首页 > 最新文献

Journal of Energy Chemistry最新文献

英文 中文
A review of over-discharge protection through prelithiation in working lithium-ion batteries 工作锂离子电池中通过预锂化实现过放电保护的综述
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-10 DOI: 10.1016/j.jechem.2024.09.050
Hanchen Wang , Yingtian Liu , Mingze Jiang , Qiang Zhang
The demand for high safety and high reliability lithium-ion batteries (LIBs) is strongly considered for practical applications. However, due to their inherent self-discharge properties or abuse, LIBs face the threat of over-discharge, which induces premature end of life and increased risk of thermal runaway. In addition, a strong demand for batteries with zero-volt storage is strongly considered for aerospace and implantable medical devices. In this review, we firstly introduce the necessity and the importance of over-discharge and zero-volt protection for LIBs. The mechanism of damage to the Cu current collectors and SEI induced by potential changes during over-discharge is presented. The current over-discharge protection strategies based on whether the zero-crossing potential of the electrodes is summarized. Finally, the fresh insights into the material design of cathode prelithiation additives are presented from the perspective of over-discharge protection.
在实际应用中,对高安全性和高可靠性锂离子电池(LIBs)的需求日益强烈。然而,由于其固有的自放电特性或滥用,锂离子电池面临着过放电的威胁,这会导致电池过早报废,并增加热失控的风险。此外,航空航天和植入式医疗设备对零伏特存储电池的需求也非常强烈。在本综述中,我们首先介绍了锂离子电池过放电和零伏保护的必要性和重要性。介绍了过放电过程中电位变化对铜集流器和 SEI 造成损害的机理。总结了当前基于电极过零电位的过放电保护策略。最后,从过放电保护的角度介绍了阴极预锂化添加剂材料设计的新见解。
{"title":"A review of over-discharge protection through prelithiation in working lithium-ion batteries","authors":"Hanchen Wang ,&nbsp;Yingtian Liu ,&nbsp;Mingze Jiang ,&nbsp;Qiang Zhang","doi":"10.1016/j.jechem.2024.09.050","DOIUrl":"10.1016/j.jechem.2024.09.050","url":null,"abstract":"<div><div>The demand for high safety and high reliability lithium-ion batteries (LIBs) is strongly considered for practical applications. However, due to their inherent self-discharge properties or abuse, LIBs face the threat of over-discharge, which induces premature end of life and increased risk of thermal runaway. In addition, a strong demand for batteries with zero-volt storage is strongly considered for aerospace and implantable medical devices. In this review, we firstly introduce the necessity and the importance of over-discharge and zero-volt protection for LIBs. The mechanism of damage to the Cu current collectors and SEI induced by potential changes during over-discharge is presented. The current over-discharge protection strategies based on whether the zero-crossing potential of the electrodes is summarized. Finally, the fresh insights into the material design of cathode prelithiation additives are presented from the perspective of over-discharge protection.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 437-452"},"PeriodicalIF":13.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring catalyst developments in heterogeneous CO2 hydrogenation to methanol and ethanol: A journey through reaction pathways 探索异相二氧化碳加氢制甲醇和乙醇的催化剂发展:反应路径之旅
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-10 DOI: 10.1016/j.jechem.2024.08.069
Rasoul Salami , Yimin Zeng , Xue Han , Sohrab Rohani , Ying Zheng
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO2 emission. Among the proposed methods, the hydrogenation of CO2 to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO2 emissions. Although significant volumes of methanol are currently produced from CO2, developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity, thereby reducing process costs. An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C–C coupling. Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis. In this paper, we explore how different catalysts, through the production of various intermediates, can initiate the synthesis of methanol or ethanol. The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations, including operando X-ray methods, FTIR analysis, and DFT calculations, are summarized and presented. The following discussion explores the structural properties and composition of catalysts that influence C–C coupling and optimize the conversion rate of CO2 into ethanol. Lastly, the review examines recent catalysts employed for selective methanol and ethanol production, focusing on single-atom catalysts.
