首页 > 最新文献

Journal of Energy Chemistry最新文献

英文 中文
Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices 机器学习驱动的光伏设备用包晶石材料优化和表征进展综述
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-02 DOI: 10.1016/j.jechem.2024.09.043
Bonghyun Jo , Wenning Chen , Hyun Suk Jung
Perovskite solar cells (PSCs) have developed rapidly, positioning them as potential candidates for next-generation renewable energy sources. However, conventional trial-and-error approaches and the vast compositional parameter space continue to pose challenges in the pursuit of exceptional performance and high stability of perovskite-based optoelectronics. The increasing demand for novel materials in optoelectronic devices and establishment of substantial databases has enabled data-driven machine-learning (ML) approaches to swiftly advance in the materials field. This review succinctly outlines the fundamental ML procedures, techniques, and recent breakthroughs, particularly in predicting the physical characteristics of perovskite materials. Moreover, it highlights research endeavors aimed at optimizing and screening materials to enhance the efficiency and stability of PSCs. Additionally, this review highlights recent efforts in using characterization data for ML, exploring their correlations with material properties and device performance, which are actively being researched, but they have yet to receive significant attention. Lastly, we provide future perspectives, such as leveraging Large Language Models (LLMs) and text-mining, to expedite the discovery of novel perovskite materials and expand their utilization across various optoelectronic fields.
包光体太阳能电池(PSCs)发展迅速,已成为下一代可再生能源的潜在候选材料。然而,传统的试错方法和庞大的组成参数空间仍然是追求基于包晶石的光电器件的卓越性能和高稳定性的挑战。光电器件对新型材料的需求日益增长,大量数据库的建立使得数据驱动的机器学习(ML)方法在材料领域迅速发展。本综述简明扼要地概述了机器学习的基本程序、技术和最新突破,尤其是在预测包晶材料的物理特性方面。此外,它还重点介绍了旨在优化和筛选材料以提高 PSC 效率和稳定性的研究工作。此外,本综述还重点介绍了最近在使用表征数据进行 ML、探索其与材料特性和器件性能的相关性方面所做的努力。最后,我们提出了未来的展望,例如利用大型语言模型(LLM)和文本挖掘,加快新型光致发光材料的发现,并扩大其在各个光电领域的应用。
{"title":"Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices","authors":"Bonghyun Jo ,&nbsp;Wenning Chen ,&nbsp;Hyun Suk Jung","doi":"10.1016/j.jechem.2024.09.043","DOIUrl":"10.1016/j.jechem.2024.09.043","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) have developed rapidly, positioning them as potential candidates for next-generation renewable energy sources. However, conventional trial-and-error approaches and the vast compositional parameter space continue to pose challenges in the pursuit of exceptional performance and high stability of perovskite-based optoelectronics. The increasing demand for novel materials in optoelectronic devices and establishment of substantial databases has enabled data-driven machine-learning (ML) approaches to swiftly advance in the materials field. This review succinctly outlines the fundamental ML procedures, techniques, and recent breakthroughs, particularly in predicting the physical characteristics of perovskite materials. Moreover, it highlights research endeavors aimed at optimizing and screening materials to enhance the efficiency and stability of PSCs. Additionally, this review highlights recent efforts in using characterization data for ML, exploring their correlations with material properties and device performance, which are actively being researched, but they have yet to receive significant attention. Lastly, we provide future perspectives, such as leveraging Large Language Models (LLMs) and text-mining, to expedite the discovery of novel perovskite materials and expand their utilization across various optoelectronic fields.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 298-323"},"PeriodicalIF":13.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring sub-5 nm Fe-doped CeO2 nanocrystals within confined spaces to boost photocatalytic hydrogen evolution under visible light 在有限空间内定制 5 纳米以下的掺铁 CeO2 纳米晶体,促进可见光条件下的光催化氢演化
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-01 DOI: 10.1016/j.jechem.2024.09.041
Giuseppina Iervolino , Olimpia Tammaro , Marco Fontana , Bruno Masenelli , Anne D. Lamirand , Vincenzo Vaiano , Serena Esposito
This work aimed to study the efficiency of the reverse micelle (RM) preparation route in the syntheses of sub-5 nm Fe-doped CeO2 nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions. The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical characterization. In particular, the nominal composition (0–5 mol% Fe) was preserved as ascertained by ICP-MS analysis, and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction. The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis, Raman, and photoluminescence spectroscopies. 2.5 mol% iron was found to be an optimal content to achieve a significant decrease in the band gap, enhance the concentration of oxygen vacancy defects, and increase the charge carrier lifetime. The photocatalytic activity of Fe-doped CeO2 prepared at different Fe contents with RM preparation was studied and compared with undoped CeO2. The optimal iron load was identified to be 2.5 mol%, achieving the highest hydrogen production (7566 μmol L−1 after 240 min under visible light). Moreover, for comparison, the conventional precipitation (P) method was adopted to prepare iron containing CeO2 at the optimal content (2.5 mol% Fe). The Fe-doped CeO2 catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method. The optimal Fe-doped CeO2, prepared by the RM method, was stable for six reuse cycles. Moreover, the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O. The obtained results evidenced that hydrogen was produced from the reduction of H+ by the electrons promoted in the conduction band, while methanol was preferentially oxidized by the photogenerated positive holes.
