Pub Date : 2024-10-02DOI: 10.1016/j.jechem.2024.09.043
Bonghyun Jo , Wenning Chen , Hyun Suk Jung
Perovskite solar cells (PSCs) have developed rapidly, positioning them as potential candidates for next-generation renewable energy sources. However, conventional trial-and-error approaches and the vast compositional parameter space continue to pose challenges in the pursuit of exceptional performance and high stability of perovskite-based optoelectronics. The increasing demand for novel materials in optoelectronic devices and establishment of substantial databases has enabled data-driven machine-learning (ML) approaches to swiftly advance in the materials field. This review succinctly outlines the fundamental ML procedures, techniques, and recent breakthroughs, particularly in predicting the physical characteristics of perovskite materials. Moreover, it highlights research endeavors aimed at optimizing and screening materials to enhance the efficiency and stability of PSCs. Additionally, this review highlights recent efforts in using characterization data for ML, exploring their correlations with material properties and device performance, which are actively being researched, but they have yet to receive significant attention. Lastly, we provide future perspectives, such as leveraging Large Language Models (LLMs) and text-mining, to expedite the discovery of novel perovskite materials and expand their utilization across various optoelectronic fields.
{"title":"Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices","authors":"Bonghyun Jo , Wenning Chen , Hyun Suk Jung","doi":"10.1016/j.jechem.2024.09.043","DOIUrl":"10.1016/j.jechem.2024.09.043","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) have developed rapidly, positioning them as potential candidates for next-generation renewable energy sources. However, conventional trial-and-error approaches and the vast compositional parameter space continue to pose challenges in the pursuit of exceptional performance and high stability of perovskite-based optoelectronics. The increasing demand for novel materials in optoelectronic devices and establishment of substantial databases has enabled data-driven machine-learning (ML) approaches to swiftly advance in the materials field. This review succinctly outlines the fundamental ML procedures, techniques, and recent breakthroughs, particularly in predicting the physical characteristics of perovskite materials. Moreover, it highlights research endeavors aimed at optimizing and screening materials to enhance the efficiency and stability of PSCs. Additionally, this review highlights recent efforts in using characterization data for ML, exploring their correlations with material properties and device performance, which are actively being researched, but they have yet to receive significant attention. Lastly, we provide future perspectives, such as leveraging Large Language Models (LLMs) and text-mining, to expedite the discovery of novel perovskite materials and expand their utilization across various optoelectronic fields.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 298-323"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.jechem.2024.09.041
Giuseppina Iervolino , Olimpia Tammaro , Marco Fontana , Bruno Masenelli , Anne D. Lamirand , Vincenzo Vaiano , Serena Esposito
This work aimed to study the efficiency of the reverse micelle (RM) preparation route in the syntheses of sub-5 nm Fe-doped CeO2 nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions. The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical characterization. In particular, the nominal composition (0–5 mol% Fe) was preserved as ascertained by ICP-MS analysis, and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction. The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis, Raman, and photoluminescence spectroscopies. 2.5 mol% iron was found to be an optimal content to achieve a significant decrease in the band gap, enhance the concentration of oxygen vacancy defects, and increase the charge carrier lifetime. The photocatalytic activity of Fe-doped CeO2 prepared at different Fe contents with RM preparation was studied and compared with undoped CeO2. The optimal iron load was identified to be 2.5 mol%, achieving the highest hydrogen production (7566 μmol L−1 after 240 min under visible light). Moreover, for comparison, the conventional precipitation (P) method was adopted to prepare iron containing CeO2 at the optimal content (2.5 mol% Fe). The Fe-doped CeO2 catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method. The optimal Fe-doped CeO2, prepared by the RM method, was stable for six reuse cycles. Moreover, the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O. The obtained results evidenced that hydrogen was produced from the reduction of H+ by the electrons promoted in the conduction band, while methanol was preferentially oxidized by the photogenerated positive holes.