由于化石燃料储量的不断减少以及二氧化碳排放量的增加导致全球变暖,人们对替代燃料生成技术的追求日益高涨。在提出的各种方法中,利用二氧化碳加氢生产甲醇和乙醇等适销对路的碳基产品是一种实用的方法,具有减少二氧化碳排放的巨大潜力。虽然目前已利用二氧化碳生产了大量甲醇,但开发高效稳定的催化剂对于进一步提高转化率和选择性,从而降低工艺成本至关重要。通过深入研究甲醇和乙醇生产反应途径的异同,可以发现推动 C-C 偶联的关键因素。找出这些因素有助于我们开发更有效的乙醇合成催化剂。在本文中,我们探讨了不同催化剂如何通过产生各种中间产物来启动甲醇或乙醇的合成。本文总结并介绍了通过光谱技术和理论计算(包括操作X射线方法、傅立叶变换红外分析和DFT计算)提出的催化机理。接下来的讨论探讨了影响 C-C 偶联和优化二氧化碳转化为乙醇的转化率的催化剂结构特性和组成。最后,本综述探讨了最近用于选择性甲醇和乙醇生产的催化剂,重点是单原子催化剂。
{"title":"Exploring catalyst developments in heterogeneous CO2 hydrogenation to methanol and ethanol: A journey through reaction pathways","authors":"Rasoul Salami ,&nbsp;Yimin Zeng ,&nbsp;Xue Han ,&nbsp;Sohrab Rohani ,&nbsp;Ying Zheng","doi":"10.1016/j.jechem.2024.08.069","DOIUrl":"10.1016/j.jechem.2024.08.069","url":null,"abstract":"<div><div>The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO<sub>2</sub> emission. Among the proposed methods, the hydrogenation of CO<sub>2</sub> to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO<sub>2</sub> emissions. Although significant volumes of methanol are currently produced from CO<sub>2</sub>, developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity, thereby reducing process costs. An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C–C coupling. Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis. In this paper, we explore how different catalysts, through the production of various intermediates, can initiate the synthesis of methanol or ethanol. The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations, including operando X-ray methods, FTIR analysis, and DFT calculations, are summarized and presented. The following discussion explores the structural properties and composition of catalysts that influence C–C coupling and optimize the conversion rate of CO<sub>2</sub> into ethanol. Lastly, the review examines recent catalysts employed for selective methanol and ethanol production, focusing on single-atom catalysts.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 345-384"},"PeriodicalIF":13.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the iodine electrochemical behaviors in aqueous zinc batteries 了解锌水电池中的碘电化学行为
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-05 DOI: 10.1016/j.jechem.2024.09.049
Xuefang Xie , Xiaoxin Xu , Shuquan Liang , Guozhao Fang
Iodine is widely used in aqueous zinc batteries (ZBs) due to its abundant resources, low cost, and active redox reactions. In addition to the active material in zinc-iodine batteries, iodine also plays an important role in other ZBs, such as regulating the electrochemical behavior of zinc ions, promoting the reaction kinetic and reversibility of other redox pairs, catalytic behaviors related to iodine reactions, coupling with other halogen ions, shuttle behaviors of polyiodides, etc. However, there is currently a lack of comprehensive discussion on these aspects. Here, this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs. The effect of iodine ions on the Zn2+ desolvation behaviors and the interfacial behaviors of Zn anode was summarized. Iodine redox pairs boosting other redox pairs, such as MnO2/Mn2+ redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed. Moreover, the catalytic behaviors related to iodine reactions in aqueous ZBs, synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed. Finally, future prospects for designing effective iodine electrochemical behaviors with practicability are proposed, which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.
碘因其资源丰富、成本低廉、氧化还原反应活跃而被广泛应用于水性锌电池(ZBs)中。除了作为锌碘电池的活性材料,碘在其他锌电池中也发挥着重要作用,如调节锌离子的电化学行为、促进其他氧化还原对的反应动力学和可逆性、与碘反应有关的催化行为、与其他卤素离子的偶联、聚碘化物的穿梭行为等。然而,目前还缺乏对这些方面的全面讨论。在此,本综述全面概述了碘化物在水性 ZBs 中的电化学行为。总结了碘离子对 Zn2+ 脱溶行为和 Zn 阳极界面行为的影响。还讨论了碘氧化还原对促进其他氧化还原对(如 MnO2/Mn2+ 氧化还原对和钒氧化还原对)以获得高可逆性和高容量的问题。此外,还系统分析了水性锌碘电池中与碘反应有关的催化行为、与其他卤素离子的协同反应以及抑制高性能锌碘电池的穿梭行为。最后,对设计具有实用性的有效碘电化学行为提出了展望,这将为碘相关水性锌碘电池的实际应用提供科学指导。
{"title":"Understanding the iodine electrochemical behaviors in aqueous zinc batteries","authors":"Xuefang Xie ,&nbsp;Xiaoxin Xu ,&nbsp;Shuquan Liang ,&nbsp;Guozhao Fang","doi":"10.1016/j.jechem.2024.09.049","DOIUrl":"10.1016/j.jechem.2024.09.049","url":null,"abstract":"<div><div>Iodine is widely used in aqueous zinc batteries (ZBs) due to its abundant resources, low cost, and active redox reactions. In addition to the active material in zinc-iodine batteries, iodine also plays an important role in other ZBs, such as regulating the electrochemical behavior of zinc ions, promoting the reaction kinetic and reversibility of other redox pairs, catalytic behaviors related to iodine reactions, coupling with other halogen ions, shuttle behaviors of polyiodides, etc. However, there is currently a lack of comprehensive discussion on these aspects. Here, this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs. The effect of iodine ions on the Zn<sup>2+</sup> desolvation behaviors and the interfacial behaviors of Zn anode was summarized. Iodine redox pairs boosting other redox pairs, such as MnO<sub>2</sub>/Mn<sup>2+</sup> redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed. Moreover, the catalytic behaviors related to iodine reactions in aqueous ZBs, synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed. Finally, future prospects for designing effective iodine electrochemical behaviors with practicability are proposed, which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 402-415"},"PeriodicalIF":13.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MOF-derived Ni3Fe/Ni/NiFe2O4@C for enhanced hydrogen storage performance of MgH2 MOF 衍生的 Ni3Fe/Ni/NiFe2O4@C,用于提高 MgH2 的储氢性能
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-04 DOI: 10.1016/j.jechem.2024.09.048
Yangping Chen , Bolin Sun , Guoqing Zhang , Siyuan Ni , Canbing Li , Juxiong Tian , Yanrui Zhang , Xinxi Li
Magnesium hydride (MgH2) is an important material for hydrogen (H2) storage and transportation owing to its high capacity and reversibility. However, its intrinsic properties have considerably limited its industrial application. In this study, the NiFe-800 catalyst as metal-organic framework (MOF) derivative was first utilized to promote the intrinsic properties of MgH2. Compared to pure MgH2, which releases 1.24 wt% H2 in 60 min at 275 °C, the MgH2-10 NiFe-800 composite releases 5.85 wt% H2 in the same time. Even at a lower temperature of 250 °C, the MgH2-10 NiFe-800 composite releases 3.57 wt% H2, surpassing the performance of pure MgH2 at 275 °C. Correspondingly, while pure MgH2 absorbs 2.08 wt% H2 in 60 min at 125 °C, the MgH2-10 NiFe-800 composite absorbs 5.35 wt% H2 in just 1 min. Remarkably, the MgH2-10 NiFe-800 composite absorbs 2.27 wt% H2 in 60 min at 50 °C and 4.64 wt% H2 at 75 °C. This indicates that MgH2-10 NiFe-800 exhibits optimum performance with excellent kinetics at low temperatures. Furthermore, the capacity of the MgH2-10 NiFe-800 composite remains largely stable after 10 cycles. Moreover, the Mg2Ni/Mg2NiH4 acts as a “hydrogen pump”, providing effective diffusion channels that enhance the kinetic process of the composite during cycling. Additionally, Fe0 facilitates electron transfer and creates hydrogen diffusion channels and catalytic sites. Finally, carbon (C) effectively prevents particle agglomeration and maintains the cyclic stability of the composites. Consequently, the synergistic effects of Mg2Ni/Mg2NiH4, Fe0, and C considerably improve the kinetic properties and cycling stability of MgH2. This work offers an effective and valuable approach to improving the hydrogen storage efficiency in the commercial application of MgH2.
