assessment of per- and polyfluoroalkyl substances in cosmetic and personal care products.","authors":"Sasipin Keawmanee, Pitchaya Piyaviriyakul, Narin Boontanon, Sonthinee Waiyarat, Suratsawadee Sukeesan, Jira Kongpran, Suwanna Kitpati Boontanon","doi":"10.1080/03601234.2024.2384234","DOIUrl":"10.1080/03601234.2024.2384234","url":null,"abstract":"<p><p>Per and polyfluoroalkyl substances (PFAS) are toxicologically concerning because of their potential to bioaccumulate and their persistence in the environment and the human body. We determined PFAS levels in cosmetic and personal care products and assessed their health risks. We investigated the trends in concentrations and types of PFAS contaminants in cosmetic and personal care products before and after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were added to the list of persistent organic pollutants. The total PFAS concentration ranged from 1.98 to 706.75 ng g<sup>-1</sup>. The hazard quotients (HQs) for PFOA, PFOS and perfluorobutanesulfonic acid (PFBS) were lower than 1, indicating no appreciable risk to consumers. Assuming the simultaneous use of all product types and the worst-case scenario for calculations, perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids (PFSAs) also had hazard indices lower than 1. We found that adverse effects are unlikely to occur when each type of cosmetic is used separately, or even when all product types are used together. Nevertheless, the persistence and bioaccumulation characteristics of additional PFAS present in cosmetics continue to be a cause for concern. Further research is necessary to investigate the long-term impacts of using such cosmetics and the associated risks to human health.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-31DOI: 10.1080/03601234.2024.2422718
Hadassa Y Martínez-Padrón, Jesús G García-Olivares, Ma Gricelda Vázquez-Carrillo, Netzahualcoyotl Mayek-Pérez, Arturo G Valdivia-Flores, Sanjuana Hernández-Delgado
In northern Tamaulipas, México, the contamination of corn by toxigenic fungi reduces grain production and quality. Corn contaminated by mycotoxins puts humans and livestock at risk. Continuous monitoring of the sanitary quality of grain at harvest and in storage will define preventive and corrective strategies for contamination by mycotoxigenic fungi. In this work, we identified toxigenic fungi associated with corn grown and stored in northern Tamaulipas, identified and quantified aflatoxins and their relationships with the physicochemical characteristics of the grain, and identified the main genes responsible for aflatoxin production in A. flavus. Fungal incidence was evaluated in vitro, aflatoxin production was evaluated via HPLC, and physicochemical traits were evaluated via spectrophotometry. Three genera were identified: Fusarium, Aspergillus, and Penicillium; the latter had the highest incidence in both 2011 and 2012. The incidence was higher in 2012 (82.3%) than in 2011 (4.5%), and storage did not affect the incidence. Associations among fungal incidences and physicochemical traits were significant and intermediate in both years. AFB1 production was negatively associated with hectoliter weight, and total fungal incidence was positively related to the incidence of Penicillium, Fusarium, and Aspergillus and negatively related to the flotation index. AFB1 was detected in 13.18% of the samples, with values ranging from 3.4881.33 ppb upon receipt and from 4.3245.92 ppb after storage. Two samples exceeded the allowed limits for Mexico (20 ppb). The aflD and aflQ genes were detected in 52.1 and 56.3%, respectively, of the A. flavus isolates.