{"title":"Tailoring sub-5 nm Fe-doped CeO2 nanocrystals within confined spaces to boost photocatalytic hydrogen evolution under visible light","authors":"Giuseppina Iervolino , Olimpia Tammaro , Marco Fontana , Bruno Masenelli , Anne D. Lamirand , Vincenzo Vaiano , Serena Esposito","doi":"10.1016/j.jechem.2024.09.041","DOIUrl":"10.1016/j.jechem.2024.09.041","url":null,"abstract":"<div><div>This work aimed to study the efficiency of the reverse micelle (RM) preparation route in the syntheses of sub-5 nm Fe-doped CeO<sub>2</sub> nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions. The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical characterization. In particular, the nominal composition (0–5 mol% Fe) was preserved as ascertained by ICP-MS analysis, and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction. The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis, Raman, and photoluminescence spectroscopies. 2.5 mol% iron was found to be an optimal content to achieve a significant decrease in the band gap, enhance the concentration of oxygen vacancy defects, and increase the charge carrier lifetime. The photocatalytic activity of Fe-doped CeO<sub>2</sub> prepared at different Fe contents with RM preparation was studied and compared with undoped CeO<sub>2</sub>. The optimal iron load was identified to be 2.5 mol%, achieving the highest hydrogen production (7566 μmol L<sup>−1</sup> after 240 min under visible light). Moreover, for comparison, the conventional precipitation (P) method was adopted to prepare iron containing CeO<sub>2</sub> at the optimal content (2.5 mol% Fe). The Fe-doped CeO<sub>2</sub> catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method. The optimal Fe-doped CeO<sub>2</sub>, prepared by the RM method, was stable for six reuse cycles. Moreover, the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D<sub>2</sub>O. The obtained results evidenced that hydrogen was produced from the reduction of H<sup>+</sup> by the electrons promoted in the conduction band, while methanol was preferentially oxidized by the photogenerated positive holes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 263-277"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.jechem.2024.09.036
Jiaqi Yu , Bo Liu , Hong Ma , Zehua Fan , Xiang Han , Qinghua Tian , Jizhang Chen
Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions. Separator modification is a highly effective strategy to address these issues. With the advantages of low cost, nontoxicity, biodegradability, good film-forming ability, superior hydrophilicity, and rich functional groups, chitosan is an ideal matrix for constructing separators. However, the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition. Herein, Schiff base reaction is introduced to modify chitosan matrix, transforming its charge polarity from positive to negative. Additionally, NbN with excellent zincophilicity is coated onto chitosan matrix, forming a Janus separator with low thickness of 19 μm and considerably improved mechanical properties. The resultant separator can promote the transport of Zn2+ ions while triggering a repulsive shielding effect against anions, therefore dramatically enhancing Zn2+ ion transfer number from 0.28 to 0.49. This separator can also facilitate desolvation process, improve exchange current density, restrict two-dimensional Zn2+ ion diffusion, and enhance electrochemical kinetics, contributing to significantly inhibited dendrite growth, by-product formation, and hydrogen evolution. Consequently, stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm−2 and 2 mAh cm−2. And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions. This work provides new insights into separator design for Zn-based batteries.