这项工作旨在研究反向胶束(RM)制备路线在合成亚 5 纳米掺铁 CeO2 纳米晶体中的效率,以提高甲醇水溶液在可见光驱动下的光催化制氢能力。通过广泛的物理化学表征,评估了将沉淀反应限制在胶束笼中的有效性。特别是,ICP-MS 分析确定了标称成分(0-5 摩尔% 铁),X 射线衍射证明了不存在单独的含铁结晶相。利用紫外-可见光谱、拉曼光谱和光致发光光谱研究了有效的别价掺杂和对光学特性的调节。研究发现,2.5 摩尔% 的铁含量是显著降低带隙、提高氧空位缺陷浓度和增加电荷载流子寿命的最佳含量。研究了用 RM 制备不同铁含量的铁掺杂 CeO2 的光催化活性,并与未掺杂 CeO2 进行了比较。结果表明,最佳铁含量为 2.5 摩尔%,产氢量最高(在可见光下 240 分钟后为 7566 μmol L-1)。此外,为了进行比较,还采用了传统的沉淀法(P)来制备最佳含铁量(2.5 摩尔% Fe)的含铁 CeO2。RM 法制备的掺铁 CeO2 催化剂的产氢量明显高于 P 法制备的样品。用 RM 法制备的最佳掺铁 CeO2 在六个重复使用周期内都很稳定。此外,通过在 D2O 存在下的测试,研究了水在可见光下光催化氢气进化机理中的作用。结果表明,氢是由导带中的电子促进 H+ 还原产生的,而甲醇则优先被光生正电子空穴氧化。
{"title":"Tailoring sub-5 nm Fe-doped CeO2 nanocrystals within confined spaces to boost photocatalytic hydrogen evolution under visible light","authors":"Giuseppina Iervolino ,&nbsp;Olimpia Tammaro ,&nbsp;Marco Fontana ,&nbsp;Bruno Masenelli ,&nbsp;Anne D. Lamirand ,&nbsp;Vincenzo Vaiano ,&nbsp;Serena Esposito","doi":"10.1016/j.jechem.2024.09.041","DOIUrl":"10.1016/j.jechem.2024.09.041","url":null,"abstract":"<div><div>This work aimed to study the efficiency of the reverse micelle (RM) preparation route in the syntheses of sub-5 nm Fe-doped CeO<sub>2</sub> nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions. The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical characterization. In particular, the nominal composition (0–5 mol% Fe) was preserved as ascertained by ICP-MS analysis, and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction. The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis, Raman, and photoluminescence spectroscopies. 2.5 mol% iron was found to be an optimal content to achieve a significant decrease in the band gap, enhance the concentration of oxygen vacancy defects, and increase the charge carrier lifetime. The photocatalytic activity of Fe-doped CeO<sub>2</sub> prepared at different Fe contents with RM preparation was studied and compared with undoped CeO<sub>2</sub>. The optimal iron load was identified to be 2.5 mol%, achieving the highest hydrogen production (7566 μmol L<sup>−1</sup> after 240 min under visible light). Moreover, for comparison, the conventional precipitation (P) method was adopted to prepare iron containing CeO<sub>2</sub> at the optimal content (2.5 mol% Fe). The Fe-doped CeO<sub>2</sub> catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method. The optimal Fe-doped CeO<sub>2</sub>, prepared by the RM method, was stable for six reuse cycles. Moreover, the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D<sub>2</sub>O. The obtained results evidenced that hydrogen was produced from the reduction of H<sup>+</sup> by the electrons promoted in the conduction band, while methanol was preferentially oxidized by the photogenerated positive holes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 263-277"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge polarity inversion and zincophilicity improvement for chitosan separator towards durable aqueous zinc-ion batteries 改善壳聚糖隔膜的电荷极性反转和亲锌性,实现耐用的水性锌离子电池
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-10-01 DOI: 10.1016/j.jechem.2024.09.036
Jiaqi Yu , Bo Liu , Hong Ma , Zehua Fan , Xiang Han , Qinghua Tian , Jizhang Chen
Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions. Separator modification is a highly effective strategy to address these issues. With the advantages of low cost, nontoxicity, biodegradability, good film-forming ability, superior hydrophilicity, and rich functional groups, chitosan is an ideal matrix for constructing separators. However, the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition. Herein, Schiff base reaction is introduced to modify chitosan matrix, transforming its charge polarity from positive to negative. Additionally, NbN with excellent zincophilicity is coated onto chitosan matrix, forming a Janus separator with low thickness of 19 μm and considerably improved mechanical properties. The resultant separator can promote the transport of Zn2+ ions while triggering a repulsive shielding effect against anions, therefore dramatically enhancing Zn2+ ion transfer number from 0.28 to 0.49. This separator can also facilitate desolvation process, improve exchange current density, restrict two-dimensional Zn2+ ion diffusion, and enhance electrochemical kinetics, contributing to significantly inhibited dendrite growth, by-product formation, and hydrogen evolution. Consequently, stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm−2 and 2 mAh cm−2. And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions. This work provides new insights into separator design for Zn-based batteries.