氢化镁(MgH2)具有高容量和可逆性,是一种重要的氢气(H2)储存和运输材料。然而,其固有特性在很大程度上限制了其工业应用。在本研究中,首先利用 NiFe-800 催化剂作为金属有机框架 (MOF) 衍生物来促进 MgH2 的内在特性。与纯 MgH2 在 275 °C 下 60 分钟内释放 1.24 wt% H2 相比,MgH2-10 NiFe-800 复合材料在相同时间内释放 5.85 wt% H2。即使在 250 °C 的较低温度下,MgH2-10 NiFe-800 复合材料也能释放出 3.57 wt% 的 H2,超过了纯 MgH2 在 275 °C 下的性能。相应地,纯 MgH2 在 125 °C 下 60 分钟内吸收了 2.08 wt% 的 H2,而 MgH2-10 NiFe-800 复合材料仅在 1 分钟内就吸收了 5.35 wt% 的 H2。值得注意的是,MgH2-10 NiFe-800 复合材料在 50 °C 下 60 分钟内吸收 2.27 wt% H2,在 75 °C 下吸收 4.64 wt% H2。这表明,MgH2-10 NiFe-800 在低温条件下表现出最佳性能和出色的动力学特性。此外,MgH2-10 NiFe-800 复合材料的容量在 10 次循环后基本保持稳定。此外,Mg2Ni/Mg2NiH4 起到了 "氢泵 "的作用,提供了有效的扩散通道,增强了复合材料在循环过程中的动力学过程。此外,Fe0 可促进电子转移,并创建氢扩散通道和催化位点。最后,碳(C)可有效防止颗粒团聚,保持复合材料的循环稳定性。因此,Mg2Ni/Mg2NiH4、Fe0 和 C 的协同作用大大改善了 MgH2 的动力学特性和循环稳定性。这项工作为提高 MgH2 商业应用中的储氢效率提供了一种有效而有价值的方法。
{"title":"MOF-derived Ni3Fe/Ni/NiFe2O4@C for enhanced hydrogen storage performance of MgH2","authors":"Yangping Chen ,&nbsp;Bolin Sun ,&nbsp;Guoqing Zhang ,&nbsp;Siyuan Ni ,&nbsp;Canbing Li ,&nbsp;Juxiong Tian ,&nbsp;Yanrui Zhang ,&nbsp;Xinxi Li","doi":"10.1016/j.jechem.2024.09.048","DOIUrl":"10.1016/j.jechem.2024.09.048","url":null,"abstract":"<div><div>Magnesium hydride (MgH<sub>2</sub>) is an important material for hydrogen (H<sub>2</sub>) storage and transportation owing to its high capacity and reversibility. However, its intrinsic properties have considerably limited its industrial application. In this study, the NiFe-800 catalyst as metal-organic framework (MOF) derivative was first utilized to promote the intrinsic properties of MgH<sub>2</sub>. Compared to pure MgH<sub>2</sub>, which releases 1.24 wt% H<sub>2</sub> in 60 min at 275 °C, the MgH<sub>2</sub>-10 NiFe-800 composite releases 5.85 wt% H<sub>2</sub> in the same time. Even at a lower temperature of 250 °C, the MgH<sub>2</sub>-10 NiFe-800 composite releases 3.57 wt% H<sub>2</sub>, surpassing the performance of pure MgH<sub>2</sub> at 275 °C. Correspondingly, while pure MgH<sub>2</sub> absorbs 2.08 wt% H<sub>2</sub> in 60 min at 125 °C, the MgH<sub>2</sub>-10 NiFe-800 composite absorbs 5.35 wt% H<sub>2</sub> in just 1 min. Remarkably, the MgH<sub>2</sub>-10 NiFe-800 composite absorbs 2.27 wt% H<sub>2</sub> in 60 min at 50 °C and 4.64 wt% H<sub>2</sub> at 75 °C. This indicates that MgH<sub>2</sub>-10 NiFe-800 exhibits optimum performance with excellent kinetics at low temperatures. Furthermore, the capacity of the MgH<sub>2</sub>-10 NiFe-800 composite remains largely stable after 10 cycles. Moreover, the Mg<sub>2</sub>Ni/Mg<sub>2</sub>NiH<sub>4</sub> acts as a “hydrogen pump”, providing effective diffusion channels that enhance the kinetic process of the composite during cycling. Additionally, Fe<sup>0</sup> facilitates electron transfer and creates hydrogen diffusion channels and catalytic sites. Finally, carbon (C) effectively prevents particle agglomeration and maintains the cyclic stability of the composites. Consequently, the synergistic effects of Mg<sub>2</sub>Ni/Mg<sub>2</sub>NiH<sub>4</sub>, Fe<sup>0</sup>, and C considerably improve the kinetic properties and cycling stability of MgH<sub>2</sub>. This work offers an effective and valuable approach to improving the hydrogen storage efficiency in the commercial application of MgH<sub>2</sub>.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 333-344"},"PeriodicalIF":13.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A seaweed-inspired separator for high performance Zn metal batteries: Boosting kinetics and confining side-reactions 用于高性能锌金属电池的海藻启发式隔膜:促进动力学和限制副反应
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-04 DOI: 10.1016/j.jechem.2024.09.047
Qianzhi Gou , Horan Luo , Long Qu , Feilin Yu , Kaixin Wang , Sida Zhang , Ziga Luogu , Ben Zhang , Yujie Zheng , Bingye Song , John Wang , Meng Li
Uncontrolled dendrite growth, sluggish reaction kinetics, and drastic side reactions on the anode-electrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries. Traditional glass fiber (GF) separator with chemical inertness is almost ineffective in restricting these challenges. Herein, inspired by the ionic enrichment behavior of seaweed plants, a facile biomass species, anionic sodium alginate (SA), is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode. Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties, the as-obtained SA@GF separator could act as ion pump to boost the Zn2+ transference number (0.68), reduce the de-solvation energy barrier of hydrated Zn2+, and eliminate the undesired concentration polarization effect, which are verified by experimental tests, theoretical calculations, and finite element simulation, respectively. Based on these efficient modulation mechanisms, the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions. Therefore, the Zn||Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h (1 mA cm−2 and 1 mAh cm−2), exhibiting favorable competitiveness with previously reported separator modification strategies. Impressively, the Zn-MnO2 full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance, further verifying its practical application effect. This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.
阳极-电解质界面不受控制的枝晶生长、缓慢的反应动力学和剧烈的副反应是限制锌离子水电池应用前景的主要障碍。具有化学惰性的传统玻璃纤维(GF)隔膜几乎无法有效限制这些挑战。本文受海藻植物离子富集行为的启发,特意在商用玻璃纤维隔膜上装饰了一种简便的生物质物种--阴离子海藻酸钠(SA),以解决锌阳极的这些问题。得益于丰富的亲锌官能团和优越的机械强度特性,所获得的 SA@GF 分离器可作为离子泵提高 Zn2+ 迁移数(0.68),降低水合 Zn2+ 的脱溶能障,并消除不希望出现的浓度极化效应,这些都分别通过实验测试、理论计算和有限元模拟得到了验证。基于这些高效的调制机制,SA@GF 分离器可以同步实现锌的均匀沉积和抑制寄生副反应。因此,集成了 SA@GF 分离器的 Zn||Zn 纽扣电池可延长日历寿命超过 1230 h(1 mA cm-2 和 1 mAh cm-2),与之前报道的分离器改性策略相比,表现出良好的竞争力。令人印象深刻的是,与 SA@GF 分离器组装在一起的 Zn-MnO2 全电池和袋式电池还具有优异的循环稳定性和速率性能,进一步验证了其实际应用效果。这项工作从分离器方面为稳定锌阳极提供了一种新的设计理念。
{"title":"A seaweed-inspired separator for high performance Zn metal batteries: Boosting kinetics and confining side-reactions","authors":"Qianzhi Gou ,&nbsp;Horan Luo ,&nbsp;Long Qu ,&nbsp;Feilin Yu ,&nbsp;Kaixin Wang ,&nbsp;Sida Zhang ,&nbsp;Ziga Luogu ,&nbsp;Ben Zhang ,&nbsp;Yujie Zheng ,&nbsp;Bingye Song ,&nbsp;John Wang ,&nbsp;Meng Li","doi":"10.1016/j.jechem.2024.09.047","DOIUrl":"10.1016/j.jechem.2024.09.047","url":null,"abstract":"<div><div>Uncontrolled dendrite growth, sluggish reaction kinetics, and drastic side reactions on the anode-electrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries. Traditional glass fiber (GF) separator with chemical inertness is almost ineffective in restricting these challenges. Herein, inspired by the ionic enrichment behavior of seaweed plants, a facile biomass species, anionic sodium alginate (SA), is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode. Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties, the as-obtained SA@GF separator could act as ion pump to boost the Zn<sup>2+</sup> transference number (0.68), reduce the de-solvation energy barrier of hydrated Zn<sup>2+</sup>, and eliminate the undesired concentration polarization effect, which are verified by experimental tests, theoretical calculations, and finite element simulation, respectively. Based on these efficient modulation mechanisms, the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions. Therefore, the Zn||Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h (1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>), exhibiting favorable competitiveness with previously reported separator modification strategies. Impressively, the Zn-MnO<sub>2</sub> full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance, further verifying its practical application effect. This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 191-200"},"PeriodicalIF":13.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency improvement for post-sulfurized CIGS solar cells enabled by in situ Na doping 通过原位掺杂 Na 提高硫化后 CIGS 太阳能电池的效率
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-04 DOI: 10.1016/j.jechem.2024.09.046
Zeran Gao, Yuchen Xiong, Jiawen Wang, Shanshan Tian, Wanlei Dai, Haoyu Xu, Xinzhan Wang, Chao Gao, Yali Sun, Wei Yu
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2 (CIGS) absorbers, deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power conversion efficiency (PCE) in sulfided CIGS solar cells. Herein, an in-situ Na doping strategy is proposed, in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers. It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSex near the upper surface. The high soluble Na during grain growth can not only suppress intrinsic InCu donor defects in the absorber, but also tailor S distribution in bulk and the band alignment at the heterojunction, which are both beneficial for the effective electron carriers. Meanwhile, the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe2 formation at back contact, resulting in a reduced barrier height conducive to hole transport. PCE of the champion device is as high as 16.76% with a 28% increase. This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.