{"title":"Charge polarity inversion and zincophilicity improvement for chitosan separator towards durable aqueous zinc-ion batteries","authors":"Jiaqi Yu , Bo Liu , Hong Ma , Zehua Fan , Xiang Han , Qinghua Tian , Jizhang Chen","doi":"10.1016/j.jechem.2024.09.036","DOIUrl":"10.1016/j.jechem.2024.09.036","url":null,"abstract":"<div><div>Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions. Separator modification is a highly effective strategy to address these issues. With the advantages of low cost, nontoxicity, biodegradability, good film-forming ability, superior hydrophilicity, and rich functional groups, chitosan is an ideal matrix for constructing separators. However, the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition. Herein, Schiff base reaction is introduced to modify chitosan matrix, transforming its charge polarity from positive to negative. Additionally, NbN with excellent zincophilicity is coated onto chitosan matrix, forming a Janus separator with low thickness of 19 μm and considerably improved mechanical properties. The resultant separator can promote the transport of Zn<sup>2+</sup> ions while triggering a repulsive shielding effect against anions, therefore dramatically enhancing Zn<sup>2+</sup> ion transfer number from 0.28 to 0.49. This separator can also facilitate desolvation process, improve exchange current density, restrict two-dimensional Zn<sup>2+</sup> ion diffusion, and enhance electrochemical kinetics, contributing to significantly inhibited dendrite growth, by-product formation, and hydrogen evolution. Consequently, stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm<sup>−2</sup> and 2 mAh cm<sup>−2</sup>. And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions. This work provides new insights into separator design for Zn-based batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 110-119"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.jechem.2024.09.037
Chaeyeon Ha , Jin Kyo Koo , Jun Myoung Sheem , Young-Jun Kim
With the increasing prevalence of lithium-ion batteries (LIBs) applications, the demand for high-capacity next-generation materials has also increased. SiOx is currently considered a promising anode material due to its exceptionally high capacity for LIBs. However, the significant volumetric changes of SiOx during cycling and its initial Coulombic efficiency (ICE) complicate its use, whether alone or in combination with graphite materials. In this study, a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiOx blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker. In addition, a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiOx. The combination of these two strategies increased the CE of SiOx from 74% to 87% and effectively mitigated its volume expansion in the graphite/SiOx blended electrode, resulting in an efficient electron-conductive binder network. This led to a remarkable capacity retention of 94% after 30 cycles, even under challenging conditions, with a high capacity of 550 mA h g−1 and a current density of 4 mA cm−2. Furthermore, to validate the feasibility of utilizing prelithiated SiOx anode materials and the conductive binder network in LIBs, a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used. This cell demonstrated a ∼27.3% increase in discharge capacity of the first cycle (∼185.7 mA h g−1) and exhibited a cycling stability of 300 cycles. Thus, this study reports a simple, feasible, and insightful method for designing high-performance LIB electrodes.
随着锂离子电池(LIB)应用的日益普及,对高容量新一代材料的需求也随之增加。由于氧化硅具有极高的锂离子电池容量,目前被认为是一种很有前途的负极材料。然而,无论是单独使用还是与石墨材料结合使用,氧化硅在循环过程中的显著体积变化及其初始库仑效率(ICE)都使其使用复杂化。在本研究中,通过使用单宁酸作为化学交联剂对碳纳米管和羧甲基纤维素粘合剂进行化学锚定,为石墨/氧化硅混合阳极提出了一种具有高电子传导性和坚固弹性的三维导电粘合剂网络。此外,还利用氢化锂的脱氢预硫化策略来增强氧化硅的 ICE。这两种策略的结合将氧化硅的 CE 从 74% 提高到 87%,并有效缓解了其在石墨/氧化硅混合电极中的体积膨胀,从而形成了高效的电子导电粘结剂网络。因此,即使在极具挑战性的条件下,30 个循环后的容量保持率也高达 94%,容量高达 550 mA h g-1,电流密度为 4 mA cm-2。此外,为了验证在 LIB 中使用预石墨化氧化硅阳极材料和导电粘合剂网络的可行性,还使用了包含这些材料和单晶富镍阴极的完整电池。该电池在第一个循环中的放电容量增加了 27.3%(185.7 mA h g-1),并表现出 300 个循环的循环稳定性。因此,本研究为高性能锂离子电池电极的设计提供了一种简单、可行且具有洞察力的方法。
{"title":"Enhancing micro-scale SiOx anode durability: Electro-mechanical strengthening of binder networks via anchoring carbon nanotubes with carboxymethyl cellulose","authors":"Chaeyeon Ha , Jin Kyo Koo , Jun Myoung Sheem , Young-Jun Kim","doi":"10.1016/j.jechem.2024.09.037","DOIUrl":"10.1016/j.jechem.2024.09.037","url":null,"abstract":"<div><div>With the increasing prevalence of lithium-ion batteries (LIBs) applications, the demand for high-capacity next-generation materials has also increased. SiO<em><sub>x</sub></em> is currently considered a promising anode material due to its exceptionally high capacity for LIBs. However, the significant volumetric changes of SiO<em><sub>x</sub></em> during cycling and its initial Coulombic efficiency (ICE) complicate its use, whether alone or in combination with graphite materials. In this study, a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO<em><sub>x</sub></em> blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker. In addition, a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO<em><sub>x</sub></em>. The combination of these two strategies increased the CE of SiO<em><sub>x</sub></em> from 74% to 87% and effectively mitigated its volume expansion in the graphite/SiO<em><sub>x</sub></em> blended electrode, resulting in an efficient electron-conductive binder network. This led to a remarkable capacity retention of 94% after 30 cycles, even under challenging conditions, with a high capacity of 550 mA h g<sup>−1</sup> and a current density of 4 mA cm<sup>−2</sup>. Furthermore, to validate the feasibility of utilizing prelithiated SiO<em><sub>x</sub></em> anode materials and the conductive binder network in LIBs, a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used. This cell demonstrated a ∼27.3% increase in discharge capacity of the first cycle (∼185.7 mA h g<sup>−1</sup>) and exhibited a cycling stability of 300 cycles. Thus, this study reports a simple, feasible, and insightful method for designing high-performance LIB electrodes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 23-33"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.jechem.2024.09.039
Tianwen Yang , Haijuan Pei , Haijian Lv , Shijie Lu , Qi Liu , Daobin Mu
All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.