锌离子水电池面临着锌枝晶和寄生反应等巨大挑战。隔膜改性是解决这些问题的一种高效策略。壳聚糖具有成本低、无毒、可生物降解、成膜性好、亲水性强、官能团丰富等优点,是构建隔膜的理想基质。然而,壳聚糖在弱酸性电解质中存在正电荷,不利于抑制树枝状突起。在此,我们引入希夫碱反应来改变壳聚糖基质,将其电荷极性从正极转变为负极。此外,还在壳聚糖基体上涂覆了亲锌性极佳的氮化铌,从而形成了一种厚度仅为 19 μm 的简纳斯分离器,并大大提高了其机械性能。由此产生的分离器可促进 Zn2+ 离子的传输,同时引发对阴离子的排斥屏蔽效应,从而将 Zn2+ 离子转移数从 0.28 大幅提高到 0.49。这种分离器还能促进脱溶过程,提高交换电流密度,限制二维 Zn2+ 离子扩散,并增强电化学动力学,从而显著抑制枝晶生长、副产物形成和氢演化。因此,在 2 mA cm-2 和 2 mAh cm-2 的条件下,可实现超过 2500 小时的稳定、可逆的锌剥离/电镀过程。即使在苛刻的条件下,也能为全电池提供强大的速率能力和出色的循环能力。这项工作为锌基电池的隔膜设计提供了新的见解。
{"title":"Charge polarity inversion and zincophilicity improvement for chitosan separator towards durable aqueous zinc-ion batteries","authors":"Jiaqi Yu ,&nbsp;Bo Liu ,&nbsp;Hong Ma ,&nbsp;Zehua Fan ,&nbsp;Xiang Han ,&nbsp;Qinghua Tian ,&nbsp;Jizhang Chen","doi":"10.1016/j.jechem.2024.09.036","DOIUrl":"10.1016/j.jechem.2024.09.036","url":null,"abstract":"<div><div>Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions. Separator modification is a highly effective strategy to address these issues. With the advantages of low cost, nontoxicity, biodegradability, good film-forming ability, superior hydrophilicity, and rich functional groups, chitosan is an ideal matrix for constructing separators. However, the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition. Herein, Schiff base reaction is introduced to modify chitosan matrix, transforming its charge polarity from positive to negative. Additionally, NbN with excellent zincophilicity is coated onto chitosan matrix, forming a Janus separator with low thickness of 19 μm and considerably improved mechanical properties. The resultant separator can promote the transport of Zn<sup>2+</sup> ions while triggering a repulsive shielding effect against anions, therefore dramatically enhancing Zn<sup>2+</sup> ion transfer number from 0.28 to 0.49. This separator can also facilitate desolvation process, improve exchange current density, restrict two-dimensional Zn<sup>2+</sup> ion diffusion, and enhance electrochemical kinetics, contributing to significantly inhibited dendrite growth, by-product formation, and hydrogen evolution. Consequently, stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm<sup>−2</sup> and 2 mAh cm<sup>−2</sup>. And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions. This work provides new insights into separator design for Zn-based batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 110-119"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing micro-scale SiOx anode durability: Electro-mechanical strengthening of binder networks via anchoring carbon nanotubes with carboxymethyl cellulose 提高微尺度氧化硅阳极的耐久性:通过锚定碳纳米管与羧甲基纤维素实现粘结剂网络的电机械强化
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-30 DOI: 10.1016/j.jechem.2024.09.037
Chaeyeon Ha , Jin Kyo Koo , Jun Myoung Sheem , Young-Jun Kim
With the increasing prevalence of lithium-ion batteries (LIBs) applications, the demand for high-capacity next-generation materials has also increased. SiOx is currently considered a promising anode material due to its exceptionally high capacity for LIBs. However, the significant volumetric changes of SiOx during cycling and its initial Coulombic efficiency (ICE) complicate its use, whether alone or in combination with graphite materials. In this study, a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiOx blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker. In addition, a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiOx. The combination of these two strategies increased the CE of SiOx from 74% to 87% and effectively mitigated its volume expansion in the graphite/SiOx blended electrode, resulting in an efficient electron-conductive binder network. This led to a remarkable capacity retention of 94% after 30 cycles, even under challenging conditions, with a high capacity of 550 mA h g−1 and a current density of 4 mA cm−2. Furthermore, to validate the feasibility of utilizing prelithiated SiOx anode materials and the conductive binder network in LIBs, a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used. This cell demonstrated a ∼27.3% increase in discharge capacity of the first cycle (∼185.7 mA h g−1) and exhibited a cycling stability of 300 cycles. Thus, this study reports a simple, feasible, and insightful method for designing high-performance LIB electrodes.