尽管在制备 Cu(In,Ga)Se2 (CIGS) 吸收体时,硫化具有改善光电性能的优势,但吸收体中的深层次缺陷和前表面能级排列不良仍然是限制硫化 CIGS 太阳能电池功率转换效率 (PCE) 提高的主要障碍。本文提出了一种原位 Na 掺杂策略,即利用晶体生长的拖尾效应促进 CIGS 吸收体的硫化。研究发现,由于上表面附近 NaSex 的富集,Na 的掺入支持了晶粒的生长。晶粒生长过程中高溶解度的 Na 不仅能抑制吸收体中固有的 InCu 供体缺陷,还能定制 S 在体中的分布和异质结的带排列,这都有利于有效电子载流子的产生。同时,吸收体底部附近的 Na 聚集也有助于晶体质量的提高和背面接触处超薄 MoSe2 的形成,从而降低了有利于空穴传输的势垒高度。冠军器件的 PCE 高达 16.76%,提高了 28%。这项研究为合成 CIGS 太阳能电池和其他钙钛矿太阳能电池提供了新的视角,使其在使用强硫化工艺时具有更优越的电池性能。
{"title":"Efficiency improvement for post-sulfurized CIGS solar cells enabled by in situ Na doping","authors":"Zeran Gao,&nbsp;Yuchen Xiong,&nbsp;Jiawen Wang,&nbsp;Shanshan Tian,&nbsp;Wanlei Dai,&nbsp;Haoyu Xu,&nbsp;Xinzhan Wang,&nbsp;Chao Gao,&nbsp;Yali Sun,&nbsp;Wei Yu","doi":"10.1016/j.jechem.2024.09.046","DOIUrl":"10.1016/j.jechem.2024.09.046","url":null,"abstract":"<div><div>Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se<sub>2</sub> (CIGS) absorbers, deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power conversion efficiency (PCE) in sulfided CIGS solar cells. Herein, an in-situ Na doping strategy is proposed, in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers. It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe<em><sub>x</sub></em> near the upper surface. The high soluble Na during grain growth can not only suppress intrinsic In<sub>Cu</sub> donor defects in the absorber, but also tailor S distribution in bulk and the band alignment at the heterojunction, which are both beneficial for the effective electron carriers. Meanwhile, the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe<sub>2</sub> formation at back contact, resulting in a reduced barrier height conducive to hole transport. PCE of the champion device is as high as 16.76% with a 28% increase. This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 324-332"},"PeriodicalIF":13.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ seed layer bandgap engineering leading to the conduction band offset reversion and efficient Sb2Se3 solar cells with high open-circuit voltage 通过原位种子层带隙工程实现传导带偏移恢复和具有高开路电压的高效 Sb2Se3 太阳能电池
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-02 DOI: 10.1016/j.jechem.2024.09.042
Yanting Jiang , Weiyu Wang , Zhirong Chen , Zhenyu Fang , Qiqiang Zhu , Qiao Zheng , Jionghua Wu , Hui Deng , Weihuang Wang , Shuying Cheng
Sb2Se3 solar cells have achieved a power conversion efficiency (PCE) of over 10%. However, the serious open-circuit voltage deficit (VOC-deficit), induced by the hard-to-control crystal orientation and heterojunction interface reaction, limits the PCE of vapor transport deposition (VTD) processed Sb2Se3 solar cells. To overcome the VOC-deficit problem of VTD processed Sb2Se3 solar cells, herein, an in-situ bandgap regulation strategy is innovatively proposed to prepare a wide band gap Sb2(S,Se)3 seed layer (WBSL) at CdS/Sb2Se3 heterojunction interface to improve the PCE of Sb2Se3 solar cells. The analysis results show that the introduced Sb2(S,Se)3 seed layer can enhance the [001] orientation of Sb2Se3 thin films, broaden the band gap of heterojunction interface, and realize a “Spike-like” conduction band alignment with ΔEc = 0.11 eV. In addition, thanks to the suppressed CdS/Sb2Se3 interface reaction after WBSL application, the depletion region width of Sb2Se3 solar cells is widened, and the quality of CdS/Sb2Se3 interface and the carrier transporting performance of Sb2Se3 solar cells are significantly improved as well. Moreover, the harmful Se vacancy defects near the front interface of Sb2Se3 solar cells can be greatly diminished by WBSL. Finally, the PCE of Sb2Se3 solar cells is improved from 7.0% to 7.6%; meanwhile the VOC is increased to 466 mV which is the highest value for the VTD derived Sb2Se3 solar cells. This work will provide a valuable reference for the interface and orientation regulation of antimony-based chalcogenide solar cells.