{"title":"Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials: factors, modification, perspectives","authors":"Tianwen Yang , Haijuan Pei , Haijian Lv , Shijie Lu , Qi Liu , Daobin Mu","doi":"10.1016/j.jechem.2024.09.039","DOIUrl":"10.1016/j.jechem.2024.09.039","url":null,"abstract":"<div><div>All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 233-262"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.jechem.2024.09.038
Xin He , Yujie Zhang , Haomiao Li , Min Zhou , Wei Wang , Ruxing Wang , Kai Jiang , Kangli Wang
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance. Classical molecular dynamics (CMD) using semi-empirical force fields has become an essential tool for simulating solvation structures. However, mainstream force fields often lack accuracy in describing strong ion-solvent interactions, causing disparities between CMD simulations and experimental observations. Although some empirical methods have been employed in some of the studies to address this issue, their effectiveness has been limited. Our CMD research, supported by quantum chemical calculations and experimental data, reveals that the solvation structure is influenced not only by the charge model but also by the polarization description. Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects. Building on this insight, we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate, ether, and nitrile electrolytes. Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures. This work is expected to provide a more reliable CMD method for electrolyte design, shielding researchers from the pitfalls of erroneous simulation outcomes.
{"title":"Improving the reliability of classical molecular dynamics simulations in battery electrolyte design","authors":"Xin He , Yujie Zhang , Haomiao Li , Min Zhou , Wei Wang , Ruxing Wang , Kai Jiang , Kangli Wang","doi":"10.1016/j.jechem.2024.09.038","DOIUrl":"10.1016/j.jechem.2024.09.038","url":null,"abstract":"<div><div>Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance. Classical molecular dynamics (CMD) using semi-empirical force fields has become an essential tool for simulating solvation structures. However, mainstream force fields often lack accuracy in describing strong ion-solvent interactions, causing disparities between CMD simulations and experimental observations. Although some empirical methods have been employed in some of the studies to address this issue, their effectiveness has been limited. Our CMD research, supported by quantum chemical calculations and experimental data, reveals that the solvation structure is influenced not only by the charge model but also by the polarization description. Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects. Building on this insight, we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate, ether, and nitrile electrolytes. Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures. This work is expected to provide a more reliable CMD method for electrolyte design, shielding researchers from the pitfalls of erroneous simulation outcomes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 34-41"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
All-solid-state lithium batteries (ASSLBs) are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety. The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs, which is challenging to investigate quantitatively by experimental approach. This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs. With the assistance of an equivalent circuit model and distribution of relaxation times, it is discovered that as the number of voids and the sharpness of cracks increase, the contact resistance Rc grows and ultimately dominates the battery impedance. Through accurate fitting, inverse proportional relations between contact resistance Rc and (1 − porosity) as well as crack angle was disclosed. This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.