随着锂离子电池(LIB)应用的日益普及,对高容量新一代材料的需求也随之增加。由于氧化硅具有极高的锂离子电池容量,目前被认为是一种很有前途的负极材料。然而,无论是单独使用还是与石墨材料结合使用,氧化硅在循环过程中的显著体积变化及其初始库仑效率(ICE)都使其使用复杂化。在本研究中,通过使用单宁酸作为化学交联剂对碳纳米管和羧甲基纤维素粘合剂进行化学锚定,为石墨/氧化硅混合阳极提出了一种具有高电子传导性和坚固弹性的三维导电粘合剂网络。此外,还利用氢化锂的脱氢预硫化策略来增强氧化硅的 ICE。这两种策略的结合将氧化硅的 CE 从 74% 提高到 87%,并有效缓解了其在石墨/氧化硅混合电极中的体积膨胀,从而形成了高效的电子导电粘结剂网络。因此,即使在极具挑战性的条件下,30 个循环后的容量保持率也高达 94%,容量高达 550 mA h g-1,电流密度为 4 mA cm-2。此外,为了验证在 LIB 中使用预石墨化氧化硅阳极材料和导电粘合剂网络的可行性,还使用了包含这些材料和单晶富镍阴极的完整电池。该电池在第一个循环中的放电容量增加了 27.3%(185.7 mA h g-1),并表现出 300 个循环的循环稳定性。因此,本研究为高性能锂离子电池电极的设计提供了一种简单、可行且具有洞察力的方法。
{"title":"Enhancing micro-scale SiOx anode durability: Electro-mechanical strengthening of binder networks via anchoring carbon nanotubes with carboxymethyl cellulose","authors":"Chaeyeon Ha ,&nbsp;Jin Kyo Koo ,&nbsp;Jun Myoung Sheem ,&nbsp;Young-Jun Kim","doi":"10.1016/j.jechem.2024.09.037","DOIUrl":"10.1016/j.jechem.2024.09.037","url":null,"abstract":"<div><div>With the increasing prevalence of lithium-ion batteries (LIBs) applications, the demand for high-capacity next-generation materials has also increased. SiO<em><sub>x</sub></em> is currently considered a promising anode material due to its exceptionally high capacity for LIBs. However, the significant volumetric changes of SiO<em><sub>x</sub></em> during cycling and its initial Coulombic efficiency (ICE) complicate its use, whether alone or in combination with graphite materials. In this study, a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO<em><sub>x</sub></em> blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker. In addition, a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO<em><sub>x</sub></em>. The combination of these two strategies increased the CE of SiO<em><sub>x</sub></em> from 74% to 87% and effectively mitigated its volume expansion in the graphite/SiO<em><sub>x</sub></em> blended electrode, resulting in an efficient electron-conductive binder network. This led to a remarkable capacity retention of 94% after 30 cycles, even under challenging conditions, with a high capacity of 550 mA h g<sup>−1</sup> and a current density of 4 mA cm<sup>−2</sup>. Furthermore, to validate the feasibility of utilizing prelithiated SiO<em><sub>x</sub></em> anode materials and the conductive binder network in LIBs, a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used. This cell demonstrated a ∼27.3% increase in discharge capacity of the first cycle (∼185.7 mA h g<sup>−1</sup>) and exhibited a cycling stability of 300 cycles. Thus, this study reports a simple, feasible, and insightful method for designing high-performance LIB electrodes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 23-33"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials: factors, modification, perspectives 硫化物固体电解质与富镍氧化物阴极材料之间的界面兼容性:因素、改性和前景
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-30 DOI: 10.1016/j.jechem.2024.09.039
Tianwen Yang , Haijuan Pei , Haijian Lv , Shijie Lu , Qi Liu , Daobin Mu
All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.
由硫化物固体电解质(SSE)和富镍氧化物阴极材料组装而成的全固态电池(ASSB)有望实现高能量密度和安全性,是下一代储能系统的潜在候选材料。然而,由空间电荷层、界面副反应和机械接触失效引起的 SSE 与富镍氧化物阴极材料之间的界面问题极大地限制了 ASSB 的性能。界面退化与复合阴极的成分和电极制造工艺密切相关。本文以 SSE 与富镍氧化物阴极界面相容性的影响因素为重点,系统地讨论了阴极活性材料 (CAM)、电解质、导电添加剂、粘结剂和电极制造如何影响界面相容性。此外,还综述了相容性改性的策略。此外,还讨论了深入研究 SSE/富镍阴极材料界面降解和改性所面临的挑战和前景。本综述旨在为高能量密度和高安全性全固态电池的开发提供启发。
{"title":"Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials: factors, modification, perspectives","authors":"Tianwen Yang ,&nbsp;Haijuan Pei ,&nbsp;Haijian Lv ,&nbsp;Shijie Lu ,&nbsp;Qi Liu ,&nbsp;Daobin Mu","doi":"10.1016/j.jechem.2024.09.039","DOIUrl":"10.1016/j.jechem.2024.09.039","url":null,"abstract":"<div><div>All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 233-262"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the reliability of classical molecular dynamics simulations in battery electrolyte design 提高经典分子动力学模拟在电池电解质设计中的可靠性
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-30 DOI: 10.1016/j.jechem.2024.09.038
Xin He , Yujie Zhang , Haomiao Li , Min Zhou , Wei Wang , Ruxing Wang , Kai Jiang , Kangli Wang
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance. Classical molecular dynamics (CMD) using semi-empirical force fields has become an essential tool for simulating solvation structures. However, mainstream force fields often lack accuracy in describing strong ion-solvent interactions, causing disparities between CMD simulations and experimental observations. Although some empirical methods have been employed in some of the studies to address this issue, their effectiveness has been limited. Our CMD research, supported by quantum chemical calculations and experimental data, reveals that the solvation structure is influenced not only by the charge model but also by the polarization description. Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects. Building on this insight, we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate, ether, and nitrile electrolytes. Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures. This work is expected to provide a more reliable CMD method for electrolyte design, shielding researchers from the pitfalls of erroneous simulation outcomes.