{"title":"Physicochemical characteristics, mycoflora and aflatoxins in corn grown and stored in Northern Tamaulipas, Mexico.","authors":"Hadassa Y Martínez-Padrón, Jesús G García-Olivares, Ma Gricelda Vázquez-Carrillo, Netzahualcoyotl Mayek-Pérez, Arturo G Valdivia-Flores, Sanjuana Hernández-Delgado","doi":"10.1080/03601234.2024.2422718","DOIUrl":"10.1080/03601234.2024.2422718","url":null,"abstract":"<p><p>In northern Tamaulipas, México, the contamination of corn by toxigenic fungi reduces grain production and quality. Corn contaminated by mycotoxins puts humans and livestock at risk. Continuous monitoring of the sanitary quality of grain at harvest and in storage will define preventive and corrective strategies for contamination by mycotoxigenic fungi. In this work, we identified toxigenic fungi associated with corn grown and stored in northern Tamaulipas, identified and quantified aflatoxins and their relationships with the physicochemical characteristics of the grain, and identified the main genes responsible for aflatoxin production in <i>A. flavus</i>. Fungal incidence was evaluated <i>in vitro</i>, aflatoxin production was evaluated <i>via</i> HPLC, and physicochemical traits were evaluated <i>via</i> spectrophotometry. Three genera were identified: <i>Fusarium, Aspergillus,</i> and <i>Penicillium</i>; the latter had the highest incidence in both 2011 and 2012. The incidence was higher in 2012 (82.3%) than in 2011 (4.5%), and storage did not affect the incidence. Associations among fungal incidences and physicochemical traits were significant and intermediate in both years. AFB<sub>1</sub> production was negatively associated with hectoliter weight, and total fungal incidence was positively related to the incidence of <i>Penicillium, Fusarium,</i> and <i>Aspergillus</i> and negatively related to the flotation index. AFB<sub>1</sub> was detected in 13.18% of the samples, with values ranging from 3.4881.33 ppb upon receipt and from 4.3245.92 ppb after storage. Two samples exceeded the allowed limits for Mexico (20 ppb). The aflD and aflQ genes were detected in 52.1 and 56.3%, respectively, of the <i>A. flavus</i> isolates.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-30DOI: 10.1080/03601234.2024.2306108
Luisbel González-Pérez de Medina, Ociel Muñoz-Fariña, Yenisleidys Fernández-Guerrero, Analese Roman-Benn, José M Bastias-Montes, Roberto Quevedo-León, María Cristina Ravanal
This study estimates the intake of arsenic, lead and cadmium by the adult population (aged 18-91) of Cuba. The food consumption indices were obtained through 24-h dietary recall surveys applied to 450 people between October 2020 and March 2021. The Estimated Dietary Intake (EDI) of t-As (54.6 μg/day), Pb (118.5 μg/day) and Cd (35.1 μg/day) complied with Cuban legislation but was higher than the EDI for Cd established by the CONTAM Panel. The Target Hazard Quotients for the three contaminants were: iAs (0.220), Pb (0.409) and Cd (0.424), making the value of the Total Target Hazard Quotient 1.05, which indicates potential health risks for the population. Additionally, associated carcinogenic risks were: iAs (1.0·10-4), Pb (7.2·10-4) and Cd (25.9·10-4). Therefore, 10, 72 and 259 persons per 100,000 inhabitants are likely prone to developing cancer due to the ingestion of iAs, Pb and Cd, respectively.
{"title":"Arsenic, lead and cadmium concentration in food and estimated daily intake in the Cuban population and the health risks using a Total Diet Study.","authors":"Luisbel González-Pérez de Medina, Ociel Muñoz-Fariña, Yenisleidys Fernández-Guerrero, Analese Roman-Benn, José M Bastias-Montes, Roberto Quevedo-León, María Cristina Ravanal","doi":"10.1080/03601234.2024.2306108","DOIUrl":"10.1080/03601234.2024.2306108","url":null,"abstract":"<p><p>This study estimates the intake of arsenic, lead and cadmium by the adult population (aged 18-91) of Cuba. The food consumption indices were obtained through 24-h dietary recall surveys applied to 450 people between October 2020 and March 2021. The Estimated Dietary Intake (EDI) of t-As (54.6 μg/day), Pb (118.5 μg/day) and Cd (35.1 μg/day) complied with Cuban legislation but was higher than the EDI for Cd established by the CONTAM Panel. The Target Hazard Quotients for the three contaminants were: iAs (0.220), Pb (0.409) and Cd (0.424), making the value of the Total Target Hazard Quotient 1.05, which indicates potential health risks for the population. Additionally, associated carcinogenic risks were: iAs (1.0·10<sup>-4</sup>), Pb (7.2·10<sup>-4</sup>) and Cd (25.9·10<sup>-4</sup>). Therefore, 10, 72 and 259 persons per 100,000 inhabitants are likely prone to developing cancer due to the ingestion of iAs, Pb and Cd, respectively.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-29DOI: 10.1080/03601234.2024.2319005
Agnes Schimera, Sebastian Multsch, Olga I Guevara Montemayor, Philip Branford, Melanie Bottoms, Sian Ellis, Gregor Ernst, Stefania Loutseti, Michael T Marx, David Patterson, Amanda Sharples, Frank Staab, Bernhard Gottesbueren
For the European risk assessment (RA) for soil organisms exposed to plant protection products (PPPs) endpoints from ecotoxicological laboratory studies are compared with predicted environmental concentrations in soil (PECSOIL) at first tier. A safety margin must be met; otherwise, a higher tier RA is triggered (usually soil organism field studies). A new tiered exposure modeling guidance was published by EFSA to determine PECSOIL. This work investigates its potential impact on future soil RA. PECSOIL values for >50 active substances and metabolites were calculated and compared with the respective endpoints for soil organisms to calculate the RA failure rate. Compared to the current (FOCUS) exposure modeling, PECSOIL values for all EU regulatory zones considerably increased, e.g., resulting in active substance RA failure rates of 67%, 58% and 36% for modeling Tier-1, Tier-2 and Tier-3A, respectively. The main driving factors for elevated PECSOIL were soil bulk density, crop interception and wash-off, next to obligatory modeling and scenario adjustment factors. Spatial PECSOIL scenario selection procedures result in agronomically atypical soil characteristics (e.g., soil bulk density values in Tier-3A scenarios far below typical European agricultural areas). Consequently, exposure modeling and ecotoxicological study characteristics are inconsistent, which hinders scientifically reasonable comparison of both in the RA.