Sb2Se3 太阳能电池的功率转换效率(PCE)已超过 10%。然而,难以控制的晶体取向和异质结界面反应导致的严重开路电压不足(VOC-deficit)限制了气相传输沉积(VTD)工艺 Sb2Se3 太阳能电池的 PCE。为了克服 VTD 工艺 Sb2Se3 太阳能电池的 VOC 缺陷问题,本文创新性地提出了一种原位带隙调节策略,在 CdS/Sb2Se3 异质结界面制备宽带隙 Sb2(S,Se)3 种子层 (WBSL),以提高 Sb2Se3 太阳能电池的 PCE。分析结果表明,引入的 Sb2(S,Se)3 种子层可以增强 Sb2Se3 薄膜的 [001] 取向,拓宽异质结界面的带隙,实现ΔEc = 0.11 eV 的 "穗状 "导带排列。此外,由于 WBSL 应用后抑制了 CdS/Sb2Se3 界面反应,Sb2Se3 太阳能电池的耗尽区宽度得以拓宽,CdS/Sb2Se3 界面的质量和 Sb2Se3 太阳能电池的载流子传输性能也得到了显著改善。此外,WBSL 还能大大减少 Sb2Se3 太阳能电池正面界面附近有害的 Se 空位缺陷。最后,Sb2Se3 太阳能电池的 PCE 从 7.0% 提高到 7.6%,同时 VOC 提高到 466 mV,这是 VTD 衍生 Sb2Se3 太阳能电池的最高值。这项工作将为锑基铬化镓太阳能电池的界面和取向调节提供有价值的参考。
{"title":"In situ seed layer bandgap engineering leading to the conduction band offset reversion and efficient Sb2Se3 solar cells with high open-circuit voltage","authors":"Yanting Jiang ,&nbsp;Weiyu Wang ,&nbsp;Zhirong Chen ,&nbsp;Zhenyu Fang ,&nbsp;Qiqiang Zhu ,&nbsp;Qiao Zheng ,&nbsp;Jionghua Wu ,&nbsp;Hui Deng ,&nbsp;Weihuang Wang ,&nbsp;Shuying Cheng","doi":"10.1016/j.jechem.2024.09.042","DOIUrl":"10.1016/j.jechem.2024.09.042","url":null,"abstract":"<div><div>Sb<sub>2</sub>Se<sub>3</sub> solar cells have achieved a power conversion efficiency (PCE) of over 10%. However, the serious open-circuit voltage deficit (<em>V</em><sub>OC</sub>-deficit), induced by the hard-to-control crystal orientation and heterojunction interface reaction, limits the PCE of vapor transport deposition (VTD) processed Sb<sub>2</sub>Se<sub>3</sub> solar cells. To overcome the <em>V</em><sub>OC</sub>-deficit problem of VTD processed Sb<sub>2</sub>Se<sub>3</sub> solar cells, herein, an in-situ bandgap regulation strategy is innovatively proposed to prepare a wide band gap Sb<sub>2</sub>(S,Se)<sub>3</sub> seed layer (WBSL) at CdS/Sb<sub>2</sub>Se<sub>3</sub> heterojunction interface to improve the PCE of Sb<sub>2</sub>Se<sub>3</sub> solar cells. The analysis results show that the introduced Sb<sub>2</sub>(S,Se)<sub>3</sub> seed layer can enhance the [001] orientation of Sb<sub>2</sub>Se<sub>3</sub> thin films, broaden the band gap of heterojunction interface, and realize a “Spike-like” conduction band alignment with Δ<em>E</em><sub>c</sub> = 0.11 eV. In addition, thanks to the suppressed CdS/Sb<sub>2</sub>Se<sub>3</sub> interface reaction after WBSL application, the depletion region width of Sb<sub>2</sub>Se<sub>3</sub> solar cells is widened, and the quality of CdS/Sb<sub>2</sub>Se<sub>3</sub> interface and the carrier transporting performance of Sb<sub>2</sub>Se<sub>3</sub> solar cells are significantly improved as well. Moreover, the harmful Se vacancy defects near the front interface of Sb<sub>2</sub>Se<sub>3</sub> solar cells can be greatly diminished by WBSL. Finally, the PCE of Sb<sub>2</sub>Se<sub>3</sub> solar cells is improved from 7.0% to 7.6%; meanwhile the <em>V</em><sub>OC</sub> is increased to 466 mV which is the highest value for the VTD derived Sb<sub>2</sub>Se<sub>3</sub> solar cells. This work will provide a valuable reference for the interface and orientation regulation of antimony-based chalcogenide solar cells.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 201-212"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu gradient design to attain high efficient solution-processed CuIn(S,Se)2 solar cells 通过铜梯度设计实现高效溶液法 CuIn(S,Se)2 太阳能电池
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-02 DOI: 10.1016/j.jechem.2024.09.040
Xuejun Xu, Rutao Meng, Yue Liu, Han Xu, Jianpeng Li, Yi Zhang
Solution-processed chalcopyrite solar cells are widely regarded as a promising alternative method in reducing the cost compared with vacuum-based techniques. It is noted that the absorber layer usually needs to be prepared under a high insert pressure (∼1.6 atm) to suppress element loss or under a mild pressure but additional surface etching is needed for fabricating high efficient solar cell. Herein, a copper gradient structured precursor is proposed to prepare CuIn(S,Se)2 (CISSe) film under a mild pressure (1.1 atm). The designed gradient Cu not only promotes crystal grain growth and tailors the defects, but also avoids the surface etching of the formed CISSe film for the fabrication of high efficient solar cells. Further, Cu gradient design decreases the conduction band offset of heterojunction, boosting the carriers transport across the p-n heterojunction. Accordingly, a 13.35% efficient CISSe solar cell, comparable to the high efficient CISSe solar cell prepared by this method under high pressure or with film surface etching, is fabricated. This work provides a facile pathway to fabricate high efficient solution-processed chalcopyrite solar cell, avoiding high selenization pressure and film etching, and shows huge potential for solution-processed copper-based solar cells.