对新型电解质的探索凸显了溶解结构对电池性能的重要影响。使用半经验力场的经典分子动力学(CMD)已成为模拟溶解结构的重要工具。然而,主流力场在描述离子与溶剂之间的强相互作用时往往缺乏准确性,导致 CMD 模拟与实验观察之间存在差异。虽然一些研究采用了一些经验方法来解决这一问题,但其效果有限。我们的 CMD 研究在量子化学计算和实验数据的支持下发现,溶解结构不仅受电荷模型的影响,还受极化描述的影响。以前的经验方法只注重调整离子与溶剂的相互作用强度,忽视了极化效应的重要性。基于这一认识,我们建议将 Drude 极化模型整合到主流力场中,并在碳酸盐、醚和腈电解质中验证其可行性。实验结果表明,这种方法大大提高了 CMD 模拟溶解结构的准确性。这项工作有望为电解质设计提供更可靠的 CMD 方法,使研究人员避免错误模拟结果的陷阱。
{"title":"Improving the reliability of classical molecular dynamics simulations in battery electrolyte design","authors":"Xin He ,&nbsp;Yujie Zhang ,&nbsp;Haomiao Li ,&nbsp;Min Zhou ,&nbsp;Wei Wang ,&nbsp;Ruxing Wang ,&nbsp;Kai Jiang ,&nbsp;Kangli Wang","doi":"10.1016/j.jechem.2024.09.038","DOIUrl":"10.1016/j.jechem.2024.09.038","url":null,"abstract":"<div><div>Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance. Classical molecular dynamics (CMD) using semi-empirical force fields has become an essential tool for simulating solvation structures. However, mainstream force fields often lack accuracy in describing strong ion-solvent interactions, causing disparities between CMD simulations and experimental observations. Although some empirical methods have been employed in some of the studies to address this issue, their effectiveness has been limited. Our CMD research, supported by quantum chemical calculations and experimental data, reveals that the solvation structure is influenced not only by the charge model but also by the polarization description. Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects. Building on this insight, we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate, ether, and nitrile electrolytes. Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures. This work is expected to provide a more reliable CMD method for electrolyte design, shielding researchers from the pitfalls of erroneous simulation outcomes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 34-41"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling solid-solid contact states in all-solid-state lithium batteries: An electrochemical impedance spectroscopy viewpoint 揭示全固态锂电池中的固-固接触状态:从电化学阻抗谱的角度看问题
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-30 DOI: 10.1016/j.jechem.2024.09.035
Jin-Liang Li , Liang Shen , Zi-Ning Cheng , Jun-Dong Zhang , Ling-Xuan Li , Yu-Tong Zhang , Yan-Bin Gao , Chunli Guo , Xiang Chen , Chen-Zi Zhao , Rui Zhang , Qiang Zhang
All-solid-state lithium batteries (ASSLBs) are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety. The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs, which is challenging to investigate quantitatively by experimental approach. This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs. With the assistance of an equivalent circuit model and distribution of relaxation times, it is discovered that as the number of voids and the sharpness of cracks increase, the contact resistance Rc grows and ultimately dominates the battery impedance. Through accurate fitting, inverse proportional relations between contact resistance Rc and (1 − porosity) as well as crack angle was disclosed. This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.