欧洲对接触植物保护产品(PPPs)的土壤生物进行风险评估(RA)时,会将生态毒理学实验室研究的终点与土壤中的预测环境浓度(PECSOIL)进行第一级比较。必须满足安全系数,否则将触发更高级别的 RA(通常是土壤生物实地研究)。欧洲食品安全局发布了新的分级暴露建模指南,以确定 PECSOIL。这项工作研究了其对未来土壤 RA 的潜在影响。计算了 >50 种活性物质和代谢物的 PECSOIL 值,并将其与相应的土壤生物终点进行比较,以计算 RA 失败率。与当前的(FOCUS)暴露建模相比,所有欧盟监管区的 PECSOIL 值都大幅增加,例如,导致一级、二级和三级 A 建模的活性物质 RA 失败率分别为 67%、58% 和 36%。PECSOIL 升高的主要驱动因素是土壤容重、作物截流和冲刷,其次是强制性建模和情景调整因素。空间 PECSOIL 情景选择程序会导致非典型土壤特征(例如,Tier-3A 情景中的土壤容重值远远低于典型的欧洲农业区)。因此,暴露建模和生态毒理学研究的特征并不一致,这妨碍了在 RA 中对两者进行科学合理的比较。
{"title":"Ecotoxicological soil risk assessment under the new soil exposure framework - an impact assessment.","authors":"Agnes Schimera, Sebastian Multsch, Olga I Guevara Montemayor, Philip Branford, Melanie Bottoms, Sian Ellis, Gregor Ernst, Stefania Loutseti, Michael T Marx, David Patterson, Amanda Sharples, Frank Staab, Bernhard Gottesbueren","doi":"10.1080/03601234.2024.2319005","DOIUrl":"10.1080/03601234.2024.2319005","url":null,"abstract":"<p><p>For the European risk assessment (RA) for soil organisms exposed to plant protection products (PPPs) endpoints from ecotoxicological laboratory studies are compared with predicted environmental concentrations in soil (PEC<sub>SOIL</sub>) at first tier. A safety margin must be met; otherwise, a higher tier RA is triggered (usually soil organism field studies). A new tiered exposure modeling guidance was published by EFSA to determine PEC<sub>SOIL</sub>. This work investigates its potential impact on future soil RA. PEC<sub>SOIL</sub> values for >50 active substances and metabolites were calculated and compared with the respective endpoints for soil organisms to calculate the RA failure rate. Compared to the current (FOCUS) exposure modeling, PEC<sub>SOIL</sub> values for all EU regulatory zones considerably increased, e.g., resulting in active substance RA failure rates of 67%, 58% and 36% for modeling Tier-1, Tier-2 and Tier-3A, respectively. The main driving factors for elevated PEC<sub>SOIL</sub> were soil bulk density, crop interception and wash-off, next to obligatory modeling and scenario adjustment factors. Spatial PEC<sub>SOIL</sub> scenario selection procedures result in agronomically atypical soil characteristics (e.g., soil bulk density values in Tier-3A scenarios far below typical European agricultural areas). Consequently, exposure modeling and ecotoxicological study characteristics are inconsistent, which hinders scientifically reasonable comparison of both in the RA.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}