{"title":"Unveiling solid-solid contact states in all-solid-state lithium batteries: An electrochemical impedance spectroscopy viewpoint","authors":"Jin-Liang Li , Liang Shen , Zi-Ning Cheng , Jun-Dong Zhang , Ling-Xuan Li , Yu-Tong Zhang , Yan-Bin Gao , Chunli Guo , Xiang Chen , Chen-Zi Zhao , Rui Zhang , Qiang Zhang","doi":"10.1016/j.jechem.2024.09.035","DOIUrl":"10.1016/j.jechem.2024.09.035","url":null,"abstract":"<div><div>All-solid-state lithium batteries (ASSLBs) are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety. The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs, which is challenging to investigate quantitatively by experimental approach. This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs. With the assistance of an equivalent circuit model and distribution of relaxation times, it is discovered that as the number of voids and the sharpness of cracks increase, the contact resistance <em>R</em><sub>c</sub> grows and ultimately dominates the battery impedance. Through accurate fitting, inverse proportional relations between contact resistance <em>R</em><sub>c</sub> and (1 − porosity) as well as crack angle was disclosed. This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 16-22"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems. However, the development of highly-active bifunctional electrocatalysts remains a challenge. Herein, 3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process, standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H2 from cyclohexanone and water. The membrane-free flow electrolyzer of Cu0.81Ni0.19/NF shows the superior electrooxidation performance of ketone-alcohol (KA) oil with high faradaic efficiencies of over 90% for adipic acid and H2, robust stability over 200 h as well as a high yield of 0.6 mmol h−1 for adipic acid at 100 mA cm−2. In-situ spectroscopy indicates the Cu0.81Ni0.19 alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid, while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates. Moreover, the theoretical calculations confirm that the optimal electronic interaction, boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates, synergistically endows Cu0.81Ni0.19 alloy with superior bifunctional performance.
{"title":"Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen","authors":"Xuhui Ren , Qianyu Zhang , Yun Tong, Guorong Zhou, Cong Lin, Yanying Zhao, Pengzuo Chen","doi":"10.1016/j.jechem.2024.09.033","DOIUrl":"10.1016/j.jechem.2024.09.033","url":null,"abstract":"<div><div>Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems. However, the development of highly-active bifunctional electrocatalysts remains a challenge. Herein, 3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process, standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H<sub>2</sub> from cyclohexanone and water. The membrane-free flow electrolyzer of Cu<sub>0.81</sub>Ni<sub>0.19</sub>/NF shows the superior electrooxidation performance of ketone-alcohol (KA) oil with high faradaic efficiencies of over 90% for adipic acid and H<sub>2</sub>, robust stability over 200 h as well as a high yield of 0.6 mmol h<sup>−1</sup> for adipic acid at 100 mA cm<sup>−2</sup>. In-situ spectroscopy indicates the Cu<sub>0.81</sub>Ni<sub>0.19</sub> alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid, while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates. Moreover, the theoretical calculations confirm that the optimal electronic interaction, boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates, synergistically endows Cu<sub>0.81</sub>Ni<sub>0.19</sub> alloy with superior bifunctional performance.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 7-15"},"PeriodicalIF":13.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.jechem.2024.09.031
Wenjie Ma , Yakun Tang , Yue Zhang , Xiaohui Li , Lang Liu , Xueting Wang , Yuliang Cao
Low-cost Fe-based disordered rock salt (DRX) Li2FeTiO4 is capable of providing high capacity (295 mA h g−1) by redox activity of cations (Fe2+/Fe4+ and Ti3+/Ti4+) and anionic oxygen. However, DRX structures lack transport channels for ions and electrons, resulting in sluggish kinetics, poor electrochemical activity, and cyclability. Herein, graphene conductive carbon network permeated Li2FeTiO4 (LFT/C/G) nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method. Ultrafine Li2FeTiO4 nanoparticles (2 nm) and one-dimensional (1D) structure provide abundant active sites and unobstructed diffusion channels, accelerating ion diffusion. In addition, introducing graphene reduces the band gap and Li+ diffusion barrier and improves the dynamic properties of Li2FeTiO4, thus achieving a relatively mild interfacial reaction and reversible redox reaction. As expected, the LFT/C/1.0G cathode delivers a remarkable discharge capacity (238.5 mA h g−1), high energy density (508.8 Wh kg−1), and excellent rate capability (51.2 mA h g−1 at 1.0 A g−1). Besides, the LFT/C/1.0G anode also displays a high capacity (514.5 mA h g−1 at 500 mA g−1) and a remarkable rate capability (243.9 mA h g−1 at 8 A g−1). Moreover, the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g−1 after 100 cycles at 50 mA g−1. This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.