全固态锂电池(ASSLBs)因其高能量密度和内在安全性而被视为下一代储能设备。锂金属和固体电解质之间的固-固接触对工作中的全固态锂电池的性能起着至关重要的作用,而通过实验方法对其进行定量研究则具有挑战性。本研究提出了一种基于有限元法的定量模型,用于模拟 ASSLB 中不同固-固接触状态的电化学阻抗谱。在等效电路模型和弛豫时间分布的帮助下,研究发现随着空隙数量和裂纹尖锐度的增加,接触电阻 Rc 越来越大,并最终主导电池阻抗。通过精确拟合,揭示了接触电阻 Rc 和(1 - 孔隙率)以及裂纹角度之间的反比例关系。这一贡献为阐明 ASSLB 中的固-固接触状态提供了新的视角。
{"title":"Unveiling solid-solid contact states in all-solid-state lithium batteries: An electrochemical impedance spectroscopy viewpoint","authors":"Jin-Liang Li ,&nbsp;Liang Shen ,&nbsp;Zi-Ning Cheng ,&nbsp;Jun-Dong Zhang ,&nbsp;Ling-Xuan Li ,&nbsp;Yu-Tong Zhang ,&nbsp;Yan-Bin Gao ,&nbsp;Chunli Guo ,&nbsp;Xiang Chen ,&nbsp;Chen-Zi Zhao ,&nbsp;Rui Zhang ,&nbsp;Qiang Zhang","doi":"10.1016/j.jechem.2024.09.035","DOIUrl":"10.1016/j.jechem.2024.09.035","url":null,"abstract":"<div><div>All-solid-state lithium batteries (ASSLBs) are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety. The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs, which is challenging to investigate quantitatively by experimental approach. This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs. With the assistance of an equivalent circuit model and distribution of relaxation times, it is discovered that as the number of voids and the sharpness of cracks increase, the contact resistance <em>R</em><sub>c</sub> grows and ultimately dominates the battery impedance. Through accurate fitting, inverse proportional relations between contact resistance <em>R</em><sub>c</sub> and (1 − porosity) as well as crack angle was disclosed. This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 16-22"},"PeriodicalIF":13.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen 实现己二酸与氢高效共电解的镍铜合金阵列
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-28 DOI: 10.1016/j.jechem.2024.09.033
Xuhui Ren , Qianyu Zhang , Yun Tong, Guorong Zhou, Cong Lin, Yanying Zhao, Pengzuo Chen
Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems. However, the development of highly-active bifunctional electrocatalysts remains a challenge. Herein, 3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process, standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H2 from cyclohexanone and water. The membrane-free flow electrolyzer of Cu0.81Ni0.19/NF shows the superior electrooxidation performance of ketone-alcohol (KA) oil with high faradaic efficiencies of over 90% for adipic acid and H2, robust stability over 200 h as well as a high yield of 0.6 mmol h−1 for adipic acid at 100 mA cm−2. In-situ spectroscopy indicates the Cu0.81Ni0.19 alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid, while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates. Moreover, the theoretical calculations confirm that the optimal electronic interaction, boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates, synergistically endows Cu0.81Ni0.19 alloy with superior bifunctional performance.
构建电催化整体反应技术,将己二酸的电合成与节能制氢结合起来,对于可持续能源系统具有重要意义。然而,开发高活性双功能电催化剂仍是一项挑战。本文通过简单的电沉积工艺制备了具有树枝状形态的三维分层镍铜合金阵列,为从环己酮和水联合生产己二酸和 H2 提供了优异的双功能电催化剂。Cu0.81Ni0.19/NF 无膜流动电解槽显示出卓越的酮醇油(KA)电氧化性能,己二酸和 H2 的远红外效率高达 90% 以上,稳定性超过 200 小时,在 100 mA cm-2 的条件下,己二酸的产率高达 0.6 mmol h-1。原位光谱显示,Cu0.81Ni0.19 合金有助于形成更活跃的 NiOOH 物种,参与环己酮到己二酸的转化,而所提出的反应途径则经历了 2-hydroxycyclohexanone 和 2,7-oxepanedione 中间体。此外,理论计算证实,最佳的电子相互作用、反应动力学的提高以及反应中间产物吸附自由能的改善,协同赋予了 Cu0.81Ni0.19 合金卓越的双功能性能。
{"title":"Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen","authors":"Xuhui Ren ,&nbsp;Qianyu Zhang ,&nbsp;Yun Tong,&nbsp;Guorong Zhou,&nbsp;Cong Lin,&nbsp;Yanying Zhao,&nbsp;Pengzuo Chen","doi":"10.1016/j.jechem.2024.09.033","DOIUrl":"10.1016/j.jechem.2024.09.033","url":null,"abstract":"<div><div>Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems. However, the development of highly-active bifunctional electrocatalysts remains a challenge. Herein, 3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process, standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H<sub>2</sub> from cyclohexanone and water. The membrane-free flow electrolyzer of Cu<sub>0.81</sub>Ni<sub>0.19</sub>/NF shows the superior electrooxidation performance of ketone-alcohol (KA) oil with high faradaic efficiencies of over 90% for adipic acid and H<sub>2</sub>, robust stability over 200 h as well as a high yield of 0.6 mmol h<sup>−1</sup> for adipic acid at 100 mA cm<sup>−2</sup>. In-situ spectroscopy indicates the Cu<sub>0.81</sub>Ni<sub>0.19</sub> alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid, while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates. Moreover, the theoretical calculations confirm that the optimal electronic interaction, boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates, synergistically endows Cu<sub>0.81</sub>Ni<sub>0.19</sub> alloy with superior bifunctional performance.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 7-15"},"PeriodicalIF":13.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic enhancement of ion/electron transport by ultrafine nanoparticles and graphene in Li2FeTiO4/C/G nanofibers for symmetric Li-ion batteries 用于对称锂离子电池的 Li2FeTiO4/C/G 纳米纤维中的超细纳米粒子和石墨烯对离子/电子传输的协同增强作用