与真空技术相比,溶液处理黄铜矿太阳能电池被广泛认为是降低成本的一种有前途的替代方法。人们注意到,吸收层通常需要在较高的插入压力(∼1.6 atm)下制备以抑制元素损失,或者在温和的压力下制备,但要制造高效太阳能电池还需要额外的表面蚀刻。本文提出了一种铜梯度结构前驱体,用于在温和的压力(1.1 atm)下制备 CuIn(S,Se)2 (CISSe) 薄膜。设计的梯度铜不仅能促进晶粒生长,调整缺陷,还能避免对已形成的 CISSe 薄膜进行表面蚀刻,从而制造出高效太阳能电池。此外,铜梯度设计降低了异质结的导带偏移,促进了载流子在 p-n 异质结上的传输。因此,我们制备出了效率为 13.35% 的 CISSe 太阳能电池,与在高压或薄膜表面蚀刻条件下采用该方法制备的高效 CISSe 太阳能电池不相上下。这项工作为制备高效溶液法黄铜矿太阳能电池提供了一条简便的途径,避免了高硒化压力和薄膜蚀刻,显示了溶液法铜基太阳能电池的巨大潜力。
{"title":"Cu gradient design to attain high efficient solution-processed CuIn(S,Se)2 solar cells","authors":"Xuejun Xu,&nbsp;Rutao Meng,&nbsp;Yue Liu,&nbsp;Han Xu,&nbsp;Jianpeng Li,&nbsp;Yi Zhang","doi":"10.1016/j.jechem.2024.09.040","DOIUrl":"10.1016/j.jechem.2024.09.040","url":null,"abstract":"<div><div>Solution-processed chalcopyrite solar cells are widely regarded as a promising alternative method in reducing the cost compared with vacuum-based techniques. It is noted that the absorber layer usually needs to be prepared under a high insert pressure (∼1.6 atm) to suppress element loss or under a mild pressure but additional surface etching is needed for fabricating high efficient solar cell. Herein, a copper gradient structured precursor is proposed to prepare CuIn(S,Se)<sub>2</sub> (CISSe) film under a mild pressure (1.1 atm). The designed gradient Cu not only promotes crystal grain growth and tailors the defects, but also avoids the surface etching of the formed CISSe film for the fabrication of high efficient solar cells. Further, Cu gradient design decreases the conduction band offset of heterojunction, boosting the carriers transport across the p-n heterojunction. Accordingly, a 13.35% efficient CISSe solar cell, comparable to the high efficient CISSe solar cell prepared by this method under high pressure or with film surface etching, is fabricated. This work provides a facile pathway to fabricate high efficient solution-processed chalcopyrite solar cell, avoiding high selenization pressure and film etching, and shows huge potential for solution-processed copper-based solar cells.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 213-222"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achievable dual-strategy to stabilize Li-rich layered oxide interface by a one-step wet chemical reaction towards long oxygen redox reversibility 通过一步湿化学反应实现稳定富锂层状氧化物界面的双重策略,实现长氧氧化还原可逆性
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-02 DOI: 10.1016/j.jechem.2024.09.044
Bin He , Yujie Dai , Shuai Jiang , Dawei Chen , Xilong Wang , Jie Song , Dan Xiao , Qian Zhao , Yan Meng , Wei Feng
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structural degradation of high energy-density Li-rich layered oxide (LLO), leading to voltage and capacity fading. Herein, the dual-strategy of CrxB complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature. Density functional theory (DFT) calculations prove that stable B–O and Cr–O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O, which is also effective for the near-surface lattice O, thus greatly stabilizing the LLO surface. Besides, differential electrochemical mass spectrometry (DEMS) indicates that the CrxB complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions, including allowing speedy Li+ migration. The voltage and capacity fading of the modified cathode (LLO-CrB) are adequately suppressed, which are benefited from the uniformly dense cathode electrolyte interface (CEI) composed of balanced organic/inorganic composition. Therefore, the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g−1 (with a retention rate of 95.1%). This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
高电压下的氧释放和电解质分解会无休止地加剧高能量密度富锂层状氧化物(LLO)的界面恶化和结构退化,从而导致电压和容量衰减。在这里,通过室温下的一步湿化学反应,在 LLO 表面同时实现了 CrxB 复合物涂层和局部梯度掺杂的双重策略。密度泛函理论(DFT)计算证明,通过局部梯度掺杂形成稳定的B-O和Cr-O键,可显著降低界面晶格O的高能O 2p态,这对近表面晶格O也同样有效,从而极大地稳定了LLO表面。此外,差分电化学质谱法(DEMS)表明,CrxB 复合物涂层能充分抑制氧的释放,防止过渡金属离子的迁移或溶解,包括允许 Li+ 快速迁移。改性阴极(LLO-CrB)的电压和容量衰减得到了充分抑制,这得益于由平衡的有机/无机成分组成的均匀致密的阴极电解质界面(CEI)。因此,在 1C 下循环 200 次后,LLO-CrB 的比容量为 209.3 mA h g-1(保持率为 95.1%)。这种通过一步湿化学反应实现的双重策略有望应用于其他阴离子氧化还原阴极材料的设计和开发。