低成本的铁基无序岩盐(DRX)Li2FeTiO4 能够通过阳离子(Fe2+/Fe4+ 和 Ti3+/Ti4+)和阴离子氧的氧化还原活动提供高容量(295 mA h g-1)。然而,DRX 结构缺乏离子和电子的传输通道,导致动力学缓慢、电化学活性和可循环性差。本文采用溶胶-凝胶辅助电纺丝方法,成功制备了石墨烯导电碳网络渗透 Li2FeTiO4(LFT/C/G)纳米纤维。超细的 Li2FeTiO4 纳米颗粒(2 nm)和一维(1D)结构提供了丰富的活性位点和畅通的扩散通道,加速了离子扩散。此外,石墨烯的引入降低了带隙和 Li+ 扩散阻力,改善了 Li2FeTiO4 的动态特性,从而实现了相对温和的界面反应和可逆氧化还原反应。正如预期的那样,LFT/C/1.0G 阴极具有显著的放电容量(238.5 mA h g-1)、高能量密度(508.8 Wh kg-1)和出色的速率能力(51.2 mA h g-1,1.0 A g-1)。此外,LFT/C/1.0G 阳极也显示出较高的容量(500 mA g-1 时为 514.5 mA h g-1)和出色的速率能力(8 A g-1 时为 243.9 mA h g-1)。此外,基于 LFT/C/1.0G 对称电极的全电池在 50 mA g-1 条件下循环 100 次后,显示出 117.0 mA h g-1 的可逆容量。这项研究为开发具有持久和快速锂存储能力的高性价比 DRX 阴极提供了有益的启示。
{"title":"Synergistic enhancement of ion/electron transport by ultrafine nanoparticles and graphene in Li2FeTiO4/C/G nanofibers for symmetric Li-ion batteries","authors":"Wenjie Ma , Yakun Tang , Yue Zhang , Xiaohui Li , Lang Liu , Xueting Wang , Yuliang Cao","doi":"10.1016/j.jechem.2024.09.031","DOIUrl":"10.1016/j.jechem.2024.09.031","url":null,"abstract":"<div><div>Low-cost Fe-based disordered rock salt (DRX) Li<sub>2</sub>FeTiO<sub>4</sub> is capable of providing high capacity (295 mA h g<sup>−1</sup>) by redox activity of cations (Fe<sup>2+</sup>/Fe<sup>4+</sup> and Ti<sup>3+</sup>/Ti<sup>4+</sup>) and anionic oxygen. However, DRX structures lack transport channels for ions and electrons, resulting in sluggish kinetics, poor electrochemical activity, and cyclability. Herein, graphene conductive carbon network permeated Li<sub>2</sub>FeTiO<sub>4</sub> (LFT/C/G) nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method. Ultrafine Li<sub>2</sub>FeTiO<sub>4</sub> nanoparticles (2 nm) and one-dimensional (1D) structure provide abundant active sites and unobstructed diffusion channels, accelerating ion diffusion. In addition, introducing graphene reduces the band gap and Li<sup>+</sup> diffusion barrier and improves the dynamic properties of Li<sub>2</sub>FeTiO<sub>4</sub>, thus achieving a relatively mild interfacial reaction and reversible redox reaction. As expected, the LFT/C/1.0G cathode delivers a remarkable discharge capacity (238.5 mA h g<sup>−1</sup>), high energy density (508.8 Wh kg<sup>−1</sup>), and excellent rate capability (51.2 mA h g<sup>−1</sup> at 1.0 A g<sup>−1</sup>). Besides, the LFT/C/1.0G anode also displays a high capacity (514.5 mA h g<sup>−1</sup> at 500 mA g<sup>−1</sup>) and a remarkable rate capability (243.9 mA h g<sup>−1</sup> at 8 A g<sup>−1</sup>). Moreover, the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g<sup>−1</sup> after 100 cycles at 50 mA g<sup>−1</sup>. This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 42-51"},"PeriodicalIF":13.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.jechem.2024.09.034
Hong-Yan Liu , Xin-Yu Liu , Nan Zhang , Peng-Fei Wang , Zong-Lin Liu , Jie Shu , Ting-Feng Yi
Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries (ASSLBs) have received widespread attention due to their low cost, good process ability, and high energy density. Nevertheless, the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application. One efficient strategy is to construct a superior solid electrolyte interface. Herein, a stable interface enriched with Li3N and LiF is in-situ formed between Li anode and a ternary salt electrolyte. This ternary salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and LiNO3 to poly(ethylene oxide) matrix. Surface characterization indicates that LiNO3 and LiFSI contribute to forming a Li3N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity. Theoretically, among various Li compound components, Li3N has high ionic conductivity, which is beneficial for reducing overpotential, while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites. The experimental results show that ASSLBs coupled with LiFePO4 cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C, with a final and corresponding discharge specific capacity of 96.7 mA h g−1. Additionally, a schematic illustration of the working mechanism for the Li3N-LiF interface is proposed.
基于聚(环氧乙烷)的聚合物全固态锂金属电池(ASSLBs)因其低成本、良好的加工能力和高能量密度而受到广泛关注。然而,锂枝晶在聚合物固态电解质中的生长破坏了锂阳极的可逆性,仍然阻碍着其广泛应用。一种有效的策略是构建一个优异的固态电解质界面。在这里,锂阳极和三元盐电解质之间原位形成了富含 Li3N 和 LiF 的稳定界面。这种三元盐电解质是通过在聚环氧乙烷基体中引入双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)和 LiNO3 而创新设计的。表面表征结果表明,LiNO3 和 LiFSI 有助于形成 Li3N-LiF 富集界面,同时 LiTFSI 确保了优异的导电性。从理论上讲,在各种锂化合物成分中,Li3N 具有较高的离子电导率,有利于降低过电位,而 LiF 具有较高的界面能,可以提高成核能,抑制锂枝晶的形成。实验结果表明,与磷酸铁锂阴极耦合的 ASSLBs 在 2 C 温度下循环约 2200 次后,显示出极其出色的循环稳定性,最终相应的放电比容量为 96.7 mA h g-1。此外,还提出了一个关于 Li3N-LiF 接口工作机制的示意图。
{"title":"Functional ternary salt construction enabling an in-situ Li3N/LiF-enriched interface for ultra-stable all-solid-state lithium metal batteries","authors":"Hong-Yan Liu , Xin-Yu Liu , Nan Zhang , Peng-Fei Wang , Zong-Lin Liu , Jie Shu , Ting-Feng Yi","doi":"10.1016/j.jechem.2024.09.034","DOIUrl":"10.1016/j.jechem.2024.09.034","url":null,"abstract":"<div><div>Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries (ASSLBs) have received widespread attention due to their low cost, good process ability, and high energy density. Nevertheless, the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application. One efficient strategy is to construct a superior solid electrolyte interface. Herein, a stable interface enriched with Li<sub>3</sub>N and LiF is in-situ formed between Li anode and a ternary salt electrolyte. This ternary salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and LiNO<sub>3</sub> to poly(ethylene oxide) matrix. Surface characterization indicates that LiNO<sub>3</sub> and LiFSI contribute to forming a Li<sub>3</sub>N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity. Theoretically, among various Li compound components, Li<sub>3</sub>N has high ionic conductivity, which is beneficial for reducing overpotential, while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites. The experimental results show that ASSLBs coupled with LiFePO<sub>4</sub> cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C, with a final and corresponding discharge specific capacity of 96.7 mA h g<sup>−1</sup>. Additionally, a schematic illustration of the working mechanism for the Li<sub>3</sub>N-LiF interface is proposed.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 68-75"},"PeriodicalIF":13.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}