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-28 DOI: 10.1016/j.jechem.2024.09.031
Wenjie Ma , Yakun Tang , Yue Zhang , Xiaohui Li , Lang Liu , Xueting Wang , Yuliang Cao
Low-cost Fe-based disordered rock salt (DRX) Li2FeTiO4 is capable of providing high capacity (295 mA h g−1) by redox activity of cations (Fe2+/Fe4+ and Ti3+/Ti4+) and anionic oxygen. However, DRX structures lack transport channels for ions and electrons, resulting in sluggish kinetics, poor electrochemical activity, and cyclability. Herein, graphene conductive carbon network permeated Li2FeTiO4 (LFT/C/G) nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method. Ultrafine Li2FeTiO4 nanoparticles (2 nm) and one-dimensional (1D) structure provide abundant active sites and unobstructed diffusion channels, accelerating ion diffusion. In addition, introducing graphene reduces the band gap and Li+ diffusion barrier and improves the dynamic properties of Li2FeTiO4, thus achieving a relatively mild interfacial reaction and reversible redox reaction. As expected, the LFT/C/1.0G cathode delivers a remarkable discharge capacity (238.5 mA h g−1), high energy density (508.8 Wh kg−1), and excellent rate capability (51.2 mA h g−1 at 1.0 A g−1). Besides, the LFT/C/1.0G anode also displays a high capacity (514.5 mA h g−1 at 500 mA g−1) and a remarkable rate capability (243.9 mA h g−1 at 8 A g−1). Moreover, the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g−1 after 100 cycles at 50 mA g−1. This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.
低成本的铁基无序岩盐(DRX)Li2FeTiO4 能够通过阳离子(Fe2+/Fe4+ 和 Ti3+/Ti4+)和阴离子氧的氧化还原活动提供高容量(295 mA h g-1)。然而,DRX 结构缺乏离子和电子的传输通道,导致动力学缓慢、电化学活性和可循环性差。本文采用溶胶-凝胶辅助电纺丝方法,成功制备了石墨烯导电碳网络渗透 Li2FeTiO4(LFT/C/G)纳米纤维。超细的 Li2FeTiO4 纳米颗粒(2 nm)和一维(1D)结构提供了丰富的活性位点和畅通的扩散通道,加速了离子扩散。此外,石墨烯的引入降低了带隙和 Li+ 扩散阻力,改善了 Li2FeTiO4 的动态特性,从而实现了相对温和的界面反应和可逆氧化还原反应。正如预期的那样,LFT/C/1.0G 阴极具有显著的放电容量(238.5 mA h g-1)、高能量密度(508.8 Wh kg-1)和出色的速率能力(51.2 mA h g-1,1.0 A g-1)。此外,LFT/C/1.0G 阳极也显示出较高的容量(500 mA g-1 时为 514.5 mA h g-1)和出色的速率能力(8 A g-1 时为 243.9 mA h g-1)。此外,基于 LFT/C/1.0G 对称电极的全电池在 50 mA g-1 条件下循环 100 次后,显示出 117.0 mA h g-1 的可逆容量。这项研究为开发具有持久和快速锂存储能力的高性价比 DRX 阴极提供了有益的启示。
{"title":"Synergistic enhancement of ion/electron transport by ultrafine nanoparticles and graphene in Li2FeTiO4/C/G nanofibers for symmetric Li-ion batteries","authors":"Wenjie Ma ,&nbsp;Yakun Tang ,&nbsp;Yue Zhang ,&nbsp;Xiaohui Li ,&nbsp;Lang Liu ,&nbsp;Xueting Wang ,&nbsp;Yuliang Cao","doi":"10.1016/j.jechem.2024.09.031","DOIUrl":"10.1016/j.jechem.2024.09.031","url":null,"abstract":"<div><div>Low-cost Fe-based disordered rock salt (DRX) Li<sub>2</sub>FeTiO<sub>4</sub> is capable of providing high capacity (295 mA h g<sup>−1</sup>) by redox activity of cations (Fe<sup>2+</sup>/Fe<sup>4+</sup> and Ti<sup>3+</sup>/Ti<sup>4+</sup>) and anionic oxygen. However, DRX structures lack transport channels for ions and electrons, resulting in sluggish kinetics, poor electrochemical activity, and cyclability. Herein, graphene conductive carbon network permeated Li<sub>2</sub>FeTiO<sub>4</sub> (LFT/C/G) nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method. Ultrafine Li<sub>2</sub>FeTiO<sub>4</sub> nanoparticles (2 nm) and one-dimensional (1D) structure provide abundant active sites and unobstructed diffusion channels, accelerating ion diffusion. In addition, introducing graphene reduces the band gap and Li<sup>+</sup> diffusion barrier and improves the dynamic properties of Li<sub>2</sub>FeTiO<sub>4</sub>, thus achieving a relatively mild interfacial reaction and reversible redox reaction. As expected, the LFT/C/1.0G cathode delivers a remarkable discharge capacity (238.5 mA h g<sup>−1</sup>), high energy density (508.8 Wh kg<sup>−1</sup>), and excellent rate capability (51.2 mA h g<sup>−1</sup> at 1.0 A g<sup>−1</sup>). Besides, the LFT/C/1.0G anode also displays a high capacity (514.5 mA h g<sup>−1</sup> at 500 mA g<sup>−1</sup>) and a remarkable rate capability (243.9 mA h g<sup>−1</sup> at 8 A g<sup>−1</sup>). Moreover, the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g<sup>−1</sup> after 100 cycles at 50 mA g<sup>−1</sup>. This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 42-51"},"PeriodicalIF":13.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional ternary salt construction enabling an in-situ Li3N/LiF-enriched interface for ultra-stable all-solid-state lithium metal batteries 功能性三元盐结构可为超稳定全固态锂金属电池提供原位 Li3N/LiF 富集界面