{"title":"Achievable dual-strategy to stabilize Li-rich layered oxide interface by a one-step wet chemical reaction towards long oxygen redox reversibility","authors":"Bin He ,&nbsp;Yujie Dai ,&nbsp;Shuai Jiang ,&nbsp;Dawei Chen ,&nbsp;Xilong Wang ,&nbsp;Jie Song ,&nbsp;Dan Xiao ,&nbsp;Qian Zhao ,&nbsp;Yan Meng ,&nbsp;Wei Feng","doi":"10.1016/j.jechem.2024.09.044","DOIUrl":"10.1016/j.jechem.2024.09.044","url":null,"abstract":"<div><div>Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structural degradation of high energy-density Li-rich layered oxide (LLO), leading to voltage and capacity fading. Herein, the dual-strategy of Cr<em><sub>x</sub></em>B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature. Density functional theory (DFT) calculations prove that stable B–O and Cr–O bonds through the local gradient doping can significantly reduce the high-energy O 2<em>p</em> states of interfacial lattice O, which is also effective for the near-surface lattice O, thus greatly stabilizing the LLO surface. Besides, differential electrochemical mass spectrometry (DEMS) indicates that the Cr<em><sub>x</sub></em>B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions, including allowing speedy Li<sup>+</sup> migration. The voltage and capacity fading of the modified cathode (LLO-CrB) are adequately suppressed, which are benefited from the uniformly dense cathode electrolyte interface (CEI) composed of balanced organic/inorganic composition. Therefore, the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g<sup>−1</sup> (with a retention rate of 95.1%). This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 120-131"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selenate-based heterojunction with cobalt–nickel paired site for electrocatalytic oxidation of 5-hydroxymethylfurfural coupling water splitting to produce hydrogen 具有钴镍配对位点的硒基异质结用于电催化氧化 5-羟甲基糠醛耦合水分离制氢
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-02 DOI: 10.1016/j.jechem.2024.09.045
Zhengru Yang , Jia Hui , Wangxi Fan , Pengcheng Liu , Chunyong Zhang , Shuang Dong , Zhou Yang
It is very appealing that 5-hydroxymethylfurfural (HMF) is electrocatalytical oxidized as 2,5-furandicarboxylic acid (FDCA) linking to non-classical cathodic hydrogen (H2) production. However, the electrocatalysts for electrocatalytic HMF oxidative reaction (e-HMFOR) have been facing low Faradaic efficiency (FE) and high water splitting voltage. Herein, we propose a strategy of the NiSeO3@(CoSeO3)4 heterojunction by constructing a Co-Ni paired site, where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site, thus giving the NiSeO3@(CoSeO3)4 heterojunction superior electrocatalytic performances for e-HMFOR and water splitting. By optimizing conditions, the NiSeO3@(CoSeO3)4 heterojunction has high conversion of 99.7%, high selectivity of 99.9%, and high FE of 98.4% at 1.3 V, as well as low cell voltage of 1.31 V at 10 mA cm−2 in 1 M KOH + 0.1 M HMF. This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H2 in an economical manner.
5-hydroxymethylfurfural (HMF) 通过电催化氧化为 2,5-呋喃二甲酸 (FDCA),从而产生非典型阴极氢气 (H2),这一点非常吸引人。然而,用于电催化 HMF 氧化反应(e-HMFOR)的电催化剂一直面临着法拉第效率(FE)低和分水电压高的问题。在此,我们提出了一种 NiSeO3@(CoSeO3)4异质结的策略,即构建 Co-Ni 配对位点,其中 Co 位点负责吸附 HMF,而电子则转移到 Ni 位点,从而使 NiSeO3@(CoSeO3)4异质结在 e-HMFOR 和水分离方面具有优异的电催化性能。通过优化条件,NiSeO3@(CoSeO3)4 异质结在 1.3 V 的电压下具有 99.7% 的高转化率、99.9% 的高选择性和 98.4% 的高 FE,同时在 1 M KOH + 0.1 M HMF 的条件下,10 mA cm-2 的电池电压低至 1.31 V。这项研究为 e-HMFOR 以经济的方式实现高附加值 FDCA 耦合水分裂制取 H2 提供了潜在的启示。
{"title":"Selenate-based heterojunction with cobalt–nickel paired site for electrocatalytic oxidation of 5-hydroxymethylfurfural coupling water splitting to produce hydrogen","authors":"Zhengru Yang ,&nbsp;Jia Hui ,&nbsp;Wangxi Fan ,&nbsp;Pengcheng Liu ,&nbsp;Chunyong Zhang ,&nbsp;Shuang Dong ,&nbsp;Zhou Yang","doi":"10.1016/j.jechem.2024.09.045","DOIUrl":"10.1016/j.jechem.2024.09.045","url":null,"abstract":"<div><div>It is very appealing that 5-hydroxymethylfurfural (HMF) is electrocatalytical oxidized as 2,5-furandicarboxylic acid (FDCA) linking to non-classical cathodic hydrogen (H<sub>2</sub>) production. However, the electrocatalysts for electrocatalytic HMF oxidative reaction (e-HMFOR) have been facing low Faradaic efficiency (<em>FE</em>) and high water splitting voltage. Herein, we propose a strategy of the NiSeO<sub>3</sub>@(CoSeO<sub>3</sub>)<sub>4</sub> heterojunction by constructing a Co-Ni paired site, where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site, thus giving the NiSeO<sub>3</sub>@(CoSeO<sub>3</sub>)<sub>4</sub> heterojunction superior electrocatalytic performances for e-HMFOR and water splitting. By optimizing conditions, the NiSeO<sub>3</sub>@(CoSeO<sub>3</sub>)<sub>4</sub> heterojunction has high conversion of 99.7%, high selectivity of 99.9%, and high <em>FE</em> of 98.4% at 1.3 V, as well as low cell voltage of 1.31 V at 10 mA cm<sup>−2</sup> in 1 M KOH + 0.1 M HMF. This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H<sub>2</sub> in an economical manner.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 156-162"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Energy Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1