IF 13.1 1区 化学 Q1 Energy Pub Date : 2024-09-27 DOI: 10.1016/j.jechem.2024.09.034
Hong-Yan Liu , Xin-Yu Liu , Nan Zhang , Peng-Fei Wang , Zong-Lin Liu , Jie Shu , Ting-Feng Yi
Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries (ASSLBs) have received widespread attention due to their low cost, good process ability, and high energy density. Nevertheless, the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application. One efficient strategy is to construct a superior solid electrolyte interface. Herein, a stable interface enriched with Li3N and LiF is in-situ formed between Li anode and a ternary salt electrolyte. This ternary salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and LiNO3 to poly(ethylene oxide) matrix. Surface characterization indicates that LiNO3 and LiFSI contribute to forming a Li3N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity. Theoretically, among various Li compound components, Li3N has high ionic conductivity, which is beneficial for reducing overpotential, while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites. The experimental results show that ASSLBs coupled with LiFePO4 cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C, with a final and corresponding discharge specific capacity of 96.7 mA h g−1. Additionally, a schematic illustration of the working mechanism for the Li3N-LiF interface is proposed.
基于聚(环氧乙烷)的聚合物全固态锂金属电池(ASSLBs)因其低成本、良好的加工能力和高能量密度而受到广泛关注。然而,锂枝晶在聚合物固态电解质中的生长破坏了锂阳极的可逆性,仍然阻碍着其广泛应用。一种有效的策略是构建一个优异的固态电解质界面。在这里,锂阳极和三元盐电解质之间原位形成了富含 Li3N 和 LiF 的稳定界面。这种三元盐电解质是通过在聚环氧乙烷基体中引入双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)和 LiNO3 而创新设计的。表面表征结果表明,LiNO3 和 LiFSI 有助于形成 Li3N-LiF 富集界面,同时 LiTFSI 确保了优异的导电性。从理论上讲,在各种锂化合物成分中,Li3N 具有较高的离子电导率,有利于降低过电位,而 LiF 具有较高的界面能,可以提高成核能,抑制锂枝晶的形成。实验结果表明,与磷酸铁锂阴极耦合的 ASSLBs 在 2 C 温度下循环约 2200 次后,显示出极其出色的循环稳定性,最终相应的放电比容量为 96.7 mA h g-1。此外,还提出了一个关于 Li3N-LiF 接口工作机制的示意图。
{"title":"Functional ternary salt construction enabling an in-situ Li3N/LiF-enriched interface for ultra-stable all-solid-state lithium metal batteries","authors":"Hong-Yan Liu ,&nbsp;Xin-Yu Liu ,&nbsp;Nan Zhang ,&nbsp;Peng-Fei Wang ,&nbsp;Zong-Lin Liu ,&nbsp;Jie Shu ,&nbsp;Ting-Feng Yi","doi":"10.1016/j.jechem.2024.09.034","DOIUrl":"10.1016/j.jechem.2024.09.034","url":null,"abstract":"<div><div>Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries (ASSLBs) have received widespread attention due to their low cost, good process ability, and high energy density. Nevertheless, the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application. One efficient strategy is to construct a superior solid electrolyte interface. Herein, a stable interface enriched with Li<sub>3</sub>N and LiF is in-situ formed between Li anode and a ternary salt electrolyte. This ternary salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and LiNO<sub>3</sub> to poly(ethylene oxide) matrix. Surface characterization indicates that LiNO<sub>3</sub> and LiFSI contribute to forming a Li<sub>3</sub>N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity. Theoretically, among various Li compound components, Li<sub>3</sub>N has high ionic conductivity, which is beneficial for reducing overpotential, while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites. The experimental results show that ASSLBs coupled with LiFePO<sub>4</sub> cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C, with a final and corresponding discharge specific capacity of 96.7 mA h g<sup>−1</sup>. Additionally, a schematic illustration of the working mechanism for the Li<sub>3</sub>N-LiF interface is proposed.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 68-75"},"PeriodicalIF":13.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Energy Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1